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Abstract. Most of Image Quality Assessment (IQA) methods require
the reference image to be pixel-wise aligned with the distorted image,
and thus limiting the application of reference image based IQA meth-
ods. In this paper, we show that non-aligned image with similar scene
could be well used for reference, using a proposed Dual-path deep Con-
volutional Neural Network (DCNN). Analysis indicates that the model
captures the scene structural information and non-structural informa-
tion “naturalness” between the pair for quality assessment. As shown in
the experiments, our proposed DCNN model handles the IQA problem
well. With an aligned reference image, our predictions outperform many
state-of-the-art methods. And in more general case where the reference
image contains the similar scene but is not aligned with the distorted one,
DCNN could still achieve superior consistency with subjective evaluation
than many existing methods that even use aligned reference images.

Keywords: Image Quality Assessment - Similar scene referenced
image - Structural similarity - “Naturalness” - Dual-path Deep Con-
volution Neural Network

1 Introduction

Assessing the quality of a distorted image would benefit from the availability of a
reference image. As revealed in [1], human are more skilled at comparing images
than making direct judgement of the image quality. Accordingly, human can
evaluate the quality of an image more accurately and consistently when provided
with a high-quality reference image, and meanwhile human may give different
quality scores to the same image if different reference images are presented [2].
The situation is the same for Image Quality Assessment (IQA) algorithms, where
methods that make use of reference images could achieve better consistency with
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Fig.1. Using non-aligned images with similar scene as quality reference. Original
images (top), distorted images (middle) and reference images (bottom) that are only
similar to but is neither aligned with nor related by any geometrical transformation with
the distorted images

subjective assessments than those that do not consider references [3,4]. Based
on whether and how reference images are used, existing IQA methods could
be broadly categorized into the following three groups: full reference (FR) IQA
methods [2,3,5,6], reduced referenced (RR) IQA methods [7,8], and no reference
(NR) IQA methods [9,10]. The former two groups, i.e.,the FR-IQA and the
RR-IQA methods groups, take advantage of complete or partial information of
the reference image respectively, while the NR-IQA methods are often designed
to extract discriminative features [9,10] or to calculate natural scene statistics
to qualify the image quality [11]. As explained above, FR-IQA methods often
achieve more consistent assessment as human.

However, one strong assumption with most FR-IQA methods is that, the ref-
erence image must be pixel-wise aligned with the distorted image for assessment.
The requirement could be satisfied if the task is, e.g. to measure the quality of
JPEG 2000 (JP2K) compression. Unfortunately, in more general scenario, the
imaging process that generates the distorted image and the reference image
may not produce aligned pair. For instance, a cell phone camera may capture a
photo with hand-shake, and it is difficult to then capture an aligned high-quality
image as reference. An image enhancement module on an automatic vehicle can
improve a low-quality capture of the road but to assess the performance of the
enhancement, it is impossible to put the vehicle at the same position to shot a
pixel-aligned picture for reference. In both these common scenarios, only NR-
IQA method could be used to assess the quality of the distorted images.

In this paper, we are interested in whether the image quality could be assessed
using a reference image with similar scene but is not aligned, as illustrated
in Fig.1. We term the problem as NAR-IQA (Non-aligned Reference IQA).
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Studies in Human Visual System (HVS) have shown that, HVS presents dif-
ferent sensitivity to different image signals such as spatial frequency [4], lumi-
nance [12], structural information [5], etc. Among all these features, the suc-
cess of the SSIM [5] metric and its extension [13] indicates that measuring the
scene structural information does benefit IQA. In addition, the visual attention
property [12,14], or well known as saliency [15], tells that human usually pays
attention only to a smaller but representative part of the scene, and therefore
it is reasonable to assume that, if the reference image contains the same scene
structure as the distorted image, it can still be used to evaluate the quality of
the distorted one. Unfortunately, limited literature is available for NAR-IQA
approaches. One example is the CW-SSIM [16] method that attempts using ref-
erence image with small affine transformation (scale, rotation and translation) to
assess the quality of medical and binary images, which performs unsatisfactory
for natural images as observed in our experiments.

