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Abstract. In this paper we explore the scenario of learning to count
multiple instances of objects from images that have been dot-annotated
through crowdsourcing. Specifically, we work with a large and challeng-
ing image dataset of penguins in the wild, for which tens of thousands of
volunteer annotators have placed dots on instances of penguins in tens
of thousands of images. The dataset, introduced and released with this
paper, shows such a high-degree of object occlusion and scale variation
that individual object detection or simple counting-density estimation is
not able to estimate the bird counts reliably.

To address the challenging counting task, we augment and inter-
leave density estimation with foreground-background segmentation and
explicit local uncertainty estimation. The three tasks are solved jointly
by a new deep multi-task architecture. Using this multi-task learning,
we show that the spread between the annotators can provide hints
about local object scale and aid the foreground-background segmenta-
tion, which can then be used to set a better target density for learn-
ing density prediction. Considerable improvements in counting accuracy
over a single-task density estimation approach are observed in our exper-
iments.

1 Introduction

This paper is motivated by the need to address a challenging large-scale real-
world image-based counting problem that cannot be tackled well with exist-
ing approaches. This counting task arises in the course of ecological surveys
of Antarctic penguins, and the images are automatically collected by a set of
fixed cameras placed in Antarctica with the intention of monitoring the penguin
population of the continent. The visual understanding of the collected images
is compounded by many factors such as the variability of vantage points of
the cameras, large variation of penguin scales, adversarial weather conditions in
many images, high similarity of the appearance between the birds and some ele-
ments in the background (e.g. rocks), and extreme crowding and inter-occlusion
between penguins (Fig. 1).

The still ongoing annotation process of the dataset consists of a public web-
site [27], where non-professional volunteers annotate images by placing dots on
top of individual penguins; this is similar to citizen science annotators, who have
also been used as an alternative to paid annotators for vision datasets (e.g. [19]).
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The simplest form of annotation (dotting) was chosen to scale up the annotation
process as much as possible. Based on the large number of dot-annotated images,
our goal is to train a deep model that can solve the counting task through density
regression [4,6,8,16,25,26].

Compared to the training annotations used in previous works on density-
based counting, our crowd-sourced annotations show abundant errors and con-
tradictions between annotators. We therefore need to build models that can learn
in the presence of noisy labels. Perhaps, an even bigger challenge than annota-
tion noise, is the fact that dot annotations do not directly capture information
about the characteristic object scale, which varies wildly in the dataset (the
diameter of a penguin varies between ∼15 and ∼700 pixels). This is in contrast
to previous density estimation methods that also worked with (less noisy) dot
annotations but assumed that the object scale was either constant or could be
inferred from a given ground plane estimate.

To address the challenges discussed above, we propose a new approach for
learning to count that extends the previous approaches in several ways. Our
first extension over density-based methods is the incorporation of an explicit
foreground-background segmentation into the learning process. We found that
when using noisy dot annotations, it is much easier to train a deep network
for foreground-background segmentation than for density prediction. The key
insight is that once such a segmentation network is learned, the predicted fore-
ground masks can be used to form a better target density function for learning
the density prediction.

Also, the density estimates predicted for new images can be further combined
with the foreground segmentation, e.g. by setting the density in the background
regions to zero.

Our second extension is to take advantage of the availability of multiple
annotations in two ways. First, by exploiting the spatial variations across the
annotations, we obtain cues towards the scale of the objects. Second, by exploit-
ing also their counting variability, we add explicit prediction of the annotation
difficulty into our model. Algorithmically, while it is possible to learn the net-
works for segmentation and density estimation in sequence, we perform joint
fine-tuning of the three components corresponding to object-density prediction,
foreground-background segmentation, and local uncertainty estimation, using a
deep multi-task network.

This new architecture enables us to tackle the very hard counting problem at
hand. Careful analysis suggests that the proposed model significantly improves in
counting accuracy over a baseline density-based counting approach, and obtains
comparable accuracy to the case when the depth information is available.

