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Abstract. This paper proposes a two-view deterministic geometric model fit-
ting method, termed Superpixel-based Deterministic Fitting (SDF), for multiple-
structure data. SDF starts from superpixel segmentation, which effectively cap-
tures prior information of feature appearances. The feature appearances are ben-
eficial to reduce the computational complexity for deterministic fitting methods.
SDF also includes two original elements, i.e., a deterministic sampling algorithm
and a novel model selection algorithm. The two algorithms are tightly coupled
to boost the performance of SDF in both speed and accuracy. Specifically, the
proposed sampling algorithm leverages the grouping cues of superpixels to gen-
erate reliable and consistent hypotheses. The proposed model selection algorithm
further makes use of desirable properties of the generated hypotheses, to improve
the conventional fit-and-remove framework for more efficient and effective per-
formance. The key characteristic of SDF is that it can efficiently and determinis-
tically estimate the parameters of model instances in multi-structure data. Exper-
imental results demonstrate that the proposed SDF shows superiority over several
state-of-the-art fitting methods for real images with single-structure and multiple-
structure data.

Keywords: Deterministic algorithm, superpixel, model fitting, feature appear-
ances.

1 Introduction

Geometric model fitting is a challenging problem in computer vision. A major problem
in model fitting is how to tolerate numerous outliers, which are ubiquitous in the real-
world. RANSAC [1] is one of the most popular fitting methods due to its robustness
to outliers. Using the random sampling technique as RANSAC, many robust fitting
methods (e.g., gpbM [2], SCAMS [3], RCG [4] and PEARL [5,6]) have been proposed
to improve RANSAC. There are also many robust fitting methods (e.g., SWIFT [7]
and T-linkage [8]) developed based on different sampling techniques during the past
few decades. However, these fitting methods cannot guarantee the consistency in their
solutions due to their randomized nature. As a consequence, the fitting results may vary
if these methods do not sample a sufficient number of subsets.
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a b
Fig. 1. Oslcz,rview of the proposed riu)sthod for homography (eC)stimation. (a) An irnag(g)pair with
keypoint correspondences. (b) Superpixel generation (each segment with the same color denotes
a superpixel). (c¢) The procedure of the proposed method. (d) The fitting result according to the
estimated model instances (the keypoint correspondences with the same color belong to the inliers
of the same model instances).

Recently, some deterministic methods (e.g., [9,10,11,12,13]) have received much
attention for model fitting. In contrast to the unpredictability of non-deterministic fit-
ting methods, these deterministic fitting methods can deterministically yield solutions.
For example, Li [10] proposed to formulate the fitting problem as a mixed integer pro-
gramming problem and deterministically solve the problem by using a tailored branch-
and-bound scheme. Lee et al. [9] proposed to employ the maximum feasible subsystem
framework to deterministically generate hypotheses for the fitting problem. Litman et
al. [11] proposed to detect a globally optimal transformation based on inlier rate esti-
mation. Fredriksson et al. [ 2] proposed a branch and bound approach for the two-view
translation estimation problem. Chin et al. [13] proposed to formulate the fitting prob-
lem as a tree search problem by which globally optimal solutions can be found based
on the Astar search algorithm [14].

Although existing deterministic fitting methods (e.g., [9,10,11,12,13]) can guaran-
tee the consistency in their solutions, most of them are computationally expensive, es-
pecially for data with few inliers. Moreover, most deterministic methods [10,11,12,13]
assume that there exists only a single model instance in data, which restricts the appli-
cation of these methods in the real-world.

In this paper, we aim to solve a harder problem, where the proposed fitting method
is used to efficiently and deterministically deal with multiple-structure data. Note that
feature appearances contain important prior information, and some works have been
proposed to introduce feature appearances to model fitting (e.g., [0,15,16]). However,
few deterministic fitting methods fully take advantage of feature appearances of key-
point correspondences. Thus, we propose to use prior information of feature appear-
ances to reduce the computational cost of deterministic fitting methods. More specif-
ically, we first obtain grouping cues from superpixels, which can characterize prior
information of feature appearances. Then, based on the grouping cues, we propose an
efficient and effective method, called Superpixel-based Deterministic Fitting (SDF),
for multiple-structure data. The proposed SDF can deterministically generate “high-
quality” hypotheses (i.e., the hypotheses mainly include good hypotheses with only
a small percentage of bad hypotheses), and efficiently select significant hypotheses
as model instances by using a novel model selection algorithm. Fig. 1 illustrates the
overview of the proposed method for homography estimation.