This has motivated us to design a Dual-path deep Convolutional Neural
Network (DCNN) for image quality assessment, using reference image of similar
scene but not necessarily aligned. The two paths take the distorted image and
the reference image respectively. Through weight sharing between paths, the
same kind of features are extracted at the lower stage of the model. At the final
stage, the proposed model concatenates features from both paths, and then a
regressor is used to predict the image quality score.

Experimental results first validate that, the NAR-IQA problem is solvable
where in case a pixel-wise aligned reference image is not available, a non-aligned
image with similar scene can be well used as reference. In addition, our proposed
model handles the IQA problem well. As explained above, the FR-IQA problem
can be regarded as a special case of the NAR-IQA problem where an aligned
reference image is given to the model. In this case, our predicted image quality
scores are more consistent with subjective evaluations than many state-of-the-art
methods. In more general case, i.e.,the NAR-IQA problem, our model could still
achieve superior consistency than many existing methods that even use aligned
reference images. Hence, while there are previous works that attempted IQA
with small geometrical transformation between the reference and the distorted
images [16], to the best of our knowledge, our work is the first to support IQA
from reference image with similar scene but is not aligned, such that reference
images become obtainable for more IQA applications.

2 Related Work

A large body of FR-IQA methods has been proposed to judge the quality of
distorted images by considering reference images. Most of the approaches in this
line require the reference image to be strictly aligned with the distorted images.
Simple error sensitivity metrics such as the Mean Square Error (MSE) or the
Peak Signal-to-Noise Ratio (PSNR) compare local pixel difference between the
reference image and the distorted image, but in general the evaluation does
not correlate well with human assessment. The SSIM [5] method modeled the
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structural information inspired by HVS for quality judgement and could achieve
more consistent evaluation as human. Wang et al.[13] further combined multi-
scale information to improve the situation. Zhang et al. [3] carefully designed
the phase congruency and gradient magnitude as complementary features of
FSIM for IQA. Different from FR-IQA methods, the RR-IQA methods [7,8]
focus on utilizing only parts of the reference image information to accomplish
the assessment. In general, FR-IQA and RR-IQA mimic different sensitivity of
HVS to different image signals [2,17], including spatial frequency, luminance [12],
structural information [5] etc. to devise metric for IQA. As explained before,
most FR or RR-IQA methods are extremely sensitive to small geometrical mis-
alignment between the reference and the distorted images, which severely limits
their applications.

It is worth noting that, the CW-SSIM [16] algorithm in the FR-IQA class was
designed to handle very small scale, rotation and translation changes between
the distorted image and the reference. On the other side, since natural images
have more variations in frequency domains, in practice, the CW-SSIM method
seems to perform well only for medical and binary images but poor for more
general cases such as photos, surveillance footage and natural images.

Since aligned reference images are not always available, NR-IQA meth-
ods [9,10] have aroused extensive interests. Focus of most NR-IQA methods
is to obtain discriminate features, and nowadays many NR-IQA algorithms are
based on set of training data to learn such feature rather than proposing hand-
crafted ones. e.g., the CORNIA [10] method learned codebooks from local image
patches to encode features, and then regressor was trained to predict the quality
of a distorted image. Kang et al.utilized CNN, a most popular model in the deep
learning domain that has recently show excellent performance on visual feature
learning [18], to learn features for NR-IQA [9] and achieved impressive result
that approaches the state-of-the-art FR-IQA performance. This has motivated
us to also apply deep learning technology for feature learning in the stated NAR-
IQA problem. As demonstrated in our experiment, under the FR-IQA scenario,
our predicted image quality score is more consistent with subjective evaluation
than many state-of-the-art methods, and in the NAR-IQA scenario, our model
still achieves superior consistency than many existing FR-IQA methods. The
next section depicts our approach.

3 IQA with Non-aligned Reference

The wide availability of images from mobile phones, webcam, camcorder and
Internet provides possibility to alleviate the non-existence problem of reference
images for IQA. In most cases, however, reference images obtained in this way
may or may not pixel aligned with the distorted image, or the two are not related
by any geometrical transformation, as illustrated in Fig. 1. Hence in this section
we want to propose a model that could make use of such type of reference. The
model does not loose the capacity of existing FR-IQA methods but further sup-
ports the NAR-IQA problem. The proposed model is presented in the following
subsection.
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Fig. 2. The proposed Dual-path deep Convolutional Neural Network (DCNN)

3.1 Dual-Path Deep Convolutional Neural Network

We present a Dual-path deep Convolutional Neural Network (DCNN) to accept
two channels of inputs and output one image quality score.

