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Abstract. Large pose variations remain to be a challenge that con-
fronts real-word face detection. We propose a new cascaded Convolution-
al Neural Network, dubbed the name Supervised Transformer Network,
to address this challenge. The first stage is a multi-task Region Proposal
Network (RPN), which simultaneously predicts candidate face regions
along with associated facial landmarks. The candidate regions are then
warped by mapping the detected facial landmarks to their canonical po-
sitions to better normalize the face patterns. The second stage, which is
a RCNN, then verifies if the warped candidate regions are valid faces or
not. We conduct end-to-end learning of the cascaded network, including
optimizing the canonical positions of the facial landmarks. This super-
vised learning of the transformations automatically selects the best scale
to differentiate face/non-face patterns. By combining feature maps from
both stages of the network, we achieve state-of-the-art detection accura-
cies on several public benchmarks. For real-time performance, we run the
cascaded network only on regions of interests produced from a boosting
cascade face detector. Our detector runs at 30 FPS on a single CPU core
for a VGA-resolution image.

1 Introduction

Among the various factors that confront real-world face detection, large pose
variations remain to be a big challenge. For example, the seminal Viola-Jones [1]
detector works well for near-frontal faces, but become much less effective for
faces in poses that are far from frontal views, due to the weakness of the Haar
features on non-frontal faces.

There were abundant works attempted to tackle with large pose variations
under the regime of the boosting cascade advocated by Viola and Jones [1]. Most
of them adopt a divide-and-conquer strategy to build a multi-view face detector.
Some works [2–4] proposed to train a detector cascade for each view and combine
their results of all detectors at the test time. Some other works [5–7] proposed to
first estimate the face pose and then run the cascade of the corresponding face
pose to verify the detection. The complexity of the former approach increases
with the number of pose categories, while the accuracy of the latter is prone to
the mistakes of pose estimation.

Part-based model offers an alternative solution [8–10]. These detectors are
flexible and robust to both pose variation and partial occlusion, since they can

ar
X

iv
:1

60
7.

05
47

7v
1 

 [
cs

.C
V

] 
 1

9 
Ju

l 2
01

6



2 Dong Chen, Gang Hua, Fang Wen, Jian Sun

reliably detect the faces based on some confident part detections. However, these
methods always require the target face to be large and clear, which is essential
to reliably model the parts.

Other works approach to this issue by using more sophisticated invariant
features other than Haar wavelets, e.g., HOG [8], SIFT [9], multiple channel fea-
tures [11], and high-level CNN features [12]. Besides these model-based methods,
Shen et al. [13] proposed to use an exemplar-based method to detect faces by
image retrieval, which achieved state-of-the-art detection accuracy.

It has been shown in recent years that a face detector trained end-to-end
using DNN can significantly outperforms previous methods [10, 14]. However,
to effectively handle the different variations, especially pose variations, it often
requires a DNN with lots of parameters, inducing high computational cost. To
address the conflicting challenge, Li et al. [15] proposed a cascade DNN archi-
tecture at multiple resolutions. It quickly rejects the background regions in the
low resolution stages, and carefully evaluates the challenging candidates in the
high resolution stage.

However, the set of DNNs in Li et al. [15] are trained sequentially, instead
of end-to-end, which may not be desirable. In contrast, we propose a new cas-
cade Convolutional Neural Network that is trained end-to-end. The first stage
is a multi-task Region Proposal Network (RPN), which simultaneously propos-
es candidate face regions along with associated facial landmarks. Inspired by
Chen et al. [16], we jointly conduct face detection and face alignment, since face
alignment is helpful to distinguish faces/non-faces patterns.

Different from Li et al. [15], this network is calculated on the original reso-
lution to better leverage more discriminative information. The alignment step
warps each candidate face region to a canonical pose, which maps the facial land-
marks into a set of canonical positions. The aligned candidate face region is then
fed into the second-stage network, a RCNN [17], for further verification. Note we
only keep the K face candidate regions with top responses in a local neighbor-
hood from the RPN. In other words, those Non-top K regions are suppressed.
This helps increase detection recall.

