Vv

@

X

1607.05396v1 [cs.CV] 19 Jul 2016

Binary Hashing with Semidefinite Relaxation
and Augmented Lagrangian

Thanh-Toan Do, Anh-Dzung Doan, Duc-Thanh Nguyen, Ngai-Man Cheung

Singapore University of Technology and Design
{thanhtoan_do, dung doan, ducthanh nguyen, ngaiman _cheung}@sutd.edu.sg

Abstract. This paper proposes two approaches for inferencing binary
codes in two-step (supervised, unsupervised) hashing. We first introduce
an unified formulation for both supervised and unsupervised hashing.
Then, we cast the learning of one bit as a Binary Quadratic Problem
(BQP). We propose two approaches to solve BQP. In the first approach,
we relax BQP as a semidefinite programming problem which its global
optimum can be achieved. We theoretically prove that the objective value
of the binary solution achieved by this approach is well bounded. In the
second approach, we propose an augmented Lagrangian based approach
to solve BQP directly without relaxing the binary constraint. Experimen-
tal results on three benchmark datasets show that our proposed methods
compare favorably with the state of the art.

Keywords: Two-step hashing, Semidefinite programming, Augmented
Lagrangian.

1 Introduction

Hashing methods construct a set of hash functions that map the original high
dimensional data into low dimensional binary data. The resulted binary vec-
tors allow efficient storage and fast searching, making hashing as an attractive
approach for large scale visual search [1,2].

Existing hashing methods can be categorized as data-independent and data-
dependent schemes. Data-independent hashing methods [3-6] rely on random
projections for constructing hash functions. Data-dependent hashing methods
use available training data for learning hash functions in unsupervised or su-
pervised way. Unsupervised hashing methods, e.g. Spectral Hashing [7], Itera-
tive Quantization (ITQ) [8], K-means Hashing [9], Spherical Hashing [10], Non-
negative Matrix Factorization (NMF) hashing [11], try to preserve the distance
similarity of samples. Supervised hashing methods, e.g. Minimal Loss Hashing
[12], ITQ-CCA [8], Binary Reconstructive Embedding [13], KSH [14], Two-Step
Hashing [15], FastHash [16], try to preserve the label similarity of samples.

Most aforementioned hashing methods follow two general steps for comput-
ing binary codes. The first step is to define hash functions together with a specific
loss function. Usually, the hash functions take the linear form [8,12, 3] or non-
linear (e.g. kernel) form [4,13,14]. The loss functions are typically defined by

2 Thanh-Toan Do, Anh-Dzung Doan, Duc-Thanh Nguyen, Ngai-Man Cheung

minimizing the difference between Hamming affinity (or distance) of data pairs
and the ground truth [14,15,13,16]. The second step is to solve hash function
parameters by minimizing the loss function under the binary constraint on the
codes. The coupling of the hash function and the binary constraint often re-
sults in a highly non-convex optimization which is very challenging to solve.
Furthermore, because the hash functions vary for different methods, different
optimization techniques are needed for each of them.

1.1 Related work

Our work is inspired by a few recent supervised hashing methods [15,16] and
unsupervised hashing method [11] which rely on two-step approach to reduce the
complexity of the coupled problem and to make the flexibility in using of different
types of hash functions. In particular, those works decompose the learning of
hash functions under binary constraint into two steps: the binary code inference
step and the hash function learning step. The most difficult step is binary code
inference which is NP-hard problem. After getting the binary codes, the hash
function learning step becomes a classical binary classifier learning. Hence, it
allows the using of various types of hash functions, i.e., linear SVM [11], kernel
SVM [15], decision tree [16].

In order to infer binary codes, in [15,16], the authors form the learning
of one bit of binary code as a binary quadratic problem and using non-linear
optimization [15] or Graphcut [16] for solving. In [11], the authors solve the
binary code inference using non-linear optimization approach or non-negative
matrix factorization approach. We will brief the approaches in [15,16,11] when
comparing to our methods in section 2.4.

Although different methods are proposed for inferencing the binary code,
the disadvantage of those methods [15,11] is that in order to overcome the
hardness of the binary constraint on codes, they solve the relaxed problem, i.e.,
relaxing the binary constraint to continuous constraint. This may decrease the
code quality and incurs some performance penalty. Furthermore, those works
have not theoretically investigated the quality of the relaxed solution.

1.2 Contribution

Instead of considering separate formulations for supervised hashing and unsu-
pervised hashing, we first present an unified formulation for both. Our main
contributions are that we propose two approaches for inferencing binary codes.
In the first approach, we cast the learning of one bit of the binary code as
a Semidefinite Programming (SDP) problem which its global optimum can be
achieved. After using a randomized rounding procedure for converting the so-
lution of SDP to the binary solution, we theoretically prove that the objective
value of the resulted binary solution is well bounded, i.e., it is not arbitrarily
far from the global optimum objective value of the original problem. It is worth
noting that although semidefinite relaxation has been applied to several com-
puter vision problems such as image segmentation, image restoration [17,18],
to the best of our knowledge, our work is the first one that applies semidefinite

Binary Hashing with Semidefinite Relaxation and Augmented Lagrangian 3

relaxation to the binary hashing problem. In the second approach, we propose to
use Augmented Lagrangian (AL) for directly solving the binary code inference
problem without relaxing the binary constraint. One important step in the AL
is initialization [19]. In this work, we careful derive an initialization to achieve
a good feasible starting point. For both SDP and AL approaches, their memory
and computational complexity are also analyzed.