To use the proposed DCNN for NAR-IQA, we first decompose the input dis-
torted image and the reference image into multiple standard 224 x 224 sub-images
(Note that since input pair is not aligned, these sub-images are not necessarily
aligned), then each pair of sub-images is fed to the model to obtain an qual-
ity score, and finally the overall image quality score takes the average score of
all pairs of that image. The architecture of our proposed DCNN model is illus-
trated in Fig. 2. It consists of the convolutional layer, the nonlinear rectified linear
unit, the pooling layer, the concat layer and the full connection layer, denoted
as conv#, reluft, pool#, concat# and fc# respectively. The configuration of
DCNN is listed in Table 1.

3.2 Layers

The conv layers are trained to extract local features. In a recursive fashion,
denoting A7 as the feature map of path i in the j*" layer, W; and B; as the weight
and bias parameters of the j*" layer, then the local information is extracted into
deeper layers by Eq. (1), where * denotes the calculation of convolution.
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Table 1. Configuration of DCNN for NAR-IQA

Layer name Padding | Filter size/stride | Output size
inputl 0 224 x 224 x 3
convl / convlp 0 TxT7/4 64 x 55 x 55
relul / relulp 64 x 55 x 55
pooll / poollp (MAX) 5x5/1 64 x 51 x 51
conv2 | conv2p 0 9x9/1 32 x 43 x 43
relu2 / relu2p 32 x 43 x 43
fe3 ]/ fe3p 1024
concat concatenating the features from fec3 and fc3p
fecd 1024
feb 1
Euc 1

A =W, x Al + B, (1)

In order to make comparison between the distorted and the reference images,
we want to extract the same type of features for the two paths. Thus a weight
sharing strategy is applied in the dual paths. Besides, to increases the nonlinear
properties and accelerates training, the activation function is selected to be relu
as follows: A7 = max(0, A7)

Another important issue for NAR-IQA is to compensate the offset between
similar scene content from the distorted image and the reference image. The pool
layers are exploited for the purpose by integrating features from a larger local
receptive field. Both [9,10] proposed to use max and min pooling over an entire
feature map to align the response. Although both works achieved impressive
results, these two methods abandoned the structural information which is valu-
able for IQA problem. Our model considers a rather large sub-image (224 x 224,
Table 1), and we integrate the information from local to global as the network
goes deeper. For computational efficiency, max-pooling is applied as Eq.(2),
where R is the pooling region of corresponding position.

AT — max A (2)
1 R 1

The concat layer concatenates the features from the both paths. Then with
the fc# layer, discriminative features are further combined and mapped to gen-
erate image quality assessment in a linear regressor.

Finally, the image quality score is predicted by minimizing the following
Euclidean loss,

. . o 2
min (f(Lress Lais); W, B) — Eval| (3)

where I ¢y, 14is and Eva are the input sub reference, distorted images and human
evaluations respectively, W, B are the parameters of convolutional and fc layers.
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3.3 Preprocessing

Different from traditional IQA methods which need carefully designed hand-
crafted features, our proposed DCNN model learns discriminative features from
raw data to maximally preserve information from image. Only simple local con-
trast normalization is needed to ensure numeric stability. The process can also
be understood as a data whiten process where the intensity value of pixel I(z,y)
is normalized as [9],

Iay)y = TN =)
a:% b:%
u(z,y) = (I(z+a,y+0))
a:}—P b==<
a:; b:%
olw,y)= | > ((z+a,y+0b) —ulz,y))? (4)
a—%P b:%

where I(z,y)n denotes values at image location (z,y) normalized by pixels in
a neighboring (P x @) window, and € is a small positive constant. Although
intensity shift and contrast variation sometimes were considered to be distortion,
it is highly subjective to judge the image quality for distortion with these type.
And we mainly deal with image distortion from degradation. Thus, Eq. (4) was
applied for the input.