Inspired by previous work [18], which revealed that joint features from dif-
ferent spatial resolutions or scales will improve accuracy. We concatenate the
feature maps from the two cascaded networks together to form an architecture
that is trained end-to-end, as shown in Figure 1. Note in the learning process,
we treat the set of canonical positions also as parameters, which are learnt in
the end-to-end learning process.

Note that the canonical positions of the facial landmarks in the aligned face
image and the predicted facial landmarks in the candidate face region jointly
defines the transform from the candidate face region. In the end-to-end training,
the training of the first-stage RPN to predict facial landmarks is also supervised
by annotated facial landmarks in each true face regions. We hence call our net-
work a Supervised Transformer Network. These two characteristics differentiate
our model from the Spatial Transformer Network [19] because a) the Spatial
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Fig. 1. Illustration of the structure of our Supervised Transformer Network.

Transformer Network conducts regression on the transformation parameters di-
rectly, and b) it is only supervised by the final recognition objective.

The proposed Supervised Transformer Network can efficiently run on the G-
PU. However, in practice, the CPU is still the only choice in most situations.
Therefore, we propose a region-of-interest (ROI) convolution scheme to make the
run-time of the Supervised Transformer Network to be more efficient. It first uses
a conventional boosting cascade to obtain a set of face candidate areas. Then, we
combine these regions into irregular binary ROI mask. All DNN operations (in-
cluding convolution, ReLU, pooling, and concatenation) are all processed inside
the ROI mask, and hence significantly reduce the computation.

Our contributions are: 1) we proposed a new cascaded network named Super-
vised Transformer Network trained end-to-end for efficient face detection; 2) we
introduced the supervised transformer layer, which enables to learn the optimal
canonical pose to best differentiate face/non-face patterns; 3) we introduced a
Non-top K suppression scheme, which can achieve better recall without sacri-
ficing precision; 4) we introduced a ROI convolution scheme. It speeds up our
detector 3x on CPU with little recall drop.

Our face detector outperformed the current best performing algorithms on
several public benchmarks we evaluated, with real-time performance at 30 frames
per second with VGA resolution.

2 Network Architecture

2.1 Overview

In this section, we will introduce the architecture of our proposed cascade net-
work. As illustrated in Figure 1, the whole architecture consists of two stages.
The first stage is a multi-task Region Proposal Network (RPN). It produces a
set of candidate face regions along with associated facial landmarks. We conduct
Non-top K suppression to only keep the candidate face regions with responses
ranked in the top K in a local neighborhood.
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The second stage starts with a Supervised Transformer layer, and then a
RCNN to further verify if a face region is a true face or not. The transformer
layer takes the facial landmarks and the candidate face regions, then warp the
face regions into a canonical pose by mapping the detected facial landmarks into
a set of canonical positions. This explicitly eliminates the effect of rotation and
scale variation according to the facial points.

To make this clear, the geometric transformation are uniquely determined by
the facial landmarks and the canonical positions. In our cascade network, both
the prediction of the facial landmarks and the canonical positions are learned
in the end-to-end training process. We call it a Supervised Transformer layer,
as it receives supervision from two aspects. On one hand, the learning of the
prediction model of the facial landmarks are supervised by the annotated ground-
truth facial landmarks. On the other hand, the learning of both the canonical
positions and the prediction model of the facial landmarks both are supervised
by the final classification objective.

To make a final decision, we concatenate the fine-grained feature from the
second-stage RCNN network and the global feature from the first-stage RPN
network. The concatenated features are then put into a fully connected layer to
make the final face/non-face arbitration. This concludes the whole architecture
of our proposed cascade network.

2.2 Multi-task RPN

The design of the multi-task RPN is inspired by the JDA detector [16], which val-
idated that face alignment is helpful to distinguish faces/non-faces. Our method
is very straight forward. We use a RPN to simultaneous detect faces and as-
sociated facial landmarks. Our method is very similar to the work [20], except
that our regression target is facial landmark locations, instead of bounding box
parameters.