The remaining of this paper is organized as follows. Section 2 presents pro-
posed approaches for binary code inference. Section 3 evaluates and compares
proposed approaches to the state of the art. Section 4 concludes the paper.

2 Proposed methods

2.1 Unified formulation for similarity preserving unsupervised /
supervised hashing

Let X € RPX™ be matrix of n samples; S = {s;;} € R"*" be symmetric pair-
wise similarity matrix, i.e., pairwise distance matrix for unsupervised hashing or
pairwise label matrix for supervised hashing; Z = {z;;} € {—1,1}X*" be binary
code matrix of X, where L is code length; each column of Z is binary code of
one sample; D = {d;;} € R™*", where d;; is Hamming distance between samples
i and j, i.e., columns ¢ and j of Z; we have 0 < d;; < L. We target to learn
the binary code Z such that the similarity matrix in original space is directly
preserved through Hamming distance in Hamming space. In a natural means,
we learn the binary code matrix Z by solving the following binary constrained
least-squares objective function

1 1

-D--S

7D -2 (1)

min
ZE{—l,l}LX"

In (1), c is a constant. The scale factors + and 1 are to make D and S same
scale, i.e., belonging to the interval [0, 1], when doing least-squares fitting. For
unsupervised hashing, any distance function can be used for computing S. In
this work, we consider the squared Euclidean distance which is widely used in
nearest neighbor search. By assuming that the samples are normalized to have
unit lp norm, we have 0 < s;; < 4. In this case, the constant ¢ equals to 4.
For supervised hashing, we define s;; = 0 if samples ¢ and j are same class.
Otherwise, s;; = 1. In this case, the constant c equals to 1.

In [14], the authors show that the Hamming distance and code inner product
is in one-to-one correspondence. That is

L-Z7"Z
D="",)
where L is a matrix of all-Ls.

Substituting (2) into (1), we get the unified formulation for unsupervised and
supervised hashing as

min |27z -Y| (3)
Ze{—1,1}Lxn

4 Thanh-Toan Do, Anh-Dzung Doan, Duc-Thanh Nguyen, Ngai-Man Cheung

Algorithm 1 Coordinate descent with Augmented Lagrangian (AL) / Semidef-

inite Relaxation (SDR)

Input:

Similarity matrix S; training data X; code length L; maximum iteration number max_iter.
Output:

Binary code matrix Z.

Initialize the binary code matrix Z.
for r =1 — max_iter do
for k=1— L do
x < solve BQP (5) for row k of Z with SDR (Sec. 2.2) or AL (Sec. 2.3).
Update row k of Z with x.
end for
end for
Return Z

where Y =L — 7 and Y = L — 2LS for unsupervised and supervised hashing,
respectively. Note that since S is symmetric, Y is also symmetric.

The optimization problem (3) is non-convex and difficult to solve, i.e. NP-
hard, due to the binary constraint. In order to overcome this challenge, we use the
coordinate descent approach which learns one bit, i.e. one row of Z, at a time,
while keeping other rows fixed. Our coordinate descent approach for learning
binary codes is shown in Algorithm 1.

When solving for the bit & (i.e. row k) of Z, solving (3) is equivalent to solving
the following problem

z(k)e{ 11}HZZ2Z Z Zj — yij)Jrconst (4)

1=1 j=1

where z(%) is transposing of row k of Z; z; is binary code of sample i, i.e., column
i of Z; z; () is bit k of sample i; z; is z; excluding bit k.

By removing the const and letting x = [21,...,2,]7 = 2z (for notational
simplicity), (4) is equivalent to the following Binary Quadratic Problem (BQP)

minx? Ax
xX

st.x?=1Vi=1,..,n. (5)
where A = {aij} S Rnxn; Qij = ZZTZJ‘ — Yij-
Because Y is symmetric, A is also symmetric. The constraints in (5) come

from the fact that x; € {—1,1} < z;2 = 1. In sections 2.2 and 2.3, we present
our approaches for solving (5).

2.2 Semidefinite Relaxation (SDR) approach
Let us start with the following proposition

Proposition 1. Let matriz B = A — A1, where A\ is the largest eigenvalue of
A, then

Binary Hashing with Semidefinite Relaxation and Augmented Lagrangian 5

— (5) is equivalent to

minx’ Bx
X

st.xl=1Vi=1,..n. (6)
— B is negative semidefinite.