This paper has three main contributions. First, superpixels are introduced for deter-
ministic model fitting. Superpixels consider spatial homogeneity, and they can provide
powerful grouping cues to deterministically deal with model fitting. To the best of our
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Fig. 2. An example of superpixels and keypoint correspondences based on the ground truth result
of fundamental matrix for an image pair (“Gamebiscuit”).

knowledge, it is the first time that superpixels, which capture prior information of fea-
ture appearances, are introduced for robust model fitting in an effective manner. Second,
a deterministic sampling algorithm is proposed to exploit the grouping cues of superpix-
els and the corresponding keypoint matching information. With the aid of superpixels,
the proposed sampling algorithm can deterministically generate high-quality hypothe-
ses with a low percentage of bad hypotheses. Third, a novel model selection algorithm,
which improves the conventional “fit-and-remove” framework by sequentially remov-
ing hypotheses rather than keypoint correspondences, is developed to find all model
instances in data. The developed model selection algorithm is very efficient and ef-
fective since it does not require to generate new hypotheses in each iteration. Overall,
SDF can efficiently and deterministically provide consistent solutions for model fitting.
This is significant since most conventional fitting methods are based on randomized
nature, and most existing deterministic fitting methods suffer from high computational
complexity. Experimental results demonstrate that the proposed SDF can achieve sub-
stantial improvements over several recently developed state-of-the-art fitting methods.

2 Introducing Superpixels to Model Fitting

In this section, we aim to obtain prior information of feature appearances, to accelerate
deterministic subset sampling for hypothesis generation. The feature appearances can
be derived from region consistency, which means that features within the same seg-
ments are most likely to be assigned to the same labels [17]. We note that superpixels
obtained by an image segmentation method (such as [18,19]) can adhere well to the
object boundaries in the image. Moreover, one superpixel has less chance to cut across
two or more objects. Thus, superpixels can be used to measure the level of consensus
in labeling features for region consistency.

According to region consistency and characteristics of superpixels, two keypoint
correspondences x;, z; (a keypoint correspondence x; consists of a feature pair { f}, 7}
in two views) have a high possibility of belonging to the inliers of the same structure if
two features fF, f]’? from the k-th view belong to the same superpixel. For example, as
shown in Fig. 2 (we use the image pair “Gamebiscuit” from the AdelaideRMF datasets
[20]), we perform superpixel segmentation [ 8] on the image pair and show keypoint
correspondences based on the ground truth result of fundamental matrix. We can see
that most keypoint correspondences, whose valid features in one view come from the
same superpixels, belong to the same structures.

Inspired by the above observations, the keypoint correspondences can be partitioned
into a set of groups (i.e., G) (where each group consists of the keypoint correspon-
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Fig.3. An example of group combination. ¢; is the center of the i-th group in G and S is the
grid interval. The purple dashed box denotes a superpixel size and we perform the combining
procedure within a 25 x 2.5 region (i.e., the blue solid box).

dences associated to the features within the same superpixel), with the intuition that the
keypoint correspondences of a group have a high possibility of belonging to the same
structure. This will help to accelerate deterministic subset sampling for hypothesis gen-
eration.

3 The Proposed Method

In this section, based on the prior information of feature appearances derived from
superpixels (discussed in Sec. 2), we first present a deterministic sampling algorithm
for hypothesis generation in Sec. 3.1. Then, in Sec. 3.2, we present a novel “fit-and-
remove” framework for model selection. Finally, we summarize the complete fitting
method in Sec. 3.3.

3.1 Hypothesis Generation

The prior information of feature appearances can provide powerful grouping cues for
hypothesis generation. However, grouping cues cannot be directly used to generate hy-
potheses. This is caused by two problems: (i) The inliers of a structure in data often
include more than the keypoint correspondences in a group, which may cause degener-
ation in sampled subsets with small spans [21]; (ii) The keypoint correspondences of a
group may contain outliers, which will lead to the failure of estimating a true structure
in data.