2.3 The supervised transformer layer

In this section, we describe the detail of the supervised transformer layer. As
we know, similarity transformation was widely used in face detection and face
recognition task to eliminate scale and rotation variation. The common practice
is to train a prediction model to detect the facial landmarks, and then warp
the face image to a canonical pose by mapping the facial landmarks to a set of
manually specified canonical locations.

This process at least has two drawbacks: 1) one needs to manually set the
canonical locations. Since the canonical locations determines the scale and off-
set of rectified face images, it often takes many try-and-errors to find a rela-
tively good setting. This is not only time-consuming, but also suboptimal. 2)
The learning of the prediction model for the facial landmark is supervised by
the ground-truth facial landmark points. However, labeling ground-truth facial
landmarks is a highly subjective process and hence prone to introducing noise.
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We propose to learn both the canonical positions and the prediction of the
facial landmarks end-to-end from the network with additional supervision in-
formation from the classification objective of the RCNN using end-to-end back
propagation. Specifically, we use the following formula to define a similarity
transformation, i.e.,

[
x̄i −mx̄

ȳi −mȳ

]
=

[
a b
−b a

] [
xi −mx

yi −my

]
, (1)

where xi, yi are the detected facial landmarks, x̄i, ȳi are the canonical positions,
m∗ is the mean value of the corresponding variables, e.g., mx = 1

N

∑
xi, N is

the number of facial landmarks, a and b are parameters of similarity transforms.
We found that this two parameters model is equivalent to the traditional four

parameters, but much simpler in derivation and avoid problems of numerical
calculation. After some straightforward mathematical derivation, we can obtain
the least squares solution of the parameters, i.e.,

a =
c1
c3

b =
c2
c3
.

(2)

where

c1 =
∑

((x̄i −mx̄)(xi −mx) + (ȳi −mȳ)(yi −my))

c2 =
∑

((x̄i −mx̄)(yi −my)− (ȳi −mȳ)(xi −mx))

c3 =
∑(

(xi −mx)
2 + (yi −my)

2
)
.

(3)

After obtaining the similarity transformation parameters, we can obtain the
rectified image Ī given the original image I, using Ī(x̄, ȳ) = I(x, y). Each point
(x̄, ȳ) in the rectified image can be mapped back to the original image space
(x, y) by

x =
a

a2 + b2
(x̄−mx̄)−

b

a2 + b2
(ȳ −mȳ) +mx

y =
b

a2 + b2
(x̄−mx̄) +

a

a2 + b2
(ȳ −mȳ) +my.

(4)

Since x and y may not be integers, bilinear interpolation is always used to obtain
the value of I(x, y). Therefore, we can calculate the derivative by the chain rule

∂L

∂a
=
∑

{x̄,ȳ}

∂L

∂Ī(x̄, ȳ)

∂Ī(x̄, ȳ)

∂a
=
∑

{x̄,ȳ}

∂L

∂Ī(x̄, ȳ)

∂I(x, y)

∂a

=
∑

{x̄,ȳ}

∂L

∂Ī(x̄, ȳ)

(
∂I(x, y)

∂x

∂x

∂a
+

∂I(x, y)

∂y

∂y

∂a

)

=
∑

{x̄,ȳ}

∂L

∂Ī(x̄, ȳ)

(
Ix

∂x

∂a
+ Iy

∂y

∂a

)
(5)
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where L is the final classification loss and ∂L
∂Ī(x̄,ȳ)

is the gradient signals back

propagated from the RCNN network. The Ix and Iy are horizontal and vertical
gradient of the original image

Ix = βy(I(xr , yb)− I(xl, yb)) + (1− βy)(I(xr , yt)− I(xl, yt))

Iy = βx(I(xr , yb)− I(xr , yt)) + (1− βx)(I(xl, yb)− I(xl, yt)).
(6)

Here we use a bilinear interpolation, βx = x−⌊x⌋ and βy = y−⌊y⌋. xl = ⌊x⌋, xr =
xl + 1, yt = ⌊y⌋, yb = yt + 1 are the left, right, top, bottom integer boundary of
point (x, y). Similarly, we can obtain the derivative of other parameters. Finally,
we can obtain the gradient of the canonical positions of the facial landmarks,
i.e., ∂L

∂x̄i
and ∂L

∂ȳi
. And the gradient with respect to the detected facial landmarks:

∂L
∂xi

and ∂L
∂yi

. Please refer to the supplementary material for more detail.