Proof. — we have
xTBx = xTAx — xT(\I)x

n
=xTAx — E A1z
i=1

=xTAx —n)\ (7)

As n); is constant, solving (5) is equivalent to solving (6). O

— As A is symmetric, B is also symmetric. The symmetric matrix A can
be decomposed as A = UEU?, where E is diagonal matrix; diag(E) are
eigenvalues of A; columns of U are eigenvectors of A and UUT = I. We
have

x"Bx = xTUEU x — n)\;
=vIEv —n)\
< \viv—n)\
=nA\ —nA\;
=0 (8)

where v = UTx. The second last equation comes from the fact that v7'v =
xT"UUTx = xTx = n. The last equation means B < 0'. O

Because (5) and (6) are equivalent, we solve (6), instead of (5). The reason is
that we will use the negative semidefinite property of B to derive the bounds on
the objective value of solution of the relaxation. Note that, because B < 0, the
objective function value of (6) is non-positive.

Solving Solving (6) is challenge due to the binary constraint which is NP-hard.
In this work, we rely on the semidefinite programming relaxation approach [20,
21]. By introducing new variable, X = xxT, (6) can be exactly rewritten as

m)én trace(BX)
s.t. diag(X) =1; X = 0;rank(X) =1 (9)

! The notations < 0 and > 0 mean negative semidefinite and positive semidefinite,
respectively.

6 Thanh-Toan Do, Anh-Dzung Doan, Duc-Thanh Nguyen, Ngai-Man Cheung

The objective function and the constraints in (9) are convex in X, excepting
the rank one constraint. If we drop the rank one constraint, (9) becomes a
semidefinite program

m}én trace(BX)
s.t. diag(X) =1;X =0 (10)

We call (10) as semidefinite relaxation (SDR) of (6). The solving of SDR problem
(10) has been well studied. There are several widely used convex optimization
packages such as SeDuMi [22], SDPT3 [23] which use iterior-point method for
solving (10). Because (10) is a convex optimization, its global optimal solution
can be achieved by using the mentioned packages.

After getting the global optimal solution X* of (10), the only remaining
problem is how to convert X* to a feasible solution of (6). In this work, we follow
the randomized rounding method proposed in [24]. Given X*, we generate vector
¢ by & ~ N(0,X*) and construct the feasible point % of (6) as

x = sgn(§) (11)

This process is done multiple times, and the X point which provides minimum
objective value (of (6)) is selected as the solution of (6).

Bounding on the objective value of SDR-rounding solution Let f,,;
be global optimum objective value of (6) and fspr—round be oObjective value
at % which is achieved by above rounding procedure, i.e, fspRr—round = X' BX.
We are interesting in finding how is fspr—round close to fope. In [24,25], under
some conditions on the matrix B, the authors derived bounds on fspr—round t0
maximization problem of the form (6). In this paper, we derive bounds for the
minimization problem (6), where B < 0. The bounds on fspgr—round s achieved
by the following theorem

Theorem 1. fopt < E[fSDRfround] < %fopt

Proof. — Because solving SDR (10), following by rounding procedure, is relax-
ation approach to achieve a feasible solution for (6), we have

fopt S fSDR—round (12)

— Given X*, i.e., the global minimum solution of (10), let the global optimum
objective value of (10) at X* be fspr = trace(BX*); given X, i.e., the
solution of (6), achieved from X* by applying the rounding procedure, in [24],
the authors show that the expected value of fspr—round 18

2
E[fspR—round] = E[XBx] = Ztrace(Barcsin(X*)) (13)
T
where the arcsin function is applied componentwise. Note that since X* >

0 and diag(X*) = 1, the absolute value of its elements is < 1. Hence
arcsin(X*) is well defined.

Binary Hashing with Semidefinite Relaxation and Augmented Lagrangian 7

Because X* = 0, we have arcsin(X*)—X* » 0 [26]. Because B < 0, we have
trace (B(arcsin(X*) — X*)) <0
< trace(Barcsin(X")) < trace(BX")

2 2
< —trace(Baresin(X*)) < —trace(BX")
7r 7r

2 *
A E[fSDR—round] < ;tTaC€(BX)

2
< E[fspr—round] < ;fSDR (14)

Because (10) is a relaxation of (6) (by removing the rank-one constraint),
we have

fSDR < fopt (15)
By combining (14) and (15), we have

2
E[fSDRfround] S ;fopt (16)
The proof is done by (12) and (16). O

The advantages and disadvantages of SDR approach As mentioned, be-
cause (10) is a convex optimization, its global optimal solution can be achieved
by using convex optimization methods. Using randomized rounding to convert
SDR’s solution to binary solution provides a good bound on the objective value.
However, there are two main concerns, i.e., memory and computational complex-
ity, with SDR approach. SDR approach works in the space of n? of variables,
instead of n as original problem. By using interior-point method which is tradi-
tional approach for solving SDP problem, (10) is solved with high complexity, i.e,
O(n*?)[21]. These two disadvantages may limit the capacity of SDR approach
when n is large.