2 Background

Counting objects in crowded scenes. Parsing crowded scenes, such as the
common example of monitoring crowds in surveillance videos, is a challenging
task mainly due to the occlusion between instances in the crowd, which cannot be
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properly resolved by traditional binary object detectors. As a consequence, mod-
els emerged which cast the problem as one where image features were mapped
into a global object count [2,3,7], or local features mapped into pixel-wise object
densities [4,6,8,16,24,26] which can be integrated into the object count over any
image region. In either case, these approaches provided a way to obtain an object
count while avoiding detecting the individual instances. Moreover, if the density
map is good enough, it has been shown that it can be used to provide an esti-
mate for the localization of the object instances [1,11]. The task in this work
is in practice very similar to the pixel-wise object density estimation from local
features, and also executed using convolutions neural networks (CNN) similar to
[16,24,26]. However, aside from the main differences in the underlying statistical
annotation model, our model differs from previous density learning methods in
that we use a CNN architecture mainly designed for the segmentation task, in
which the segmentation mask is used to aid the regression of the density map.
Our experiments demonstrate the importance of such aid.

Learning from multiple annotators. The increasing amount of available
data has been a key factor in the recent rapid progress of the learning-based
computer vision. While the data collection can be easily automated, the bottle-
neck in terms of cost and effort mostly resides in the data annotation process.
Two complementary strategies help the community to alleviate this problem: the
use of crowds for data annotation (e.g. through crowdsourcing platforms such
as Amazon Mechanical Turk); and the reduction in the level of difficulty of such
annotations (e.g. image-level annotations instead of bounding boxes). Indeed,
both solutions create in turn additional challenges for the learning models. For
example, crowdsourced annotations usually show abundant errors, which create
the necessity of building models that can learn in the presence of noisy labels.
Similarly, dealing with simpler annotations demands more complex models, such
as in learning to segment from image-level labels instead of pixel-level annota-
tions, where the model also needs to infer on its own the difference between the
object and the background. Nevertheless, regardless of the added complexity,
coping with simpler and/or noisy supervision while taking advantage of vast
amounts of data is a scalable approach.

Dealing with multiple annotators has been generally approached by mod-
elling different annotation variables with the objective of scoring and weighting
the influence of each of the annotators [12,22,23], and finding the ground-truth
label that is assumed to exist in the consensus of the annotators [10,14,21].
However, in cases such as the penguin dataset studied in this paper, most of
the annotations are performed by tens of thousands of different and mostly
anonymous users, each of which provides a very small set of annotations, thus
reducing the usefulness of modelling the reliabilities of individual annotators.
Moreover, ambiguous examples are extremely common in such crowded and
occluded scenes, which not only means that it is often not possible to agree
on a ground-truth, but also that the errors of the individual annotators, most
notably missing instances in the counting case, can be so high that a ground-
truth cannot be determined from the annotations alone as all of them are far
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from it. On the positive side, the variability between annotators is proportional
to the image difficulty, thus we chose to learn to predict directly the uncertainty
or agreement of the annotators, and not only the most likely instance count.
Therefore, we argue that providing a confidence band for the object count still
fulfils the objective of the counting task, taking advantage of the multiple annota-
tors. We note that this predictive uncertainty is different from the uncertainty in
the model parameters, but could also be determined from a learned architecture
similar to the one used in this work (e.g. [5]), but that is not used here. Instead,
the approach taken in this paper is more similar to [23] where uncertainty of the
annotator is directly used in the learning model, although it is determined by
the annotator recording their uncertainty in the annotation system, as opposed
to deriving it from the disagreement between annotators.

Learning from dot-annotations. Dot annotations are an easy way to label
images, but generally require additional cues in order to be used in learning
complex tasks. For example, [15] showed how to use dots in combination with
an objectness prior in order to learn segmentations from images that would
otherwise only have image-level labels. Dots have also been used in the context
of interactive segmentation [18,20] with cues such as background annotations,
which are easy to provide in an interactive context. The most common task in
which dot-annotations are used is that of counting [1,4,8,25], where they are
used in combination with direct information about the spatial extent of the
object in order to define object density maps that can be regressed. However,
in all of these cases the dots are introduced by a single annotator. We show
that when dot annotations are crowdsourced, and several annotators label each
image, the required spatial cues can be obtained from the point patterns, which
can then be used for object density estimation or segmentation.