We propose two strategies to alleviate the above-mentioned problems: For the first
problem, we increase the spans of sampled subsets by combining groups in an input
group set G. Theoretically, we can combine any two groups in G, but such a strategy
is time consuming and will also generate a large number of “bad” groups that con-
sist of keypoint correspondences belonging to different structures. Thus, we propose
to only combine groups within a limited region, since the keypoint correspondences of
neighboring groups, have a high possibility of belonging to the same structure. More
specifically, for a group G;€G, we combine it with each of its neighboring group within
a limited region to generate a new group Giu 5t

s [GiuG;,  if Gy € N(Gi) and R(l;,1;) < 28 x 28,
Givj = { (H

g , otherwise,
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where NV (G;) is the neighboring group of G;. I; and /; denote the corresponding super-
pixels of G; and G, respectively. R(., .) denotes the combined region of two superpixels
in the image. Here, according to the expected superpixel size (S'x.S), we compute the
grid interval S as [18], i.e., S=+/N/M, where N and M are the number of pixels and
superpixels, respectively. An example of group combination is illustrated in Fig. 3.

In this manner, we can obtain a set of combined groups G, where small-size groups
are combined, while large-size groups (whose sizes are larger than 25x25) are not
combined. Despite some combined groups may consist of keypoint correspondences
belonging to two different structures, the degeneration problem can be effectively alle-
viated since each group G, in G includes keypoint correspondences with larger spans.

For the second problem, we only consider the most “promising” keypoint corre-

spondences in a combined group le{xf ;1: 1 according to the corresponding matching

information. Specifically, for a group Gi. by sorting keypoint correspondences accord-
ing to the corresponding matching score vector s;=[s} s? --- si'"] (each score s! is
computed according to the SIFT correspondences [22]), we can find a permutation:
1 2 i
a; = [a; ai -+ a;"], 2
where ag is the ranking index of the j-th keypoint correspondence in the i-th group Gi.
The keypoint correspondences in G; are sorted in the non-ascending order, i.e.,

u v

u<v=s{" > s, 3)

where v and v respectively denote the indices of z}* and z7 in Gi.
Then, for a group G;, we sample the m top sorted keypoint correspondences, i.e.,

m

{xf }‘;1:21 Here, we only sample the keypoint correspondences with high matching

scores to reduce the influence of outliers. This is because a keypoint correspondence
with a high matching score has a higher probability to be an inlier of a structure in data
[23].

Based on the prior information of feature appearances and the two above-mentioned
strategies (i.e., the group combination and the promising keypoint correspondences se-
lection), we propose a deterministic sampling algorithm for hypothesis generation (see
Algorithm 1). The proposed sampling algorithm considers both feature appearances and
geometric information, and it is also tractable due to its deterministic nature. Therefore,
the proposed sampling algorithm can generate reliable and consistent hypotheses for
model fitting. For the parameter my, i.e., the number of keypoint correspondences we
use to generate a hypothesis, we can set it as p + 2, where p denotes the minimum size
of sampled subsets for computing a unique hypothesis. This is because that the sampled
subset with p 4 2 keypoint correspondences can generate a stable hypothesis, which has
been demonstrated in [24]. It is also worth pointing out that the way we sample subsets
in the local region will not affect the quality of model hypotheses, because the grouping
cues include information of all keypoint correspondences, and the group combination
process also allows to sample in a larger region.

We note that PROSAC [15] also employs the most promising keypoint correspon-
dences (measured by the matching information) to generate hypotheses. However, for
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Algorithm 1 The proposed deterministic sampling algorithm for hypothesis generation

Input: a set of groups of keypoint correspondences G
1: Combine each group G;€G with each one G; of its neighbors N (G;) within a limited region
to generate a new group Giu ; by Eq. (1).
2: Sort keypoint correspondences in each combined group by Eq. (3).
3: Select the mq top sorted keypoint correspondences in the combined group as a sampled
subset, which is used to generate a hypothesis ;.
Output: The generated hypothesis set 8 (={6; }i=1,2,...)

each hypothesis, the proposed sampling algorithm only selects the most promising key-
point correspondences from a group based on superpixels, which is more “local” than
PROSAC (recall that PROSAC samples a subset from all keypoint correspondences).
That will help the proposed sampling algorithm to efficiently sample all-inlier subsets,
which is more obvious on multiple-structure data. Moreover, PROSAC cannot guaran-
tee the consistency of hypotheses due to its randomized nature. In contrast, the proposed
sampling algorithm is a deterministic sampling algorithm.

3.2 Model Selection

Given the hypothesis set 8 generated by Algorithm 1, the next step is to select model
instances for model fitting. For single-structure data, the hypothesis with the largest
number of inliers is directly selected as the estimated model instance.