2.3 Augmented Lagrangian approach

We propose to directly solve the equality constrained minimization (5) using
Augmented Lagrangian (AL) method.

Formulation In our formulation, we rewrite the binary constraints of (5) in vec-
tor form as @(x) = [(z1)? — 1,..., (z,)? — 1}T; let A = [\, ..., \n]T be Lagrange
multipliers. By using augmented Lagrangian method, we target to minimize the
following unconstrained augmented Lagrangian function

Lix, A;p) = xT Ax = ATO(x) + 5 |[@(x) (17)

where p is penalty parameter on the constrains. The AL algorithm for solving
(17) is presented in Algorithm 2. When p is large, we penalize the constraint
violation severely, thereby forcing the minimizer of the augmented Lagrangian
function (17) closer to the feasible region of the original constrained function
(5). It has been theoretically shown in [19] that because the Lagrange multiplier
A is improved at every step of the algorithm, it is not necessary to take y — oo
in order to achieve a local optimum of (5).

8 Thanh-Toan Do, Anh-Dzung Doan, Duc-Thanh Nguyen, Ngai-Man Cheung

Algorithm 2 Augmented Lagrangian Algorithm

Input:

matrix A; starting points x3 and Ag; positive numbers: po, «, €; iteration number T
Output:

Solution x

1: fort =0 — T do

2: Find an approximate minimizer x; of (17), i.e., x; = arg min £(x, A¢; p1¢), using x; as starting
x
point.
3: if t >1and |x;7 Ax; — x; T Ax}| < € then
4: break;
5: end if
6: Update Lagrange multiplier: A;41 = Ay — pe P(x¢)
7 Update penalty parameter: ps41 = oy
8: Set starting point for the next iteration to xj,; = x;

9: end for
10: Return x;

Table 1. Memory and computational complexity of SDR and AL

Computational Memory
SDR O(n*?) O(n?)
AL [O(ttin?); t1 < 50; t < 10| O(n)

Complexity analysis of Augmented Lagrangian approach The gradient
of (17) is computed as follows

VoL =2Ax - 240 x+2ud(x) O x (18)

where ® denotes Hadamard product.

The complexity for computing the objective function (17) is O(n?) and for
computing the gradient (18) is also O(n?). For finding the approximate mini-
mizer x; at line 2 of the Algorithm 2, we use LBFGS [27] belonging to the family
of quasi-Newton’s methods. There are two main benefits with LBFGS. Firstly,
the approximated Hessian matrix does not need to be explicitly computed when
computing the search direction. By using two-loop recursion [27], the complexity
for computing the search direction is only O(n). Hence the computational com-
plexity of LBFGS is O(t1n?), where t; is number of iterations of LBFGS. Hence,
the computational complexity of Algorithm 2 is O(tt1n?). In our empirical ex-
periments, t,t; < n, e.g., the Algorithm 2 converges for ¢; < 50 and ¢t < 10.
Secondly, because the Hessian matrix does not need to be explicitly computed,
the memory complexity of LBFGS is only O(n). Table 1 summarizes the mem-
ory and the computational complexity of SDR and AL approaches. We can see
that AL approach advances SDR. approach on both memory and computational
complexity. However, the performance of AL is slightly lower than SDR. We
provide detail analysis on their performance in the experimental section.

Initialization in Augmented Lagrangian The Algorithm 2 needs the initial-
ization for x and A. A good initialization not only makes the algorithm robust
but also leads to fast convergence.

The initialization of x is first done by spectral relaxation, resulting the con-
tinuous solution. The continuous solution is then binarized, resulting binary

Binary Hashing with Semidefinite Relaxation and Augmented Lagrangian 9

solution. Specifically, we first solve (5) by using spectral relaxation, i.e.,

min x! Ax (19)

llx[|*=n

The closed-form solution of (19) is x = +/nu,, where u, is the eigenvector
corresponding to the smallest eigenvalue of A. We then optimally binarize from
the first element to the last element of x. When solving the binarizing for i*"
element of x, we fix all remaining elements (elements 1 to i —1 are already binary

and elements i+ 1 to n are still continuous) and solve the following optimization

min x’ Ax (20)
xie{—l,l}

By expanding and removing constant terms, (20) is equivalent to

. _T—
FURLE g
where X is vector x excluding z;; a; is i*" column of A excluding i*" element.
It is easy to see that the optimal solution of (21) is z; = —sgn(x7a;). After
solving the binarizing for all elements of x, the resulted binary vector is used as
initialization, i.e. x§, in the Algorithm 2.
After getting x§, given po, we compute the corresponding Ay by using the
optimality condition for unconstrained minimization (17), i.e., V,£ = 0. By
assigning (18) to zeros and using the fact that ¢(x§) equals to zeros, we have

Ao = (Ax}) /%3 (22)
where ./ operator denotes element-wise division.