3.4 Training

DCNN can be trained using stochastic gradient descent with the standard back-
propagation [18]. In particular, the weights of the filters of the conv or fc layer
can be updated as Eq. (5)

oL
JAVES :m'Ai_naWij
Wi =W+ Digr — MW/ ()

where m is the momentum factors, n is the learning rate, j is index of the layer
and A1 is the gradient increment for training iteration i. A is the weight decay
factor. Momentum factor and weight decay factor were fixed in 0.9 and 0.0005
respectively in the following experiments.

3.5 Discussion

The architecture of the proposed model focuses on extracting features and to
avoid pixel-wise aligned. This is achievable at deeper layers that integrate infor-
mation from different receptive fields of earlier layers. The convolution, pooling
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and other nonlinear operations capture structural information from the local
to the global area without explicit pixel-wise alignment, and therefore make
the model geometrical robust. Also regarding the final fc# layers, they behave
much more complicated than simple element-wise subtractions. fc# layers have
obtained weights to not only gauge the image distortion from pairs but also
ignore the feature disagreement from two paths caused by nonalignment. All the
distorted samples have different image contents (such as affine variations) from
the reference counterpart, thus image contents are not discriminative.

This has made the architecture and key design strategy of our proposed
DCNN model very different from the well-known Siamese [19] model, which has
been widely used in face verification [20]. Siamese network use contrastive loss
for classification while our dual path CNN (original for IQA problem) is based
on Euclidean distance to perform regression. Since our proposed model focus
on regression rather than classification, in our DCNN, the mapping from the
concatenated features to the image quality score is automatically learned during
the training process.

4 Experiment

In this section, we report a series of experiments to validate the effectiveness of
the proposed model. The Deep learning toolbox Caffe [21] was applied to built
the DCNN model for IQA. Three datasets were adopted in the experiments: The
LIVE dataset, the TID2008 dataset and an in-house collected dataset.

Note that since the reference images are aligned with the corresponding dis-
torted images, in order to train and test our proposed DCNN for NAR-IQA, we
synthesized the non-aligned reference image by applying affine transform to the
original reference image, as nonaligned ref images preserve structures with affine
transformation. The scaling factors s# and rotation 6 were randomly ranged
from [0.95 1.05] and [—5°5°] respectively. As shown in Fig.3, a pair of training
samples are collected as follows: for each reference image that is aligned with
the distorted image, first we affine transform it as shown in Fig. 3 left column.

Distorted

Fig. 3. Nonaligned training samples (Color figure online)

Then from within the border, we randomly sample multiple 224 x 224 sub-
images from both the transformed reference image and the distorted image,
cantering at the same coordinates. As can be seen from Fig.3 middle column,
the red box and the blue box correspond to one pair of sub-image for training,
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and the content in the red box and the blue box are similar but not aligned.
Finally we collected hundred thousand pairs of samples for training our proposed
DCNN model. A stride of 20 has been applied to extract sub images. The same
strategy was applied for both the LIVE and the TID2008 datasets, where 80 %
of the data was used for training, and the rest for testing. The performance is
comparable when sub images are smaller, e.g. 32 x 32. For succinctness, we omit
the experiments with smaller sub images. The next subsection reports the overall
performance.

4.1 Overall NAR-IQA Performance

LIVE dataset consists of 779 distorted images with one of the following
distortion types: JP2k compression(JP2K), JPEG compression(JPEG), White
Gaussian(WN), Gaussian blur(BLUR) and Fast Fading(FF) derived from 29
reference images. The subjective evaluations give the Differential Mean Opin-
ion Scores (DMOS) for each of the distorted images. To compare the perfor-
mance of different IQA methods, we calculated the correlation of the predicted
score with the ground-truth DMOS score, and higher correlation indicates better
consistency with human assessment, and thus better performance. Specifically,
two widely applied correlation criterions were applied in our experiment: Lin-
ear Correlation Coefficient (LCC) and Spearman Rank Order Correlation Coef-
ficient (SROCC). LCC reveals the linear dependence between two quantities,
and SROCC measures how well the relationship between two variables can be
described using a monotonic function.