3 The Penguin Dataset

The penguin dataset [13] is a product of an ongoing project for monitoring the
penguin population in Antarctica. The images are collected by a series of fixed
cameras in over 40 different sites, which collect images every hour. Examples can
be seen in Fig. 1. The data collection process has been running for over three
years, and has produced over 500 thousand images with resolutions between
1 MP and 6 MP. The image resolution in combination with the camera shots,
translate into penguin sizes ranging from under 15 pixels to over 700 pixels in
length.

Among the information that the zoologists wish to extract from these data, a
key piece is the trend in the size of the population of penguins on each site, which
can then be studied for correlation with different factors such as climate change.
Therefore, it is necessary to obtain the number of penguins present in each of
the frames. The goal of making this dataset available to the vision community is
to contribute to the development of a framework that can accurately parse this
continuous stream of images.
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Max Count: 35 Max Count: 38

Max Count: 28 Max Count: 130

Fig. 1. (Example images of the penguin dataset). The challenging penguin dataset
consistently shows heavy occlusion and complex background patterns that can be easily
mistaken with the penguins. Aside from the difficult image conditions, the dataset is
only annotated with dots. Regions of interest are provided for each site, shown in this
figure with red lines. We also show in the bottom right of each image the maximum
penguin count provided in the crowdsourced annotations. (Color figure online)

So far, the annotation process of the dataset has been carried out by human
volunteers in a citizen science website [27], where any person can enter to place
dots inside the penguins appearing in the image. Currently, the annotation tool
has received over 35 thousand different volunteers. Once an image has been
annotated by twenty volunteers, it is removed from the annotation site.

The distribution of annotation-based count around the ground-truth is far
from Gaussian normal. Instead, as the level of difficulty in the image regions
increases, the annotators proportionally under-count (i.e. false negatives are far
more frequent than false-positives). This becomes evident after experiencing the
annotation process. In general, it is much easier for a human to miss an instance
than to confuse it with something else. Furthermore, cluttered images (e.g. with
over 30 instances) make the annotators tired, making them less careful, and thus,
more prone to missing instances. This fact motivates the design of the learning
target described in Sect. 4, as well as the evaluation metrics discussed in Sect. 5.

Each of the sites in the penguin dataset has different properties, which result
in different levels of difficulty. For example, some cameras are placed to capture
very wide shots, where masses of penguins appear in very low effective resolution.
Other cameras are placed in such a way that the perspective creates constant
occlusion. Factors external to the cameras, such as the weather on site, also
represent difficulty factors that must be dealt with. In order to allow a more
detailed evaluation of this and future methods, we have split the different sites
into four categories according to their difficulty: lower-crowded, medium/lower-
crowded, medium/higher-crowded and higher-crowded. Additionally, a region
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Fig. 2. (Sketch of the training procedure in the multi-task network). The proposed
solution for the counting problem from crowdsourced dot-annotations consist of a con-
volutional network that predicts three output maps: segmentation s(p), object density
λ(p), and a map u(p) representing the agreement between the multiple annotators. The
labels for the three tasks are generated using the dot patterns introduced by the anno-
tators, as described in Sect. 4. Particularly, we note that the shape of the target label
used to regress the object density map is defined using the segmentation map s(p) as
detailed in the text. Using the segmentation map to generate more spatially accurate
labels for the density regression is a key element in out method. The segmentation, on
the other hand, can be learned from less accurate labels (i.e. the trimaps).

of interest is provided for each of the cameras which aims to discard far-away
regions.

4 Learning Model

Our aim here is to train a ConvNet to estimate the density function λ(p) on a
novel image. If the learning has been successful, integrating over any region of the
function λ(p) corresponding to an image I(p) will return the estimated number
of instances of the object in such regions. Also, the prediction of the agreement
map u(p) can be used in a novel image to estimate how much multiple annotators
would agree in the number of instances in any region of such image if they were
to annotate it – which is also an indication of the image/region difficulty, and
provides a type of confidence band for the values of λ(p).