2.4 Relationship to existing methods

In [15,16], the authors use two-step hashing approach for supervised hashing
while our formulations are for both supervised and unsupervised hashing. In [15],
when solving for row k of Z, i.e., z(*), the authors also form the problem as a
binary quadratic problem. To handle this NP-hard problem, the authors relax
the binary constraint z*) € {—1,1}" to z*) € [~1,1]". The relaxed problem
is then solved by bound-constrained L-BFGS method [28]. In [16], in stead of
solving for whole row k of Z at a time as [15], the authors first split z(*) into
several blocks. The optimization is done for each block while keeping other blocks
fixed. When solving one block, they consider the problem as a graph partition
problem and use GraphCut algorithm [29] for finding a local optimum.

Our proposed methods differ from[15, 16] in solving BQP. With Augmented
Lagrangian (AL) approach, we consider the original constraint, without relax-
ing the variables to continuous domain. With Semidefinite Relaxation (SDR)
approach, in spite of removing the rank one constraint, we theoretically show
that the objective value of the binary solution achieved by applying randomized
rounding on SDR solution is well bounded. Note that in [15,16], the bounding
on the objective function of their binary solution is not investigated.

10 Thanh-Toan Do, Anh-Dzung Doan, Duc-Thanh Nguyen, Ngai-Man Cheung

The very recent work [11] relies on two-step hashing for unsupervised hashing.
The authors introduce two approaches for inferencing binary codes which try to
preserve the original distance between samples. In their work, by considering the
binary constraint on Z as Z € {0,1}%*" the Hamming distance matrix D is
computed as D = ZTET + EZ — 2Z7Z, where E is a matrix of all 1s. In the
first approach, the authors use augmented Lagrangian for solving the following
optimization

min [|S — Y|?
ZY
st. Y =Z"ET + EZ - 22"Z; Z € [0,1]"*" (23)

where S is original distance similarity matrix; Y is an auxiliary variable.
In the second approach, the authors form the learning of binary code Z as a
non-negative matrix factorization with additional constraints as follows
in ||S, - MHZ,||”
ém% IS ol

v

st. H=1® (1—12,); Z, € [0,1]*" (24)

where S, and Z, are vector forms of S and Z, respectively; M is a constant
binary matrix; I is identity matrix; ® is Kronecker product [11].

The differences between our AL, SDR approaches and two above approaches
of [11] are quite clear. We use the coordinate descent, i.e., solving one row of
Z at a time while the optimization in [11] is on the space of Z. This may limit
their approaches when the size of Z increases (i.e., when increasing the code
length L and the number of training samples n). In both their approaches, to
handle the difficulty of binary constraint, they solve the relaxed problem, i.e.,
relaxing the constraint Z € {0,1}£*" to Z € [0,1]L*". On the other hand, our
AL approach solves the constraint strictly; with SDR approach, although we re-
move the rank one constraint, we prove that the resulted objective value is well
bounded. Furthermore, in their first approach [11], the Lagrangian function only
considers the first constraint of (23), i.e., in their work, the second constraint
Z € [0,1]¥*" is not considered when finding the minimizer of the augmented La-
grangian function. After solving for the minimizer of the augmented Lagrangian
function, the resulted solution is projected onto the feasible set Z € [0, 1]Z*™.
Contrary to their approach, in our augmented Lagrangian function (17), the
binary constraint is directly incorporated and encoded as @(x), and is solved
during the optimization.

3 Experiments

In this section we first evaluate and compare binary inference methods. We then
evaluate and compare our hashing framework, i.e. using the inferred binary codes
for learning hash functions, to the state of the art.

3.1 Dataset, implementation note, and evaluation protocol

Dataset CIFAR10 [30] dataset consists of 60,000 images of 10 classes. The
training set (also used as database for retrieval) contains 50,000 images. The

Binary Hashing with Semidefinite Relaxation and Augmented Lagrangian 11

3 ‘ —¥—Our-SDR i —¥—Our-SDR 40, ; —¥—Our-SDR
—e—Our-AL o1 —e—Our-AL —e—QOur-AL
34! —+NOPT[15] — NOPT[15] 35 —NOPT[15]
‘ Graphcut[16] Graphcut[16] Graphcut[16]
32 90 3
16 e 32 8 16 24 32 8 16 REZ
number bits (L) number bits (L) number bits (L)
(a) CIFAR10 (b) MNIST (c) SUN397

Fig. 1. mAP comparison of different binary inference methods.

Table 2. Precision at Hamming distance r = 2 of different binary inference methods
on CIFAR10, MNIST, SUN397.

CIFARI10 MNIST SUN397

L 8 16 | 24 | 32 8 16 | 24 | 32 8 16 | 24 | 32
Our-SDR 30.57|46.61|48.22|48.43|86.33|93.86|94.26|94.56|12.11|59.19|62.98|61.78
Our-AL 30.07(46.33(47.95|48.02(85.96(93.49(|94.09(94.36/12.03|57.20{63.14(61.45
NOPT[15] |29.09]45.69(47.41|47.66|81.14|93.41|93.88]93.84(10.08|55.70|60.28|59.30
Graphcut[16]|28.50(44.64(47.31|47.35(80.33|93.31(93.67|93.98|10.70|57.02|61.92|58.36

query set contains 10,000 images. Each image is represented by 320-D GIST
feature [31].