The results are listed in Table 2, where we further compared with the follow-
ing benchmarks: FSIM [3], PSNR and SSIM [5] that are FR-IQA methods, and
CNN-NR [9], BRISQUE [11] and CORNIA [10] that are NR-IQA methods. We
trained and tested the proposed DCNN with the original reference image (FR-
DCNN) and also with the affine transformed reference image (NAR-DCNN). As
training the CNN is time and storage consuming, we randomly selected 80 %
training images of dataset five times. The results of Tables2 and 3 appeared in
the paper is the median evaluation. We found our architecture was rather robust
to data splitting.

Table 2. LCC and SROCC score for the LIVE dataset

FSIM | PSNR | SSIM | BRISQUE | CNN-NR | CORNIA | FR-DCNN | NAR-DCNN | CNN-NR-d
LCC 0.960 | 0.856 |0.906 |0.942 0.953 0.935 0.977 0.976 0.968
SROCC|0.964 |0.866 |0.9130.940 0.956 0.942 0.975 0.975 0.967

As can be seen from Table2, when applying our proposed DCNN for FR-
IQA, the obtained LCC and SROCC score both achieved best consistency with
subjection evaluation. In the NAR-IQA case, our DCNN model outperformed
all the listed benchmark methods, and was only slightly worse than the FR-
IQA case.
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It is important to also study whether the performance gain comes from the
use of deep architecture or through the use of a non-aligned reference image.
Hence we used one path of DCNN and add fc# as well as a regression layer
to construct a image quality assessment model. Such model is termed as CNN-
NR-d. It applied exactly the same parameters in Tablel. In Tables2 and 3,
we compared the performance of CNN-NR-d to a reported NR-IQA method,
the CNN-NR [9] method, as well as our FR-DCNN and NAR-DCNN models.
According to the results, we can conclude that, CNN-NR-d did perform better
than CNN-NR [9] which shows that DCNN was able to capture more discrimi-
native feature to describe the scene. In addition, the performance of either the
FR-DCNN and NAR-DCNN further outperformed CNN-NR-d, which tells that
a reference, either aligned or non-aligned, has clearly provided helpful informa-
tion for IQA.

TID2008 dataset consists of 1700 distorted images derived from 25 refer-
ence images. The subjective evaluations give the Mean Opinion Score (MOS)
for each of the distorted images. There are 4 types of distortions that are com-
mon to the LIVE dataset: JPEG2000, JPEG, WN and GB. These types were
considered in our experiments as in many previous works [9,22,23]. Some per-
formances were cited from the published paper, which were tested in a slight
different way with an logistic regression. As shown in Table 3, DCNN achieved
best consistency with subjection evaluation for the FR-IQA problem, and got
comparable performance in the NAR-IQA problem.

Table 3. LCC and SROCC score for the TID2008 dataset

FSIM | PSNR |SSIM | BRISQUE | CNN-NR | CORNIA |FR-DCNN | NAR-DCNN | CNN-NR-d
LCC 0.926 |0.836 |0.893 |0.892 0.903 0.880 0.955 0.941 0.920
SROCC|0.947 |10.870 |0.902 0.882 0.920 0.890 0.954 0.937 0.921

In-house dataset consists of 1050 distorted images derived from 21 high
quality images. Each of the 21 image has a reference image that contains similar
scene but is not related with the distorted image under any known geomet-
rical transformation. The distorted images deteriorated in the same way that
LIVE dataset [24] generated five types of distortion images. Basically, the readme
attached with Live dataset was followed. For FF distortion, some adjustments
were made as readme of generating FF are difficult to follow. Each distortion
type has a same number of distorted images for each reference image on In-
house dataset. All the reference and similar reference images were downloaded
from Internet with Google or Flickr by searching same keywords, for example
“road”.