As discussed in Sect. 2, regressing the object density function from dot-
annotations requires additional knowledge of the extent of each instance through-
out the entire image in order to define the target density. Therefore, when the
camera perspective significantly affects the relative size of the objects, it is nec-
essary to either have a depth map along with some additional cue of area covered
by the object, or bounding box annotations for each instance. In this paper we
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present an alternative approach to defining the target density map by using the
object (foreground) segmentation, as this can be an easier task to learn with less
supervision than the density regression. We present such an approach with and
without any depth information, preceded by an overview of the general learning
architecture.

Learning architecture. The learning architecture is a multi-task convolu-
tional neural network which aims to produce (i) a foreground/background
segmentation s(p), (ii) an object density function λ(p), and (iii) a prediction of
the agreement between the annotators u(p) as a measure of uncertainty. While
the usual motivation for the use of multi-task architectures is the improvement
in the generalization, here we additionally reuse the predicted segmentations to
change the objective for other branches as learning progresses.

The segmentation branch consists of a pixel-wise binary classification path
with a hinge loss. For the second task of regressing λ(p), where more precise
pixel-wise values are required, we use the segmentation mask s(p) from the first
task as a prior. That is, the target map for learning λ(p) is constructed from an
approximation λ̂(p) that is built using the class segmentation s(p). The density
target map is regressed with a root-mean-square loss. Finally, the same regression
loss function is used in the third and final branch of the CNN in order to predict
a map u(p) of agreement between the annotators, as described below.

Labels for learning. A fundamental aspect of this framework is the way the
labels are defined for the different learning tasks based on the multiple dot
annotations. The details will depend on the specific model used, described later
in Sects. 4.1 and 4.2, but we fist introduce the general aspects of them. Given a
set of dots D = d1, d2, . . . , dK , we define a trimap t(p) of ‘positive’, ‘negative’
and ‘ignore’ regions, which respectively are likely to correspond to regions mostly
contained inside instances of the object, regions corresponding to background,
and uncertain regions in between. Example trimaps are shown in Fig. 3.

Regression targets. A key aspect is defining the regression target for each task
as this in turn defines the pixel-wise loss. For the segmentation map target, the
positive and negative regions in the trimap are used to define the foreground
and background pixel labels, whereas the ignore regions do not contribute in
the computation of the pixel classification loss (i.e. the derivatives of the loss
in those spatial locations are set to zero for the backpropagation through the
CNN). As the network learns to regress this target, the predicted foreground
regions can extend beyond the positives of the trimap into the ignore regions to
better match the true foreground/background segmentation, as can be seen in
Fig. 2.

The density map target is obtained from the predicted segmentation and the
user annotations. First, connected components are obtained from the predicted
segmentation. Then, for each connected component, an integer score is assigned
as the maximum over the different annotators. We pick the maximum as a way
to counter-balance the consistent under-estimation of the count (e.g. as opposed
to the mean) as discussed in Sect. 3. The density target is defined for each pixel
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of the connected component by assigning it the integer score divided by the
component area (so that integrating the density target over the component area
gives the maximum annotation).

Finally, the uncertainty map target for annotator (dis)agreement consist of
the variance of the annotations within each of the connected component regions.
More principled ways of handling the annotation bias along with the uncertainty
are briefly discussed in Sect. 6 (applicable to crowdsourced dot-annotations in
general), but we initially settle for the more practical MAX and VAR approaches
described above.

Implementation details. The core of the CNN is the segmentation architec-
ture FCN8s presented in [9], which is initialized from the VGG-16 [17] classifi-
cation network, and adds skip and fusion layers for a finer prediction map which
can be evaluated at the scale of the input image.

We make extensive use of scaling-based data augmentation while training
the ConvNet by up-scaling each image to six different scales and taking random
crops of 700 × 700 pixels, our standard input size while training. This is done
with the intention of gaining the scale invariance required in the counting task
(i.e. the spatial region in the density map corresponding to a single penguin
should sum to one independently of its size in pixels).