MNIST [32] dataset consists of 70,000 handwritten digit images of 10 classes.
The training set (also used as database for retrieval) contains 60,000 images. The
query set contains 10,000 images. Each image is represented by a 784-D gray-
scale feature vector by using its intensity.

SUN397 [33] contains about 108K images from 397 scene categories. We use
a subset of this dataset including 42 categories with each containing more than
500 images (with total about 35K images). The query set contains 4,200 images
(100 images per class) randomly sampled from the dataset. The rest images are
used as database for retrieval. Each image is represented by a 4096-D CNN
feature produced by AlexNet [34].

For CIFAR10 and MNIST, we randomly select 500 training samples from each
class and use them for learning, i.e., using their descriptors or their labels for
computing similarity matrix in unsupervised or supervised hashing. For SUN397,
we randomly select 120 training samples from each class for learning.

Implementation note After the binary code inference step with SDR/AL, the
hash functions are defined by SVM with RBF kernel. The max iteration number
max_iter in Algorithm 1 is empirically set to 3. For Augmented Lagrangian
approach, its parameter in Algorithm 2 are empirically set by cross validation
as follows: T = 10; po = 0.1; o = 10; € = 1076.

Evaluation protocol The ground truths of queries are defined by the class
labels from the datasets. We use the following evaluation metrics which have
been used in the state of the art [8,35,14,15] to measure the performance of

12 Thanh-Toan Do, Anh-Dzung Doan, Duc-Thanh Nguyen, Ngai-Man Cheung

methods. 1) mean Average Precision (mAP); 2) precision of Hamming radius
2 (precision@2) which measures precision on retrieved images having Hamming
distance to query < 2 (if no images satisfy, we report zero precision).

3.2 Comparison between binary inference methods

We compare our proposed methods to other binary inference methods includ-
ing nonlinear optimization (NOPT) approach (i.e. using bound-constrained L-
BFGS) in [15], Graphcut approach in [16]. For compared methods, we use the
implementations and the suggested parameters provided by the authors. Because
the implementation of Augmented Lagrangian Method (ALM) and Nonnegative
Matrix Factorization (NMF) in [11] is not available, it is unable to compare the
binary inference with those approaches.

The proposed AL, SDR, and the compared methods require an initialization
for binary code matrix Z. In our work, this is the initialization at line 1 of the
Algorithm 1. To make a fair comparison, we use the same initialization, i.e. the
one is proposed in [11], for all methods. We first use PCA to project the training
matrix X from D to L dimensions. The projected data is then mean-thresholded,
resulted binary values. After the binary code inference step, the SVM with RBF
kernel is used as hash functions for all compared methods.

Fig. 1 and Table 2 present the mAP and the precision of Hamming radius
r = 2 (precision@2) of methods. In term of mAP, the proposed AL and SDR
consistently outperform NOPT[15] and Graphcut[16] at all code lengths. The
improvement is more clear on CIFAR10 and SUN397. In term of precision@2,
the proposed AL and SDR also outperform NOPT[15] and Graphcut[16]. The
improvement is more clear at low code length, i.e., L. = 8. The improvement
of AL and SDR over NOPT]15] and Graphcut[16] means that the binary codes
achieved by proposed methods are better than those achieved by NOPT[15] and
Graphcut[16].

In comparison AL and SDR, Fig. 1 and Table 2 show SDR approach slightly
outperforms AL approach. However, as analyzed in sections 2.2 and 2.3, AL ap-
proach advances SDR approach in both memory and computational complexity.

3.3 Comparison with the state of the art

We evaluate and compare the proposed SDR and AL to state-of-the-art super-
vised hashing methods including Binary Reconstructive Embedding (BRE) [13],
ITQ-CCA [8], KSH [14], Two-Step Hashing (T'SH) [15], FashHash [16] and un-
supervised hashing methods including ITQ [8], Binary Autoencoder (BA) [35],
Spherical Hashing (SPH) [10], K-means Hashing (KMH) [9]. For all compared
methods, we use the implementations and the suggested parameters provided by
the authors.

Supervised hashing results The mAP and precision@2 obtained by super-
vised hashing methods with varying code lengths are shown in Fig. 2 and Table 3,
respectively. The most competitive method to AL and SDR is TSH [15]. On CI-
FAR10 and MNIST datasets, the proposed AL and SDR slightly outperform
TSH while outperforming the remaining methods a fair margin. On SUN397
dataset, AL and SDR significantly outperform all compared methods.