The proposed Supervised Transformer layer is put between of the RPN and
RCNN networks. In the end-to-end training, it automatically adjusts the canon-
ical positions and guiding the detection of the facial landmarks such that the
rectified image is more suitable for face/non-face classification. We will further
illustrate this in the experiments.

2.4 Non-top K suppression

In RCNN [20, 17] based object detection, after the region proposals, non-maximum
suppression (NMS) is always adopted to reduce the region candidate number for
efficiency. However, the candidate with highest confidence score may be rejected
by the later stage RCNN. Decreasing the NMS overlap threshold will bring in
lots of useless candidates. This will make subsequent RCNN slow. Our idea is to
keep K candidate regions with highest confidence for each potential face, since
these samples are more promising for RCNN classifier. In the experiments part
we will demonstrate that we can effectively improve the recall with the proposed
Non-top K Suppression.

receptive field receptive
type relationship field size

conv1 (7× 7, 2) 2k+5 85

max pool (2× 2, 2) 2k 40

conv 2a (1× 1, 1) k 20

conv 2b (3× 3, 1) k+2 20

max pool (2× 2, 2) 2k 18

inception 3a k+4 9

inception 3b k+4 5
Table 1. RPN network structure
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2.5 Multi-granularity feature combination

Some works have revealed that joint features from different spatial resolutions
or scales will improve accuracy [18]. The most straight-forward way may be
combining several RCNN networks with different input scales. However, this
approach will obviously increase the computation complexity significantly.

In our end-to-end network, the details of the RPN network structure is shown
in Table 1. There are 3 convolution and 2 inception layers in our RPN network.
Therefore, we can calculate that its receptive field size is 85. While the target
face size is 36 ∼ 72 pixels. Therefore, our RPN takes advantage of the surround-
ing contextual information around face regions. On the other hand, the RCNN
network focuses more on the rotation and scale variation fine grained detail in
the inner face region. So we concatenate these two features in an end-to-end
training architecture, which makes the two parts more complementary. Experi-
ments demonstrate that this kind of joint feature can significantly improve the
face detection accuracy. Besides, the proposed method is much more efficient.

3 The ROI convolution

3.1 Motivation

As a practical face detection algorithm, real-time performance is very important.
However, the heavy computation incurred at test phase using DNN-based models
often make them impractical in real-world systems. That is the reason why
current DNN-based models heavily rely on a high-end GPU to increase the run-
time performance. However, high-end GPU is not often available in commodity
computing system, so most often, we still need to run the DNN model with a
CPU. However, even using a high-end CPU with highly optimized code, it is still
about 4 times slower than the runtime speed on a GPU [21]. More importantly,
for portable devices, such as phones and tablets, mostly have low-end CPUs
only, it is necessary to accelerate the test-phase performance of DNNs.

In a typical DNN, the convolutional layers are the most computationally ex-
pensive and often take up about more than 90% of the time in runtime. There
were some works attempted to reduce the computational complexity of convolu-
tion layer. For example, Jaderberg et al. [22] applied a sparse decomposition to
reconstruct the convolutional filters. Some other works [23, 24] assume that the
convolutional filters are approximately low-rank along certain dimensions, and
can be approximately decomposed into a series of smaller filters. Our detector
may also benefit from these model compression techniques.

Nevertheless, we propose a more practical approach to accelerate the runtime
speed of our proposed Supervised Transformer Network for face detection. Our
main idea is to use a conventional cascade based face detector to quickly reject
non-face regions and obtain a binary ROI mask. The ROI mask has the same
size as the input. The background area is represented by 0 and the face area
is represented by 1. The DNN convolution is only computed within the region
marked as 1, ignoring all other regions. Because most regions did not participate



8 Dong Chen, Gang Hua, Fang Wen, Jian Sun

T

T

T

F

F

F

Face

N
o

n
-f

a
c
e

36~72

72~144

144~288

Face Size:

Cascade Prefilter

Face CandidatesInput

ROI mask

Fig. 2. Illustration of the ROI mask

in the calculation, we can greatly reduce the amount of computation in the
convolution layers.