We train for the three tasks in parallel and end-to-end. The overall weight
of the segmentation loss is set to be higher than the remaining two losses as we
want this easier task to have more influence over the filters learned; we found
that this helps to avoid the divergence of the learning that could happen during
the iterations where the segmentation prior is far from local optima. At the start
of the training it is necessary to provide an initial target for the density map loss,
since the segmentation map s(p) is not yet defined. Again the trimap is used,
but more loosely here than in the segmentation target, with the union of the
positive and ignore maps used to define the connected components. The density
is then obtained by assigning annotations to the connected components in the
same manner as used during training. At the end of this initialization the density
target will generally spread beyond the objects since it includes the ignore region.
The initial trimap can be estimated in two different ways depending on whether
the rough estimate of depth information is available. We now discuss these two
cases.

4.1 Learning from Multiple Dot-Annotations and Depth
Information

We wish to use the dot-annotations provided by multiple annotators for an
image to generate a trimap t(p) for that image. The trimap will be used for the
intermediate learning step of a segmentation mask s(p).

Due to perspective effects the penguins further from the camera are smaller,
and this typically means that penguins become smaller moving from the bottom
to the top of the image for the camera placements used in our dataset. We
assume here that we have a depth map for the scene, together with an estimate
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Fig. 3. (Generation of the trimaps for the training labels). The left image shows an
example of penguin dataset annotations from which we generate the trimaps that are
used during training, as described in Sect. 4; the dots are color-coded according to
each annotator, and we only plot a small portion of the annotations to avoid further
cluttering. Our training labels are generated with the help of trimaps, which can be
obtained with and without the use of depth information by exploiting the multiple
annotations and the randomness in them. On the right, the trimap obtained in each
way is used to shade the input image in green, red and blue, corresponding to the
positive, ignore, and negative regions of the trimap. (Color figure online)

of the object class size (e.g. penguins are roughly of a similar real size), and thus
can predict the size of a penguin at any point in the image.

The trimap is then formed using a simple computation: first, a distance
transform is computed from all dot annotations, such that the value at any
pixel is the distance to the nearest dot annotation. Then the trimap positive,
negative and ignore regions are obtained by thresholding the distance transform
based on the predicted object size. For example, pixels that are further from a
dot annotation than three quarters of the object size are negative. An example
trimap with depth information is shown in Fig. 3(top).

4.2 Learning from Multiple Dot-Annotations Without Depth

In the case of not having an estimate for the varying size of the penguins in an
image, we need a depth-independent method for defining the trimap.

Learning from multiple crowdsourced dot annotations without a direct indi-
cation of the spatial extent of the instances can be enabled by leveraging the
variability in the annotators placement of dots. As one might expect, annotators
have different ideas of where to place dots when annotating, which along with
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the spatial randomness of the process, can provide a sufficient cue into the spa-
tial distribution of each instance. The more annotators are available, the better
the spatial cue can get.

We harness this spatial distribution by converting it into a density function
ρ(p), and then thresholding ρ(p) at two levels to obtain the positive, ignore
and negative regions of the trimap t(p). The density is simply computed by
placing a Gaussian kernel with bandwidth h at each provided dot annotation:
ρ(p) =

∑N
j=1

1
hK(p−dj

h ) where d1...dN is the set of provided points. We note that
this can be seen as a generalization of the approach for generating the target
density map used in previous counting work for the case of a single annotator
and a Gaussian kernel [1].