For multiple-structure data, we propose a novel “fit-and-remove” framework, which
sequentially selects a hypothesis § with the largest number of inliers from the hypothesis
set, and updates the hypothesis set 8 by removing some redundant hypotheses.

In contrast to the traditional “fit-and-remove” framework, the proposed framework
removes hypotheses rather than keypoint correspondences and it does not require the
generation of new hypotheses during each step. Therefore, it effectively overcomes the
limitations of the conventional “fit-and-remove” framework [25], i.e., inaccurate in-
lier/outlier dichotomy can lead to wrong estimation of the remaining model instances,
and repeated hypothesis generation during each step is computationally inefficient as
well.

The key step of the proposed framework is how to remove redundant hypotheses.
For a selected hypothesis 6; (e.g., Fig. 4(b)), redundant hypotheses contain bad hypothe-
ses (e.g., Figs. 4(d) and 4(e)), whose sampled subset consists of outliers or keypoint
correspondences from different model instances, and good hypotheses (e.g., Fig. 4(c)),
which correspond to the same model instance as 6;. Therefore, for the selected hypoth-
esis 0;, we define h(7, §) to determine if a hypothesis 6; is redundant:

.1, if Sam(6;) NIn(6;) # 0,
h(i,j) = {O, otherwisej, )

where Sam(¢;) is the sampled subset of §; and In(#;) is the inlier set of 6;. Sam(6,;)N
In(0;) is used to decide if the sampled subset corresponding to §; contains any keypoint
correspondence belonging to the inliers of ¢,. Thus, each hypothesis §; with h(7, j)=1
will be treated as a redundant hypothesis and removed from the hypothesis set 6.
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d
Fig.4. An example(o% model selection for homography estimation (only one of the two views is
shown): (a) An input image (“Elderhalla”) with the ground truth results. (b) The inliers of the first
selected hypothesis. (c)~(e) The sampled subsets of three redundant hypotheses. (f) The inliers
of the second selected hypothesis.

Note that the proposed framework may fail to remove redundant hypotheses based
on some conventional sampling algorithms, e.g., [1,8]. This is because these sampling
algorithms will generate a large percentage of bad hypotheses and the sampled subsets
consist randomly selected keypoint correspondences. In contrast, the proposed frame-
work can work well based on the high-quality hypotheses provided by the proposed
sampling algorithm (Algorithm 1). Specifically, for a selected hypothesis 6;, the re-
maining good hypotheses corresponding to model instances in data include two parts,
i.e., the hypotheses 5 ; corresponding to the same model instance as 6;, and the hy-
potheses 9 corresponding to the remalnmg model instances in data. For each iteration,
the proposed framework can remove 0 while preserving 0 That is, for a hypothesis
belonging to 0,, it can be effectively removed because the keypoint correspondences
from its sampled subset have high matching scores and most of these keypoint cor-
respondences more likely belong to the inliers of #;. Thus, according to Eq. (4), the
hypothesis is one of the redundant hypotheses. In contrast, for a hypothesis belonging
to ;, the keypoint correspondences from its sampled subset have a low probability to
be the inliers of #; and it will not be removed.

3.3 The Complete Method

We summarize the proposed SDF method with all the ingredients developed in the pre-
vious sections (see Algorithm 2). We first generate superpixels of an image pair with a
selected segmentation algorithm. Here, we perform the SLIC segmentation algorithm
[18] (which deterministically generates superpixels by using a variant of the k-means
clustering algorithm) to obtain superpixels due to its simplicity and effectiveness. More-
over, it can adhere well to the object boundaries in an image with O(N) complexity
(where N is the number of pixels). It is worth pointing out that the performance of the
proposed method does not greatly depend on the quality of superpixel segmentation.
This is because a model instance in data often corresponds to two or more hypotheses
based on the grouping cues derived from different superpixels, and the model instance
can be estimated from these hypotheses.
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Algorithm 2 The superpixel-based two-view deterministic fitting method

Input: keypoint correspondences, the inlier scale and the number of model instances 1’
1: Perform the superpixel segmentation algorithm [18] on a tested image pair.
2: Partition keypoint correspondences into a set of groups G based on the segmented superpixels
(described in Sec. 2).
: Deterministically generate hypotheses 6 by Algorithm 1.
: fori=1to7 do
5:  Select a hypothesis 6; with the largest number of inliers (based on the input inlier scale)
from @ as an estimated model instance.
6: Find the redundant hypotheses (= { 9{ } j=1,2,...) with respect to the selected hypothesis
0; according to Eq. (4).
7:  Remove the selected hypothesis 6; and the redundant hypotheses 9; from 6, i.e., @ <
0\ {9, U0b;}.
8: end for
Output: The parameters of estimated model instances