We want to emphasize that our method is different to those RCNN based
algorithm [17, 25] which treated each candidate region independently. In those
models, features in the overlap subregions will be calculated repeatedly. Instead,
we use the ROI masks, so that different samples can share the feature in the
overlapping area. It effectively reduces the computational cost by further avoid-
ing repeated operations. Meanwhile, in the following section, we will introduce
the implementation details of our ROI convolution. Similar to Caffe [26], we
also take advantage of the matrix multiplication in the BLAS library to obtain
almost a linear speedup.

3.2 Implementation details

Cascade pre-filter. As shown in Figure 2, we use a cascade detector as a pre-
filter. It is basically a variant of the Volia-Jones’s detector [1], but it has more
weak classifiers and is trained with more data. Our boosted classifier is consisted
of 1000 weak classifiers. Different form [1], we adopted a boosted fern [27] as
the weaker classifier, since a fern is more powerful than using a single Haar
feature based decision stump, and more efficient than boosted tree on CPUs.
For completeness, we briefly describe our implementation.

Each fern contains 8 binary nodes. The splitting function is to compare the
difference of two image pixel values in two different locations with a threshold,
i.e.,

si =

{
1 p(x1i , y1i)− p(x2i , y2i) < θi

0 otherwise
(7)

where p is the image patch. The patch size is fixed to 32 in our experiments. The
(x1i , y1i , x2i , y2i , θi) are fern parameters learned from training data. Each fern
splits the data space into 28 = 256 partitions. We use a Real-Boost algorithm
for the cascade classification learning. In each space partition, the classification
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score is computed as

1

2
log

(∑
{i∈piece

⋂
yi=1} wi∑

{i∈piece
⋂

yi=0} wi

)
, (8)

where the enumerator and denominator are the sum of the weights of positive
and negative samples in the space partition, respectively.
The ROI mask. After we obtain some candidate face regions, we will group
them according to their sizes. The maximum size is twice larger than the min-
imum size in each group. Since the smallest face size can be detected by the
proposed DNN based face detector is 36× 36 pixels, the first group contains the
face size between 36 to 72 pixels. While the second ground contains the face size
between 72 to 144, and so on (as shown in Figure 2).

It should be noted that, beginning from the second group, we need to down-
sample the image, such that the candidate face size in the image is always main-
tained between 36 to 72 pixels. Besides, in order to retain some of the background
information, we will double the side length of each candidate. But the side length
will not exceed the receptive field size (85) of the following DNN face detector.
Finally, we set the ROI mask according to the sizes and positions of the candidate
boxes in each group.

We use this grouping strategy for two reasons. First, when there is a face
almost filling the whole image, we do not have to deal with the full original
image size. Instead, it will be down-sampled to a quite small resolution, so we
can more effectively reduce the computation cost. Secondly, since the following
DNN detector only need to handle twice the scale variation, this is induces a
great advantage when compared with the RPN in [20], which needs to handle
all scale changes. This advantage allows us to use a relatively cheaper network
for the DNN-based detection.

Besides, such a sparse pyramid structure will only increase about 33% ( 1
22 +

1
42 + 1

82 · · · ≈ 1
3 ) computation cost when compared with the computational cost

at the base scale.
Details of the ROI convolution. There are several ways to implement the
convolutions efficiently. Currently, the most popular method is to transform the
convolutions into a matrix multiplication. As described in [28] and implemented
in Caffe [26], this can be done by firstly reshaping the filter tensor into a matrix
F with dimensions CK2 × N , where C and N are input and output channel
numbers, and K is the filter width/height.

We can subsequently gather a data matrix by duplicating the original input
data into a matrix D with dimensions WH ×CK2, W and H are output width
and height. The computation can then be performed with a single matrix mul-
tiplication to form an output matrix O = DF with dimension WH × N . This
matrix multiplication can be efficiently calculated with optimized linear algebra
libraries such as BLAS.