The only question remaining is how to determine the size of the Gaussian
kernel h. We rely on a simple heuristic to extract from the dot-patterns a cue for
the selection of h: annotations on a larger instance tend to be more distributed
than annotations on smaller objects. In fact, the relation between point pattern
distribution and object size is not a clear one as it is affected by other factors such
as occlusion, but it is sufficient for our definition. The estimation of h consists
of doing a rough reconciliation of the dot patterns from multiple annotators (to
determine which dots should be assigned to the same penguin), followed by the
computation of a single value of h that suits an entire image. The reconciliation
process is done by matching the dots between pairs of annotators using the
Hungarian algorithm, with a matching cost given by Euclidean distance. This
produces a distribution of distances between dots that are likely to belong to
the same instance. After combining all pairs of annotators, h is then taken to be
the median of this distribution of distances. An illustration of ρ(p) can be seen
in Fig. 3(bottom) using a Gaussian kernel, which we keep for our experiments of
Sect. 5.

Finally, the trimap t(p) is obtained from ρ(p) by thresholding as above. As
can be seen in Fig. 3(bottom), this approach has less information than using
depth and results in slightly worse trimaps (i.e. with more misplaced pixels),
which in our experiments translate to slower convergence of the learning.

5 Experiments

Metrics for counts from crowdsourced dot-annotations. As discussed in
Sect. 3, benchmarking on the penguin dataset is a challenging task due to the
lack of ground-truth. Moreover, it is a common case in the penguin dataset that
the true count, under any reasonable definition, might lie far from what the
annotators have indicated, and is generally an under-estimation. Therefore, we
propose to evaluate the performance on this dataset using metrics that not only
reflect the similarity of the automatic estimations w.r.t. what the annotators
introduced, but also the uncertainty in them; ultimately, both aspects are useful
information regarding the image.

Considering the under-counting bias of the annotators, we firstly propose to
compare with a region-wise max of the annotations. That is, we first define a
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Fig. 4. (Histogram of coincidence). The figure presents a 40-by-40 normalized his-
togram of counts accumulating the predicted values from the proposed methods, w.r.t.
median count of the annotators in the mixed-sites dataset split. Even though the ref-
erence is noisy, it is visible that the proposed methods using the segmentation-aided
count show a tighter agreement with the annotators. The two main failure modes of
the methods are visible in this plot, as detailed in Sect. 5. (Color figure online)

set of “positive” regions based on the dot-annotations, as done in the learning
label generation with depth information described in Sect. 4.1. Then, for each
connected component, we define the annotated density as one which integrates
to the maximum over what each of the annotators introduced. Different from
an image-wise maximum, the region-based evaluation approach allows for the
possibility of the annotations being complementary, thus reducing the overall
under-counting bias. Additionally, we present the annotated values using the
median instead of the maximum for comparison.

Penguin counting experiments. We now compare the two learning models
proposed in Sect. 4 with the human annotations in the task of counting, accord-
ing to the metrics described above. As a first attempt to propose a solution
applicable to the penguin dataset, we work in this paper with the lower-crowded
and medium/lower-crowded sites of the penguin dataset, which add up to ∼82k
images. We split these images into training and testing sets in two different
ways, which reflect two similarly valuable use-cases: the mixed-sites split, in
which images from the same camera can appear in both the training and testing
set, and the separated-sites split, in which images in each set strictly belong to
different cameras. In both cases, the size of the training and testing sets account
for ∼70 % and ∼30 % of the ∼82k images respectively.

To the best of our knowledge, this the first work to address the problem
of counting from crowdsourced dot-annotations, and the penguin dataset is the
first one suitable for this task, thus there is no method for direct comparison.
We expect this would change after the introduction of the penguin dataset. In
the meantime, we propose a simple baseline that extends the case of previous
counting work such as [1,4,8,25], where a single set of dot-annotations was avail-
able, along with an estimate of the object size. For this density-only baseline,
we generate a target density map for regression using a kernel density estimate
(similar to Sect. 4.2) but define the bandwidth of the kernel using the depth
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Fig. 5. (Example results on the penguin dataset). The segmentation-aided counting
methods proposed outputs a segmentation of the region along with the instance count
and an estimation of the annotators agreement given as range in the count. In these
examples both proposed methods generate similar outputs. The top row is a relatively
easy example, while the bottom row present severe occlusion in the very crowded area,
and thus, it is segmented as a single large region with a very wide uncertainty band.
The region of interest for this image, as annotated by the penguinologist collecting the
data, is shown with a red line. (Color figure online)

information instead of the heuristic of inter-dot distances. Then, the target map
is regressed directly without the help of the segmentation prediction.