AW

The proposed SDF exploits the grouping cues of superpixels to deterministically es-
timate the parameters of model instances in multi-structure data. SDF includes two main
parts, i.e., a deterministic sampling algorithm and a novel “fit-and-remove” framework
for model selection. The proposed deterministic sampling algorithm effectively intro-
duces feature appearances (derived from superpixels) to geometric model fitting for
hypothesis generation, and the proposed “fit-and-remove” framework takes advantages
of the generated high-quality hypotheses. Therefore, the proposed sampling algorithm
and the proposed model selection framework are nicely coupled, and they jointly lead
to deterministic fitting results. The computational complexity of SDF is approximately
proportional to O(N). Among all the steps of the proposed SDF, the step of superpixel
segmentation (i.e., step 1) consumes the majority of the computational time of SDF.

Note that GroupSAC [26] also partitions keypoint correspondences into a set of
groups. However, the groups partitioned by the proposed SDF are smaller and more
accurate than those partitioned by GroupSAC due to the over-segmentation nature in
superpixels. In addition, GroupSAC only works for single-structure data with random-
ized nature, and its performance greatly depends on the quality of image segmentation.
In contrast, SDF has significant superiority over GroupSAC since SDF can determinis-
tically deal with multi-structure data.

4 Experiments

In this section, we perform homography estimation and fundamental matrix estimation
on single-structure and multiple-structure datasets. We compare the proposed SDF with
several state-of-the-art model fitting methods, including PROSAC [15], AStar [13] and
T-linkage [8]. PROSAC is evaluated since it also considers feature appearances as SDF.
AStar is one of the state-of-the-art methods for deterministic fitting. However, AStar
only works on single-structure data and thus we do not evaluate it in subsection 4.1.
T-linkage is a representative model fitting method that effectively works on multiple-
structure data, but it can not work on single-structure data very well due to the used
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(e) Physics (j) Biscuit
Fig. 5. Fitting results obtained by SDF on 10 image pairs with single-structure data. (a) ~ (e)
show the results obtained by SDF on homography estimation, and (f) ~ (j) show the results
obtained by SDF on fundamental matrix estimation. We do not show the results obtained by the
other competing methods due to the space limit.

outlier rejection process. Thus we only use it as the competing method on multiple-
structure datasets in Section 4.2. In addition, we also run RANSAC as a baseline.

For the parameter settings, we use the same inlier scale on each dataset for all the
competing methods and also optimize the other parameters of all the competing meth-
ods on each dataset for the best performance. All experiments are run on MS Windows
7 with Intel Core i7-3630 CPU 2.4GH z and 16GB RAM.

Datasets. The test datasets consist of 20 image pairs: The first 10 image pairs are
single-structure datasets and they are tested in Sec. 4.1. The other 10 image pairs are
multiple-structure datasets, which are tested in Sec. 4.2. Images, keypoint correspon-
dences and matching scores are acquired from the BLOGS datasets, the OXford VGG
datasets and the AdelaideRMF datasets. For the image pairs in the BLOGS datasets

http://www.cse.usf.edu/~sarkar/BLOGS/
http://www.robots.ox.ac.uk/~vgg/data/

http://cs.adelaide.edu.au/
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Table 1. The Sampson error (and the CPU time in seconds) obtained by the competing methods
for homography estimation and fundamental matrix estimation on single-structure datasets. The
best results are boldfaced.

Homography estimation Fundamental matrix estimation

l l

| Keble | Ubc [Graffiti] Bonython [ Physics [Twocars[Library[ Cube [ Book [ Biscuit |
[ Tnliers (%) [93.85]93.57] 69.33 [ 2626 [ 5471 [ 6171 [7037 [ 32.11 [ 56.14 | 4424 |
l