Five of the images are presented in Fig. 1. As can be seen, the scenes between
each pair are similar but actually contain different contents. Compared to the
previous two datasets that used synthesized non-aligned reference image, the in-
house dataset was collected with more realistic setup for the NAR-IQA problem.
Specifically, to collect one pair of data, we first collected two high-quality images



Image Quality Assessment Using Similar Scene as Reference 13

denoted as I4 and Ip respectively, and then we downgraded /4 to 1. In order
to obtain a ground-truth quality score for I}, we used our FR-DCNN method
to predict an image quality score for I}, and the score was then regarded as the
ground-truth score to evaluate various NAR-IQA and NR-IQA methods. We
have also applied the strategy but with the FSIM method to generate another
set of ground-truth score. For this strict NAR-IQA setup, we compared with
the FSIM method of similar scene reference images, and the results are listed
in Table4. Larger DMOS but smaller FSIM indicates worse image quality, thus
the sign of results in Table4 just indicates anti-correlation or correlation and
was ignored. The NAR-DCNN model in Table 2 which were trained with affine

transformed image pairs were utilized for experiments of In-house dataset in
Tables 4 and 6.

Table 4. LCC and SROCC score for the in-house dataset

GT by FRDCNN | NAR-DCNN | CNN-NR-d | CORNIA | BRISQUE | DIIVINE | NAR-FSIM
LCC 0.893 0.880 0.856 0.753 0.737 0.174
SROCC 0.892 0.872 0.864 0.756 0.746 0.157
GT by FSIM NAR-DCNN | CNN-NR-d | CORNIA | BRISQUE | DIIVINE | NAR-FSIM
LCC 0.690 0.684 0.750 0.582 0.640 0.234
SROCC 0.835 0.823 0.907 0.734 0.754 0.160

It is interesting to see that, first the FSIM algorithm is very sensitive to the
mis-alignment between the distorted image and the reference image, and under
the NAR-IQA case, FSIM performed very poorly. Second, training on LIVE and
testing on new dataset proved great generalization capability of our algorithm.

Third, although NAR-DCNN model were trained on LIVE dataset with ran-
dom affine transformation, our proposed NAR-DCNN model obtained supe-
rior consistency than the benchmark methods, which demonstrates that the
presented model can effectively mine the similar scene structural information
between the distorted image and the reference image for quality assessment. In
fact, as can be seen from Fig. 1, in many cases, although the reference image
“looks” similar to the distorted image, they might actually be captured at dif-
ferent locations.

4.2 The Influence of Distortion Type

Which type of distortions could be best modeled in the proposed NAR-IQA
setup is an interesting question. Hence we further conducted distortion-specific
experiments on LIVE dataset, and the results are listed in Tables5 and 6. It
is clear to see that for most of the stated distortion type, DCNN achieved the
best performance under either the FR-IQA problem or the NAR-IQA problem.
Interestingly, NAR-DCNN performs less effective for the WN case. We believe
it is because that the white noise was added to the image at pixel level. The
simulated geometrical transform has spread the white noise, which may break
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Table 5. LCC and SROCC score vs. Distortion type for the LIVE dataset

LCC JPEG2k|JPEG ' WN |BLUR|FF |SROCC|JPEG2k|JPEG |WN |BLUR FF

FSIM 0.910 |0.985 |0.976 |0.978 |0.912 0.970 |0.981 |0.967 |0.972 |0.949
PSNR 0.873  |0.876 [0.926 |0.779 |0.870 0.870 |0.885 |0.942 [0.763 |0.874
SSIM 0.921  |0.955 [0.982 (0.893 |0.939 0.939 |0.946 |0.964 0.907 |0.941
CNN-NR  0.953 |0.981 |0.984 |0.953 |0.933 0.952  |0.977 |0.978 [0.962 |0.908
CORNIA  |0.951 |0.965 |0.987|0.968 |0.917 0.943  [0.955 |0.976 [0.969 |0.906
BRISQUE 0.922 |0.973 [0.985 [0.951 |0.903 0.914  [0.965 |0.979/0.951 |0.877
FR-DCNN [0.972 | 0.990(0.980 |0.990 |0.975 0.977 0.981[0.950 |0.991 |0.948
NAR-DCNN 0.981 |0.983 |0.964 |0.982 |0.965 0.984 0.976 |0.884 |0.983 10.918