Our main idea in ROI convolution is to only calculate the area marked as
1 (a.k.a, the ROI regions), while skipping other regions. According to the ROI
mask, we only duplicate the input patches whose centers are marked as 1. So
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Fig. 3. Illustration of the ROI convolution.

the input data become a matrix D′ with dimensions M × CK2, where M is
the number of non-zero entries in the ROI mask. Similarly, we can then use
matrix multiplication to obtain the output O′ = D′F with dimension M×CK2.
Finally, we put each row of O′ to the corresponding channel of the output.
The computation complexity of ROI convolution is MCK2N . Therefore, we can
linearly decrease the computation cost according to the mask sparsity.

As illustrated in Figure 3, we only apply the ROI convolution in the test
phase. We replace all convolution layers into ROI convolution layers. After a
max pooling, the size of the input will be halved. So we also half sample the
ROI mask, such that their size can be matched. The original DNN detector
can run at 50 FPS on GPU and 10 FPS on CPU for a VGA image. With ROI
convolution, it can speed up to 30 FPS on CPU with little accuracy loss.

4 Experiments

In this section, we will experimentally validate the proposed method. We col-
lected about 400K face images from the web with various variations as positive
training samples. These images are exclusive from FDDB [29], AFW [8] and
PASCAL [30] datasets. We labeled all faces with 5 facial points (two eyes cen-
ter, nose tip, and two mouth corners). For the negative training samples, we
use the Coco database [31]. This dataset has pixel level annotations of various
objects, including people. Therefore, we covered all person areas with random
color blocks, and ensure that no samples are drawn from those colored regions
in these images. We use more than 120K images (including 2014 training and
validation data) for the training. Some sample images are shown in Fig. 4.

We use GoogleNet in both the RPN and RCNN networks. The network struc-
ture is similar to that in FaceNet [32], but we cut all the convolution kernel
number in half for efficiency. Moreover, we only include two inception layers in
RPN network (as shown in Table 1) and the input size of RCNN network is 64.
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Fig. 4. Illustration of our negative training sample. We covered all person area with
random color blocks in Coco [31] dataset and ensured that no positive training samples
are drawn from these regions in these images.

In order to avoid the initialization problem and improve the convergence
speed, we first train the RPN network from random without the RCNN net-
work. After the predicted facial landmarks are largely correct, we add the RCNN
network and perform end-to-end training together. For evaluation, we use three
challenging public datasets, i.e., FDDB [29], AFW [8] and PASCAL faces [30].
All these three datasets are widely used as face detection benchmark. We em-
ploy the Intersection over Union (IoU) as the evaluation metric and fix the IoU
threshold to 0.5.

4.1 Learning canonical position

In this part, we verify the effect of the Supervised Transformation in finding
the best canonical position. We intentionally initialize the Supervised Transfor-
mation with three inappropriate canonical positions according to three settings,
respectively, i.e., too large, too small, or with offset. Then we perform the end-
to-end training and record the canonical points position after 10K, 100K, 500K
iterations.

As shown in Fig. 5, each row shows the canonical positions movement for
one kind of initializations. We also place the image warp result besides its corre-
sponding canonical points. We can observe that, for these three different kinds
of initializations, they all eventually converge to a very close position setting af-
ter 500K iterations. It demonstrated that the proposed Supervised Transformer
module is robust to the initialization. It automatically adjusts the canonical
positions such that the rectified image is more suitable for face/non-face classi-
fication.

4.2 Ablative evaluation of various network components

As discussed in Sec. 2, our end-to-end cascade network is consisted of four no-
table parts, i.e., the multi-task RPN, the Supervised Transformer, the multi-
granularity feature combination, and non-top K suppression. The former three
will affect the network structure of training, while the last one only appear in
the test phase.

In order to separately study the effect of each part, we conduct an ablative
study by removing one or more parts from our network structure and evaluate
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Test Sample

Init Iter 10K Iter 100K Iter 500K

Small:

large:

biased:

Fig. 5. Results of learning canonical positions.