[No. of matches| 293 [ 140 | 212 [ 198 [ 106 128 [ 27 [ 302 | 187 | 330 |
RANSAC 171 [ 047 | 1.32 10.76 2.44 0.04 0.01 0.06 0.03 0.14
(0.29) {(0.31)| (0.30) | (6.45) (0.43) (0.10) | (0.07) | (7.38) (0.19) (1.30)
PROSAC 1.73 [ 046 | 1.34 9.76 1.46 0.04 0.01 0.06 0.05 0.08
(0.33) {(0.42)| (0.35) | (6.58) (0.66) (0.11) | (0.04) | (8.06) (0.24) (1.27)
Astar 1.69 | 0.47 | 1.31 X X 0.03 0.01 X X X
(15.25)[(1.82)| (7.23) [ (> 3600)|(> 3600)| (19.76) |(22.43)|(> 3600)|(> 3600)|(> 3600)
SDF 1.70 | 045 | 1.28 0.32 1.45 0.03 0.00 0.05 0.01 0.04

(0.42) {(0.44)| (0.45) | (0.36) (0.32) (2.58) | (2.70) | (0.30) (0.29) (0.37)

and the OXford VGG datasets, keypoint correspondences and matching scores are not
provided. We detect and match the SIFT keypoints and compute the matching scores
using the VLFeat toolbox. The ground truth parameters of structures are provided by
the BLOGS datasets and the OXford VGG datasets, based on which, we can manually
label the ground truth correspondences. The ground truth keypoint correspondences are
provided by the AdelaideRMF datasets.

4.1 Single-Structure Data

First, we evaluate the performance of the four fitting methods (i.e., RANSAC, PROSAC,
Astar and the proposed SDF) on the 10 image pairs with single-structure data for ho-
mography estimation and fundamental matrix estimation. We report the Sampson error
as [11] (we only show the results obtained within 1 hour as [13]), the computational
speed (i.e., the CPU time), the percentage of inliers and the number of keypoint corre-
spondences (matches) on each image pair in Table 1. For RANSAC and PROSAC, we
show the average results of 50 repeating experiments due to their randomized nature.
For Astar and SDF, we do not repeat experiments due to their deterministic nature. The
fitting results obtained by SDF are also shown in Fig. 5.

Homography estimation. From Fig. 5(a) ~ 5(e) and Table 1, we can see that all the
four methods achieve similar Sampson errors on the image pairs with a high percentage
of inliers (i.e., “Keble”, “Ubc” and “Graffiti”). However, for the other two image pairs
with a low percentage of inliers (i.e., “Bonython” and “Physics”), SDF achieves the
lowest Sampson errors. For the computational speed, the methods with the randomized
nature (i.e., RANSAC and PROSAC) are faster than SDF on the image pairs with a high
percentage of inliers. However, on the image pairs with a low percentage of inliers, SDF
is significantly faster. This is because RANSAC and PROSAC cannot generate high-
quality hypotheses when data contain a large number of outliers and it is difficult to
determine the number of iterations to achieve the desired confidence. Furthermore, SDF
shows significant superiority over the other deterministic method (i.e., Astar): Astar
takes one order of magnitude more time than SDF on the image pairs with high inlier
ratios (i.e., “Keble”, “Ubc” and “Graffiti”), and it cannot also yield results within 1 hour
on the image pairs with low inlier ratios (i.e., “Bonython” and “Physics”). In contrast,
SDF obtains results on all image pairs within about 0.32~0.45 second.

http://www.vlfeat.org/
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Homography Estimation Fundamental Matrix Estimation
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(a) (D)
Fig. 6. The computational speed of the four methods on two image pairs with different outlier per-
centages: (a) and (b) show the performance comparison on homography estimation (“Physics”)
and fundamental matrix estimation (“Book”), respectively.

Fundamental matrix estimation. From Table 1, we can see that the computational
speed of RANSAC and PROSAC increases as the inlier ratio decreases on all the five
image pairs. As shown in Fig. 5(f) ~ 5(j) and, both methods achieve good results on the
image pairs with high inlier ratios (i.e., “Twocars”, “Library” and “Book”). However,
they are slower than SDF on “Cube” and “Physics” (which have low inlier ratios). Astar
achieves low Sampson errors on the image pairs with high inlier ratios, but it cannot
yield results within 1 hour on the image pairs with high outlier ratios as well. SDF
achieves the lowest Sampson errors on all the five image pairs, and it is much faster
than the competing deterministic method (i.e., Astar).