Table 6. LCC and SROCC score vs. Distortion type for in-house dataset

LCC Ground-truth by FR-DCNN Ground-truth by FSIM

JPEG2k | JPEG | WN |BLUR |FF JPEG2k | JPEG | WN |BLUR |FF
brisque 0.645 0.733 0.648 |0.726 |0.486 |0.613 0.588 |0.744 |0.563 |0.472
cornia 0.801 0.835 [0.594 |0.861 |0.784 |0.852 |0.828|0.638 |0.783 |0.841
diivine 0.507 0.718 [0.691 |0.570 |0.534 |0.438 0.641 |0.807|0.501 |0.493
CNN-NR-d|0.911 | 0.944|0.663 |0.726 |0.794|0.796 0.794 |0.781 |0.546 |0.828
NAR-CNN | 0.862 0.909 |0.776|0.867 |0.746 |0.844 0.768 |0.593 |0.732 |0.746
SROCC Ground-truth by FR-DCNN Ground-truth by FSIM
JPEG2k | JPEG|WN |BLUR|FF JPEG2k | JPEG | WN |BLUR|FF
brisque 0.674 0.670 | 0.556 |0.681 |0.508 |0.677 0.714 10.862 |0.631 |0.510
cornia 0.616 0.665 | 0.527 |0.847 |0.770 |0.768 0.805 |0.673 |0.902 | 0.868
diivine 0.361 0.533 |0.611 |0.542 |0.449 |0.228 0.528 |0.919|0.567 |0.370
CNN-NR-d | 0.812 | 0.921|0.544 |0.700 |0.788|0.604 0.806 |0.826 |0.657 |0.833

NAR-CNN |0.761 | 0.852 |0.6960.833 |0.775 |0.787 |0.836 0.644 |0.799 |0.792

down the structural information. Thus, the proposed DCNN did not discover
suitable features for this case. The invariance to image content variation has
slightly compromised the discriminating power to the pixel aligned distortion in
this case.

4.3 The Influence of Structural Similarity

The Influence of Geometrical Transformation. Since we claim that the
proposed DCNN is capable to utilize non-aligned reference image, it is impor-
tant to analyze the influence of geometrical variation to the NAR-IQA process.
Hence we applied rotation, scaling and translation transform individually to
the reference image for LIVE dataset and compared their performance. Specif-
ically, for rotation we tested the following values 7/18, 7/9 or /2, for scaling
we tested shrinking to 0.667 or enlarge to 1.5, and for translation we tested
one-tenth (19 pixels) and one-fifth (39 pixels) of sub image size. As Fig. 4 shows,
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our proposed DCNN is stable to translation, and performance dropped slightly
for rotation and scaling. Existing FR-IQA methods cannot handle the NAR-
IQA problem well, even performances of CW-SSIM [16] are only around 0.14,
while our DCNN could achieve consistency of 0.97+ with human assessment,
significantly higher than these existing FR-IQA methods.

Rotation scale translation Rotation scaling translation
0 o 0984 & X 0984

N cc I cc N cc I SROCC I sROCC B srocC

0982+ 0.982 0.982 0982+ 0982+ 0.982

0.978| 0.978 0.978, 0.978| 0.978| 0.978

0.976] 0.976) 0.976, 0.976| 0.976| 0.976,

0.974] 0.974) 0.974, 0.974] 0.974] 0.974

0.972] 0.972 0.972 0.972] 0.972] 0.972

0.97| 0.97| 0.97 0.97| 0.97| 0.97

0.968! 0.968 0.968 0.968! 0.968! 0.968
0 10 20 90 0.6671 1.5 0 19 39 0 10 20 90 06671 1.5 0 19 39

SROCC Jaligned] R10 [ R20 [ R90 [S0.667] S1.5 [ T19 [ T39

CW-SSIM [ 0.850 [0.227[0.171[0.026] 0.007 [0.025] 0.158 [0.111
NAR-DCNN| 0.975 [0.975]|0.974[0.971[ 0.980 [0.976] 0.975|0.975

Fig. 4. The influence of geometrical transformation to LCC and SROCC of the pro-
posed DCNN for NAR-IQA (R, S, T in the table means rotation, scale, translation
respectively)

The models were retrained in above different situations, with different geo-
metrical variation images. However, different geometrical variation cases can be
handled in our mixture variation cases in Tables 2 and 3. As shown in Fig. 4, our
NAR-DCNN were very insensitive to affine transform as it reserve the structure
well. Next we will discuss what happened if the structural similarity don’t exist.