Multi-task RPN N N Y Y Y Y

Supervised Transformer / / N Y N Y

Feature combination N Y N N Y Y

Recall Rate 85.6% 88.0% 87.1% 88.3% 88.8% 89.6%
Table 2. Evaluation of the effect of three parts in training architecture.

the new network with the same training and testing data. When removing the
multi-task RPN, it means that we directly regress the face rectangle similar
to [20], instead of facial points. Without the Supervised Transformer layer, we
simply replace it with a standard similarity transformation without training with
back propagation. Without the feature combination component means that we
directly use the output of the RCNN features to make the finial decision. In
the case that we removed multi-task RPN, there will be no facial points for
Supervised Transformation or conventional similarity transformation. In this
situation, we directly resize the face patch into 64× 64 and fed it into a RCNN
network.

There are 6 different ablative settings in total. We perform end-to-end train-
ing with the same training samples for all settings, and evaluate the recall rate
on the FDDB dataset when the false alarm number is 10. We manually review
the face detection results and add 67 unlabeled faces in the FDDB dataset to
make sure all the false alarms are true. As shown in Table 2, multi-task RPN, Su-
pervised Transformer, and feature combination will bring about 1%, 1%, and 2%
recall improvement respectively. Besides, these three parts are complementary,
remove any one part will cause a recall drop.

In the training phase, in order to increase the variation of training samples,
we randomly select K positive/negative samples from each image for the RCNN
network. However, in the test phase, we need to balance the recall rate with
efficiency. Next, we will compare the proposed non-top K suppression with NMS
in the testing phase,

We present a sample visual result of RPN, NMS and non-top K suppression
in Fig. 6. We keep the same number of candidates for both NMS and Non-top K
suppression (K = 3 in the visual result). We found that NMS tend to include too
much noisy low confidence candidates. We also compare the PR curves of using



Supervised Transformer Network for Efficient Face Detection 13

−2.372092.418474.92762.64211−1.46713
−2.761166.7945311.897313.043612.42827.481430.388981

−0.617633.021992.14106−2.08364 0.662072
11.348815.085114.196414.346910.2533.59056−1.96867

−1.941667.690499.425259.382244.72838−2.30704
1.3725811.326115.798413.912413.160610.33723.98692

−1.2281
4.1829214.129815.477314.715612.87184.97851−2.3907

−2.386136.5305412.220613.774312.20086.40494
−1.39011

−2.967620.559887
4.714314.35514.955213.230611.10676.67951−0.962566

−2.02819
4.020955.716694.34942

−2.28893−1.37528
3.2196310.492812.049613.618810.07335.26462

−2.90212
3.218066.00997.201154.38735

−0.717036

−2.85219−2.52554−2.03158−2.12082−0.897877−1.49078 −2.78802−2.23297−2.97399

−2.49201−2.88542−2.58914−2.2714−1.95483

−2.77331
−2.4941−2.82915−2.97661

−0.8554853.484252.33645
0.783903

0.9747623.19772
1.68617

−1.95694
−0.755279

5.486048.111417.55691
5.40102

−1.59994

−2.214274.30633
10.721311.6586
8.523575.23913

2.176447.65286
7.378967.403267.43012

−0.207047

0.14890110.3071
9.531719.5237511.03577.62308−2.94538

1.221216.95073
8.130436.996326.43452

0.101984

0.76426810.2705
11.13369.2857911.874
7.97314

−2.32836 −2.06352

2.13546.127366.104233.16044−2.80971

−2.569865.806229.8303512.09949.31753.45199

−2.47942

−1.84718
2.646913.30051

0.435778

−2.64819−1.19839−1.832790.0853313
−1.35725

−2.88089−2.86741
−2.4571
−2.08966 −1.23536−2.62529−0.304019−0.928625
−2.79757

−2.47557−2.78879
−1.12208−0.8054730.531686

−0.973129−1.94769−1.95185

−2.84192−2.20664

15.7984

15.4773

0.531686
−1.94769

−1.95483

−2.03158

−2.20664

−2.80971
15.798415.085114.3469

15.477314.955214.7156

0.5316860.0853313

RPN NMS Non-top K Suppression
0 5 10 15 20

0.85

0.86

0.87

0.88

0.89

0.9

False positive

T
ru

e 
po

si
tiv

e

 