Influence of outlier percentages. We also evaluate the performance of all four meth-
ods with different outlier percentages. As shown in Fig. 6, we report the computational
speed of the four competing methods on two image pairs with different outlier percent-
ages (the Sampson errors obtained by the four methods are not reported because they
are similar). We can see that SDF significantly outperforms the other three methods
when the outlier percentage is larger than 50%. The CPU time of Astar is much higher
than that of RANSAC, PROSAC and SDF. The CPU time of RANSAC and PROSAC
increases substantially when the outlier percentage is larger than 40% (for homography
estimation) and 50% (for fundamental matrix estimation). This is because they suffer
from the influence of outliers during the process of generating all-inlier subsets. In con-
trast, the CPU time of SDF has no significant change on both image pairs when the
outlier percentage increases, which shows the robustness of SDF to outliers.

Influence of the number of superpixels. Note that, compared with RANSAC and
PROSAC, SDF uses an extra parameter for superpixel segmentation, i.e., the number of
superpixels (M). Thus, we test the influence of the number of superpixels on the perfor-
mance of SDF. As shown in Fig. 7, we show the Sampson error and the computational
speed of SDF with different numbers of superpixels on six image pairs (three image
pairs, i.e., “Keble”, “Graffiti” and ‘“Physics”, for homography estimation, and the other
three image pairs, i.e., “Twocars”, “Book” and “Biscuit”, for fundamental matrix esti-
mation). We can see that SDF consistently achieves low Sampson errors on five out of
the six image pairs with different numbers of superpixels. However, the Sampson error
obtained by SDF dramatically increases on “Physics” when M is larger than 300. The
reason behind this is that “Physics” includes few inliers and each group partitioned by
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Fig. 7. The results of the proposed SDF with different numbers of superpixels on six image pairs:
(a) and (b) show the performance comparison on the Sampson error and the computational speed,
respectively.

SDF includes much less inliers as A/ becomes larger than 300. In such a case, sampling
an all-inlier subset from each group is difficult, and the quality of hypotheses generated
by the sampled subsets will affect the fitting results of SDF.

For the computational speed, the result of SDF does not change a lot on all image
pairs as M increases. SDF takes more CPU time on “Twocars” than the other five image
pairs due to the complex scenario of this image pair (which affects the computational
speed of SLIC for superpixel generation). Therefore, we experimentally set the number
of superpixels within the range of [50, 300].

4.2 Multiple-Structure Data

In this subsection, we evaluate the performance of the four fitting methods (i.e., RANSAC,
PROSAC, T-linkage and SDF) on 10 image pairs with multiple-structure data for ho-
mography estimation and fundamental matrix estimation. We report the Sampson errors
obtained by the competing methods (we only show the results obtained within 1 hour)
and their computational speed in Table 2. For RANSAC, PROSAC and T-linkage, we
show the average results of 50 repeating experiments due to their randomized nature.
The fitting results obtained by SDF are also shown in Fig. 8.

Homography estimation. From Fig. 8(a) ~ 8(e) and Table 2, we can see that
RANSAC achieves low Sampson errors on all five image pairs, but it is much slower

Table 2. The Sampson error (and the CPU time in seconds) obtained by the competing methods
for homography estimation and fundamental matrix estimation on multiple-structure datasets.
The best results are boldfaced.

Homography estimation Fundamental matrix estimation

DI D2 D3 D4 D5 D6 D7 D8 D9 D10

RANSAC 1.26 | 1.12 | 0.78 3.76 1.55 0.04 | 0.80 | 041 | 0.09 | 4.13
(1.33) |(57.70)|(11.15)| (3.83) (3.22) [(20.53){(21.08)[(23.96)(37.18)|(27.71)

PROSAC 273 | L.I1 | 0.87 X 1.48 0.09 | 022 | 029 | 047 | 6.78
(2.76) |(33.25)((19.37)| (> 3600)| (7.84) [(20.92)|(21.39){(23.92)((37.81)|(27.97)

Tlinkage 1.02 | 1.09 | 0.76 3.75 1.36 0.03 | 0.13 | 0.12 | 0.11 | 0.13
(62.21)(23.96)[(30.91)| (1508.62) [(233.02)[(45.05)|(22.94)|(31.84)|(53.38)|(33.88)

SDF 1.03 | 1.11 | 0.75 3.73 1.47 0.03 | 0.11 | 0.10 | 0.07 | 0.04
(0.84) | (0.72) | (0.46) | (1.96) (1.51) | (0.64) | (0.54) | (0.61) | (0.71) | (0.63)