IQA referenced with different structural similarities. Now, the NAR-
DCNN model was fed with distortion images and random selected high quality
images. The reference images almost have no structural similarity with distortion
images. This experiment is to demonstrate influence of structural similarities in
similar reference image selection. The performance of our NAR-DCNN dropped
heavily to (LCC:0.932, SROCC:0.924), but amazingly, it still better than
some existed methods. We believe our NAR-DCNN has also learnt some non-
structural feature, “naturalness”. Next, reference image same as distorted images
were provided to control structural similarity and to explore the “naturalness”.

In Fig. 5(a), we listed results in the following setups: both reference and dis-
torted image using same reference images of LIVE dataset (green line), using
same distorted images of LIVE dataset (red line), and using randomized 2D
matrix (blue line). Since it uses reference image to guide the assessment of image
quality, by giving different reference images, the quality score should change
accordingly. If reference image is selected to be same as distorted image, then the
predicted quality should be very good, because according to the “reference”, the
distorted image is “perfect”. As “naturalness” features worked for our model, sta-
tistically, the image assessment Q would be: Q(I,,I.) > Q(I4,14) > Q(Ip, In),
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which the experimental results support well. The x axis is the sequence number
of the tested distorted image, the higher DMOS value of the distorted images,
the larger sequence number it would be. It shows that our DCNN did extract
non-structural features, “naturalness” for quality assessment. The quality of the
reference image need to be carefully controlled.

Although using 2 different non-aligned reference images may give different
scores, they will correlate to each other very well. In fact, as shown in Fig. 5(b),
we demonstrate that applying 20 similar scene reference images to NAR-IQA
problem for one distorted image of ‘whitehouse’. The blue dash line indicates
scores predicted by NAR-DCNN(trained with DMOS) referenced with original
aligned image, while red ‘+’ demonstrates situation referenced with different sim-
ilar scenes. The discrepancy between cases referenced with similar scene image
and original image was in the range of [—5,5]. Averaging the scores by more
reference images could produce more stable results. Algorithms to retrieve very
similar images for IQA was also appealing to be exploited. This part will be
explored in the future. Different similar reference images and more predicted
results will be depicted in the supplementary material.

Input same images for dual path CNN to do IQA score of distorted image

rand matrix — -
distorted images. %0 +  similar ref image
reference images - " .

20 80 orginal ref image

0 20 40 60 80 100 120 140 160 0 2 4 6 8 10 12 14 16 18 20 22

(a) (b)

Fig. 5. Comparison of IQA score with different structural similarities: (a)IQA with
reference image same as distorted image(b)IQA with different similar reference images
(Color figure online)

The selection of similar reference images do have a influence on the per-
formance of NAR-DCNN model. However, the selection of reference image was
rather robust with large geometrical variation and image content changing. NAR-
DCNN gave state of art performance when these experiments were referenced
with random affine transformed reference images of different similarities, large
geometrical variation and even content changing images in the paper. These
experiments demonstrate that our NAR-DCNN model is very robust to the selec-
tion of non-aligned reference images. Although we haven’t work out a accurate
measurement for IQA similar reference images selection, we believe the selection
of structural similarity is not harsh. NAR-DCNN largely benefits from compar-
ison between the nonaligned reference and the distorted images, especially by
capturing the structural information.
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5 Conclusion and Future Work

This paper presents a Dual-path deep CNN model for image quality assessment
using non-aligned reference images with similar scene. The proposed method
validates that, the NAR-IQA problem is solvable where an aligned reference
image is not available, but a non-aligned image with similar scene can be well
used as reference. The proposed DCNN model handles the IQA problem well, and
it is observed that DCNN could use non-aligned reference images and achieve
superior quality assessment consistency than many existing methods that use
aligned reference images.

The next step of the work includes exploring measurement for IQA similar ref-
erence images selection, collecting larger non-aligned IQA dataset and building
deep model of different architecture to further improve prediction consistency,
as well as applying the technique to certain real-world applications.
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