 

All Candidates (89.6%)
NMS (88.7%)
Non−top 3 Supp (89.3%)
Non−top 5 Supp (89.4%)

Fig. 6. Comparison of NMS and Non-Top K Suppression

Pre-filter Threshold N/A 0 1 2 3

ROI Mask Sparsity N/A 31.3% 27.1% 10.6% 5.7%

Pre-filter Time (ms) 0 12.1 12.0 12.0 11.9

RPN Time (ms) 98.2 (100%) 33.9 (34.5%) 24.2 (24.6%) 11.0 (11.2%) 8.1 (8.2%)

RCNN Time (ms) 9.0 9.3 8.7 9.1 9.3

Total Time (ms) 107.2 55.3 44.8 32.1 29.3

Recall Rate 89.3% 89.2% 89.0% 88.7% 88.1%
Table 3. Various results demonstrating the effects of ROI convolution.

all candidates, NMS, and non-top K suppression. Our non-top K suppression is
very close to using all candidates, and achieved consistently better results than
NMS under the same number of candidates.

4.3 The effect of ROI convolution

In this section, we will validate the acceleration performance of the proposed ROI
convolution algorithm. We train the Cascade pre-filter with the same training
data. By adjusting the classification threshold of the Cascade re-filter, we can
obtain the ROI masks in different areas. Therefore, we can strike for the right
balance between speed and accuracy.

We conduct the experiments on the FDDB database. We resized all images
to 1.5 times of the original size, the resulting average photos resolution is ap-
proximately 640× 480. We evaluate the ROI mask sparsity, run-time speed 1 of
each part, and the recall rate when the false alarm number is 10 under different
pre-filter threshold. We also compare with the standard network without ROI
convolution. Non-top K (K = 3) suppression is adopted in all settings to make
RCNN network more efficiency.

Table 3 shows the average ROI mask sparsity, testing speed of each part,
and recall rate of each setting. Comparing the second row with the fourth row,
it proves that we can linearly decrease the computation cost according to the
mask sparsity. The last two rows show the recall rate and average test time of
different settings. The original DNN detector can run at 10 FPS on CPU for a
VGA image. With ROI convolution, it can speed up to 30 FPS on CPU. We can
achieve about 3 times speed up with only 0.6% recall rate drop.

1 All experiments use a single thread on an Intel i7-4770K CPU
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Fig. 7. Comparison with state-of-the-arts on the FDDB [29], AFW [8] and PASCAL
faces [30] datasets.

��B�� ��C�� ��D��

Fig. 8. Qualitative face detection results on (a) FDDB [29], (b) AFW [8], (c) PASCAL
faces [30] datasets.

4.4 Comparing with state-of-the-art

We conduct face detection experiments on three benchmark datasets. On the
FDDB dataset, we compare with all public methods [33, 8, 34, 35, 9, 36–40,35,
10, 41, 42]. We regress the annotation ellipses with 5 facial points and ignore
67 unlabeled faces to make sure all false alarms are true. On the AFW and
PASCAL faces datasets, we compare with (1) deformable part based methods,
e.g. structure model [30] and Tree Parts Model (TSM) [8]; (2) cascade-based
methods, e.g. Headhunter [4]; (3) commercial system, e.g. face.com, Face++
and Picasa. We learn a global regression from 5 facial points to face rectangles
to match the annotation for each dataset, and use toolbox from [4] for the
evaluation. Fig. 8 shows that our method outperforms all previous methods by
a considerable margin.

5 Conclusion and future work

In this paper, we proposed a new Supervised Transformer Network for face de-
tection. The superior performance on three challenge datasets shows its ability
to learn the optimal canonical positions to best distinguish face/non-face pat-
terns. We also introduced a ROI convolution, which speeds up our detector 3x
on CPU with little recall drop. Our future work will explore how to enhance the
ROI convolution so that it does not incur additional drops in recall.
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