The quantitative comparison between the approaches is shown in Table 1.
We observed that the proposed methods, mainly differing in the usage of an
auxiliary segmentation network, produce lower counting errors than the baseline
in our metrics and different data splits, while being very similar in performance
between them. The latter would indicate that the density prediction can be done
with similar results without requiring explicit object size information during
training. The quantitative difference in performance between methods can be
better detailed in Fig. 4. As Table 1 indicated, the performance of the proposed
methods is similar, both showing good agreement with the region-wise median
count of the annotators. Figure 4 also reveals two failure modes present in the
experiments. The first is reflected in the mass accumulated under the diagonal,
meaning that the examples contain a considerable number of instances that were
missed. This failure mode correspond to images containing instances smaller than
those the network is able to capture (e.g. penguins with a length of ∼15 pixels).
The second failure mode is one that mainly affects the density-only baseline
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Table 1. Comparison of counting experiments on the penguin dataset. We compare the
counting accuracy of the proposed counting methods and baseline against the count of
the annotators based on two single-value criteria described in Sect. 5: the mean counting
error w.r.t. the median (MCE-Median) and maximum (MCE-Max) of the annotations.
Results are shown for two splits of the dataset: mixed and separated sites, presented
as mixed/separated, and also described in Sect. 5. We observe that the segmentation-
aided counting methods fall closer to the reference than the density-only baseline in all
metrics, whereas the two segmentation-aided methods are comparable between them.

MCE-Median MCE-Max

Density-only baseline 7.09/5.01 9.81/8.11

With seg. and depth 3.42/3.99 5.74/6.38

With seg. and no depth 3.26/3.41 5.35/5.77

Table 2. Counting performance as a function of penguin density. We show a breakdown
of the results presented in Table 1 (MCE-Max metric) w.r.t. the density of penguins
in the images. As expected, the counting accuracy decreases with the increase in the
number of penguins in the images. Note, however, that the accuracy in the annotations
is affected in the same way, and thus, the comparison becomes less reliable for crowded
images. The two results shown in each cell correspond to the mixed- and separated-
sites splits of the dataset.

0 Pen 1–10 Pen 11–20 Pen 21–30 Pen 31–113 Pen

Density-only baseline 0.89/0.73 2.92/3.30 9.69/13.02 14.72/20.81 24.45/34.24

With seg. and depth 0.93/0.57 2.11/2.80 5.23/10.83 7.89/18.15 14.21/26.00

With seg. and no depth 1.41/0.46 2.17/2.68 4.81/10.20 7.12/16.56 12.54/23.24

network, and it is visible as the mass accumulated above the diagonal and near to
the y-axis. This mode corresponds to the cases where the network was not able to
differentiate between complex background (e.g. mostly rocks) and the penguins,
thus erroneously counting instances. We hypothesize that the discrimination
capacity brought by the segmentation loss helps the other networks to reduce or
suppress this effect.

To further examine the methods, we show in Table 2 a breakdown of their
errors as a function of the number of penguins in the testing images. One
expected observation is that the error for all methods grows with the penguin
density in the images. However, we must consider that the annotation error is
also greatly affected by such factor. It is also noticeable the influence of the
first failure mode discussed above. The density-only baseline is more sensitive
to this problem due to not having the discriminative power of the foreground-
background segmentation. Therefore, it has a less favourable trade-off between
error rates throughout the density spectrum than the methods relying on the
segmentation mask.

Figure 5 shows example qualitative results on the testing set for each of the
proposed methods. To generate these images, we simply threshold on the output
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of the segmentation map s(p), and then obtain the count on each connected
component by integrating the corresponding region over the density map λ(p).
Finally, we add the learned measure of annotator uncertainty u(p) as a bound for
the estimated count. Qualitatively, both methods obtain similar results regard-
less of their training differences. Further examples are available at [13].