Binary Hashing with Semidefinite Relaxation and Augmented Lagrangian 13

4, 95 e 60
40 o0f
85 . 50
3
80 ¢ :
o ¥ o 7 Q ¢
< 28 < 70 < ;
E € s € 5
—¥— Our-SDR - FastHash —=— ITQ-CCA
20l —e— Our-AL —#— KSH 60
——TSH BRE 55 ‘ ~ 20[
16} 50

1 ‘ 45 1G‘
8 16 24 16 . 24 32 8 16) 24
number bits (L) number bits (L) number bits (L)

(a) CIFAR10 (b) MNIST (c) SUN397

Fig. 2. mAP comparison with state-of-the-art supervised hashing methods.

Table 3. Precision at Hamming distance r = 2 comparison with state-of-the-art su-
pervised hashing methods on CIFAR10, MNIST, and SUN397.

CIFAR10 MNIST SUN397

L 8 16 | 24 | 32 8 16 | 24 | 32 8 16 | 24 | 32
Our-SDR 30.57|46.61(48.22|48.43|86.33]93.86|94.26|94.56{12.11|59.19|62.98|61.78
Our-AL 30.07|46.33|47.95(48.02(85.96(93.49(94.09(94.36(12.03(57.20(63.14(61.45
TSHI[15] 29.09(45.69(47.41|47.66(81.14]93.41|93.88(93.84(10.08|55.70{60.28|59.30
FastHash[16](22.85|40.81|42.25|32.49(66.22|92.14]92.79(91.41| 8.91 |46.84(51.84|39.40
KSH[14] 24.26|37.26/40.95(36.52(54.29(86.94(89.31(88.33(11.79(39.41|51.28|46.48
BRE[13] 16.19|22.74|28.87(18.41(36.67|70.59|81.45|82.83| 9.62 |27.93|39.42|30.39
ITQ-CCA[8] [22.66|35.36|38.39|39.13|53.46(79.70(82.98|83.43|11.67|36.35|49.19|46.81

18

—v— Our-SDR—<¢— ITQ —=— SPH
—e— Our-AL BA KMH

16 24 32 8 16 . 24 32 8 16) 24
number bits (L) number bits (L) number bits (L)

(a) CIFAR10 (b) MNIST (c) SUN397

1
8

Fig. 3. mAP comparison with state-of-the-art unsupervised hashing methods.

Table 4. Precision at Hamming distance » = 2 comparison with state-of-the-art un-
supervised hashing methods on CIFAR10, MNIST, and SUN397.

CIFARI10 MNIST SUN397

L 8 16 | 24 | 32 8 16 | 24 | 32 8 16 | 24 | 32
Our-SDR|17.19(22.82(27.40(25.87|43.08|73.72(81.34(82.17|12.17|32.15|44.28|45.38
Our-AL [17.34|23.23|27.26|25.21]42.09|74.36|81.50(82.29(11.99|33.34|44.13|45.60
ITQ[8] |15.55(22.49|26.69|15.36|33.40(69.96(81.36|74.70| 9.75 |30.80{42.07|34.70
BA[35] |15.62(22.65|26.55|11.42|32.62(69.03|79.11(74.00/10.15|31.61|42.52|31.97
SPH[10] [14.66(20.32|24.67|12.32|20.77|51.74|72.20(63.38| 6.38 |20.66|30.10({19.97
KMH[9] [15.11(22.57|27.25|10.36|32.45|64.42|79.97|65.79| 9.88 |31.04|43.67|28.85

14 Thanh-Toan Do, Anh-Dzung Doan, Duc-Thanh Nguyen, Ngai-Man Cheung

Table 5. Classification accuracy on CIFAR-10 and MNIST. The results of NMF and
ALM are cited from the corresponding paper [11].

CIFAR10 MNIST

L 8 16 32 8 16 32
Our-SDR|21.17 24.90 29.65|60.68 73.27 81.24
Our-AL |21.00 24.75 28.84|59.96 72.67 81.13
NMF[11] [19.77 22.78 23.59 | 49.84 69.65 73.41
ALM[11] [19.41 22.63 24.27 | 54.55 69.46 73.76

Unsupervised hashing results The mAP and precision@2 obtained by un-
supervised hashing methods with varying code lengths are shown in Fig. 3 and
Table 4, respectively. In term of mAP, Fig. 3 clearly shows that the proposed
AL and SDR significantly outperform all compared methods. In term of preci-
sion@2, AL and SDR are comparable (e.g., L = 16,24 on CIFAR10) or outper-
form compared methods. The improvements are more clear at high code length,
i.e. L = 32, on all datasets. In comparison SDR and AL in unsupervised setting,
two methods achieve very competitive results.

Comparison with Augmented Lagrangian Method (ALM) [11] and Nonnegative
Matriz Factorization (NMF) [11] : As the implementation of ALM [11] and
NMEF [11] is not available, we set up the experiments on CIFAR10 and MNIST
similar to [11] to make a fair comparison. For each dataset, we randomly sample
2,000 images, 200 per class, as training set. Follow [11], for CIFAR10, each image
is represented by 625-D HOG descriptors [36]. The hash functions are defined as
linear SVM. Similar to [11], we report the classification accuracy by using k-NN
(k = 4) classifier at varying code lengths. The comparative results, presented in
Table 5, clearly show that the proposed AL and SDR outperform ALM [11] and
NMEF [11] on both datasets. Although both our AL and ALM [11] use augmented
Lagrangian approach, the improvement of our AL over ALM [11] confirms the
benefit of the integration of binary constraint in the augmented Lagrangian
function also the effectiveness of the proposed initialization.