(D1-Oldclassicswing; D2-Elderhalla; D3-Sene; D4-MC3; D5-4B; D6-Cubechips; D7-Breadtoycar; D8-Breadcubechips;
D9-Cubebreadtoychips; D10-Breadcartoychips.)
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Inhers (%) 18.73 and 48.81 Inliers (%):20.07 and 29.58
(a) Oldclassicswing (379 matches: 2 models) (f) Cubechips (284 matches: 2 models)
/8 I + +

Inliers: 17.76 and 21.50 Inliers (%): 20.48, 23.49 and 22.29
(b) Elderhalla (214 matches: 2 models) (g) Breadtoycar (166 matches: 3 models)

& E =3 +
Inliers (%) 18.40 and 34.40 Inliers (%):14.78, 24.78 and 25.22
(c) Sene (250 matches: 2 models)

(h) Breadcubechlps (230 matches 3 models)

Inliers (%): 28.17, 28.17 and 28.17 Inliers (%): 11.62, 14.98, 21.71 and 24.77
(d) MC3 (1775 matches: 3 models) @) Cubebreadtoychlps (327 matches: 4 models)

Inliers (%): 15.70, 16.09, 17.50 and 29.73 Inliers (%): 9.70, 13.92, 17.30 and 24.47
(e) 4B (777 matches: 4 models) (j) Breadcartoychips (237 matches: 4 models)

Fig. 8. Fitting results obtained by SDF on 10 image pairs with multiple-structure data. (a)~(e)
show the results obtained by SDF on homography estimation, and (f)~(j) show the results ob-
tained by SDF on fundamental matrix estimation. We also report the percentage of inliers for
each model instance, the number of model instances and the number of keypoint correspondences
(matches) on each image pair. We do not show the results obtained by the other competing meth-
ods due to the space limit.
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than SDF. This is more obvious on the image pairs with low inlier ratios (e.g., SDF
is about 80.13 times faster than RANSAC on “Elderhalla”). PROSAC succeeds in fit-
ting four image pairs, but it fails in fitting “MC3” since it cannot sample non-degenerate
subsets within 1 hour. T-linkage achieves the lowest Sampson errors on 3 out of 5 image
pairs, but it suffers from high computational complexity due to a large number of key-
point correspondences used during the agglomerative clustering procedure (e.g., SDF
is 769.70 times faster than T-linkage on “MC3”). In contrast, SDF achieves the fastest
computational speed among the four fitting methods for all five image pairs: SDF is
about 1.58~80.14 times faster than RANSAC, and it is about 3.2 times ~ three order
of magnitude faster than PROSAC, and about one to two order of magnitude faster than
T-linkage.

Fundamental matrix estimation. From Fig. 8(f) ~ 8(j) and Table 2, we can see
that both RANSAC and PROSAC need much time to determine the number of iterations
to achieve high confidence on all five image pairs. This is because that it is difficult
for them to sample all-inlier subsets when a dataset has a high outlier percentage and
the estimation needs to sample a large number of subsets. T-linkage achieves lower
Sampson errors than RANSAC and PROSAC due to its robustness to outliers. However,
SDF achieves the lowest Sampson error for all the five image pairs, and it is much faster
than the other three fitting methods (about 32.08~52.37 times faster than RANSAC,
and about 32.69~53.25 times faster than PROSAC, and 42.48~75.18 times faster than
T-linkage). The results show the effectiveness of SDF for fitting multiple-structure data

5 Conclusions

In this paper, we propose a simple but effective determinstic fitting method (SDF) that
introduces prior information of feature appearance to geometric model fitting. We show
that prior information of feature appearance (derived from superpixels) can provide
powerful grouping cues for the proposed deterministic sampling algorithm to generate
consistent hypotheses, where keypoint correspondences with high matching scores are
selected as sampled subsets. The generated hypotheses contain a high percentage of
good hypotheses with a small percentage of bad hypotheses. Based on the advantage
of the generated hypotheses, a novel fit-and-remove framework is proposed for model
selection. SDF effectively combines hypothesis generation and model selection to de-
terministically deal with the two-view model fitting problems.

Compared with the fitting methods with randomized nature (e.g., RANSAC and
T-linkage), SDF is tractable and can deterministically provide consistent solutions for
model fitting. Compared with the feature appearance based fitting methods (e.g., PROSAC),
SDF can obtain better performance in both speed and accuracy. SDF has also significant
superiority over several other deterministic methods (e.g., BnB [10] and Astar [13]):
SDF is much faster, and it can achieve promising performance on image pairs with both
single-structure and multiple-structure data.
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