4 Conclusion

This paper proposes effective solutions to binary code inference step in two-step
hashing where the goal is to preserve the original similarity matrix via Hamming
distance in Hamming space. We cast the learning of one bit code as the binary
quadratic problem. We propose two approaches: Semidefinite Relaxation (SDR)
and Augmented Lagrangian (AL) for solving. Extensive experiments show that
both AL and SDR approaches compare favorably with the state of the art.

References

1. Grauman, K., Fergus, R.: Learning binary hash codes for large-scale image search.
Machine Learning for Computer Vision (2013)

2. Wang, J., Shen, H.T., Song, J., Ji, J.: Hashing for similarity search: A survey.
CoRR (2014)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

Binary Hashing with Semidefinite Relaxation and Augmented Lagrangian 15

Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: VLDB. (1999)

Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image
search. In: ICCV. (2009)

Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant
kernels. In: NIPS. (2009)

Kulis, B., Jain, P., Grauman, K.: Fast similarity search for learned metrics. PAMI
(2009) 2143-2157

Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS. (2008)

Gong, Y., Lazebnik, S.: Iterative quantization: A procrustean approach to learning
binary codes. In: CVPR. (2011)

He, K., Wen, F., Sun, J.: K-means hashing: An affinity-preserving quantization
method for learning binary compact codes. In: CVPR. (2013)

Heo, J.P., Lee, Y., He, J., Chang, S.F., Yoon, S.e.: Spherical hashing. In: CVPR.
(2012)

Mukherjee, L., Ravi, S.N., Ithapu, V.K., Holmes, T., Singh, V.: An NMF perspec-
tive on binary hashing. In: ICCV. (2015)

Norouzi, M., Fleet, D.J.: Minimal loss hashing for compact binary codes. In:
ICML. (2011)

Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings.
In: NIPS. (2009)

Liu, W., Wang, J., Ji, R., Jiang, Y.G., Chang, S.F.: Supervised hashing with
kernels. In: CVPR. (2012)

Lin, G., Shen, C., Suter, D., van den Hengel, A.: A general two-step approach to
learning-based hashing. In: ICCV. (2013)

Lin, G., Shen, C., Shi, Q., van den Hengel, A., Suter, D.: Fast supervised hashing
with decision trees for high-dimensional data. In: CVPR. (2014)

Keuchel, J., Schnorr, C., Schellewald, C., Cremers, D.: Binary partitioning, per-
ceptual grouping, and restoration with semidefinite programming. PAMI (2003)
1364-1379

Wang, P., Shen, C., van den Hengel, A.: Large-scale binary quadratic optimization
using semidefinite relaxation and applications. PAMI (2015)

Nocedal, J., Wright, S.J.: Numerical Optimization, Chapter 17. 2nd edn. World
Scientific (2006)

Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. (1996) 49-95
Luo, 7Z.Q., Ma, W.K., So, A.C., Ye, Y., Zhang, S.: Semidefinite relaxation of
quadratic optimization problems. IEEE Signal Processing Magazine (2010) 20-34
Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones. Optimization Methods and Software (1999) 625-653

Toh, K.C., Todd, M., Tiitiincii, R.H.: SDPT3 — a MATLAB software package for
semidefinite programming. Optimization Methods and Software (1999) 545-581
Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
(1995) 1115-1145

Nesterov, Y.: Semidefinite relaxation and nonconvex quadratic optimization. Op-
timization Methods and Software (1998) 141-160

Ben-Tal, A., Nemirovskiaei, A.S.: Lectures on Modern Convex Optimization: Anal-
ysis, Algorithms, and Engineering Applications, Chapter 3. Society for Industrial
and Applied Mathematics (2001)

Nocedal, J., Wright, S.J.: Numerical Optimization, Chapter 7. 2nd edn. World
Scientific (2006)

16

28.

29.

30.

31.

32.

33.

34.

35.

36.

Thanh-Toan Do, Anh-Dzung Doan, Duc-Thanh Nguyen, Ngai-Man Cheung

Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: fortran sub-
routines for large-scale bound-constrained optimization. ACM Trans. Math. Softw.
(1997) 550560

Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. PAMI (2001) 1222-1239

Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical
report, University of Toronto (2009)

Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation
of the spatial envelope. IJCV (2001) 145-175

Lecun, Y., Cortes, C.: The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/

Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: SUN database: Large-
scale scene recognition from abbey to zoo. In: CVPR. (2010)

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093 (2014)

Carreira-Perpinan, M.A., Raziperchikolaei, R.: Hashing with binary autoencoders.
In: CVPR. (2015)

Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR. (2005)