Effect of the number of annotators. Finally, we examine how the perfor-
mance of the proposed counting method is affected by the number of annotators
in the training images. In the previous experiments we used all images that had
at least five annotators, with an average of 8.8. Instead, we now perform the
training with the same set of images but limiting the number of annotators to
different thresholds; the testing set is kept the same as before. The experiment
was done on the variant of our method that uses the site depth information
(with seg. and depth in Table 1), and taking three random subsets of the anno-
tators for each image. The results using the MCE-max metric were 7.12 ± 0.20,
6.37 ± 0.25 and 6.14 ± 0.29 when limiting the number of annotators to 1, 3 and
5 respectively. We recall that the MCE-max was 5.74 when using all the annota-
tors available. This experiment confirms an expected progressive improvement
in the counting accuracy as the number of annotators per image increases.

6 Discussion

We have presented an approach that is designed to address a very challenging
counting task on a new dataset with noisy annotations done by citizen scien-
tists. We augment and interleave density estimation with foreground-background
segmentation and explicit local uncertainty estimation. All three processes are
embedded into a single deep architecture and the three tasks are solved by joint
training. As a result, the counting problem (density estimation) benefits from the
robustness that the segmentation task has towards noisy annotation. Curiously,
we show that the spread between the annotators can in some circumstances help
image analysis by providing a hint about the local object scale.

While we achieve a good counting accuracy in our experiments, many chal-
lenges remain to be solved. In particular, better models are required for uncer-
tainty estimation and for crowdsourced dot-annotations. The current somewhat
unsatisfactory method (using MAX and VAR as targets in training) could be
replaced with a quantitative model of the uncertainty, e.g. using Generalized
Extreme Value distributions to model the crowdsourced dot-annotations, with
their consistent under-counting. Alternatively, dot-annotations could be mod-
elled more formally as a spatial point processes with a rate function λ(p). In
addition, a basic model of crowdsourced dot-annotations is required in order
to better disentangle errors related to the estimation model, from those errors
arising from the noisy annotations.
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4. Fiaschi, L., Nair, R., Köethe, U., Hamprecht, F.: Learning to count with regression
forest and structured labels. In: ICPR (2012)

5. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model
uncertainty in deep learning. arXiv preprint arXiv:1506.02142 (2015)

6. Idrees, H., Soomro, K., Shah, M.: Detecting humans in dense crowds using locally-
consistent scale prior and global occlusion reasoning. IEEE Trans. Pattern Anal.
Mach. Intell. 37, 1986–1998 (2015)

7. Kong, D., Gray, D., Tao, H.: A viewpoint invariant approach for crowd counting.
In: ICPR (2006)

8. Lempitsky, V., Zisserman, A.: Learning to count objects in images. In: NIPS (2010)
9. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic

segmentation. In: CVPR (2015)
10. Ma, F., Li, Y., Li, Q., Qiu, M., Gao, J., Zhi, S., Su, L., Zhao, B., Ji, H., Han,

J.: FaitCrowd: fine grained truth discovery for crowdsourced data aggregation. In:
Proceedings of the 21st ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM (2015)

11. Ma, Z., Yu, L., Chan, A.B.: Small instance detection by integer programming on
object density maps. In: CVPR (2015)

12. Ouyang, R.W., Kaplan, L.M., Toniolo, A., Srivastava, M., Norman, T.: Parallel and
streaming truth discovery in large-scale quantitative crowdsourcing. IEEE Trans.
Parallel Distrib. Syst. PP(99), 1 (2016)

13. Penguin research webpage. www.robots.ox.ac.uk/∼vgg/research/penguins
14. Raykar, V.C., Yu, S., Zhao, L.H., Valadez, G.H., Florin, C., Bogoni, L., Moy, L.:

Learning from crowds. J. Mach. Learn. Res. 11, 1297–1322 (2010)
15. Russakovsky, O., Bearman, A.L., Ferrari, V., Li, F.F.: What’s the point: semantic

segmentation with point supervision. arXiv preprint arXiv:1506.02106 (2015)
16. Shao, J., Kang, K., Loy, C.C., Wang, X.: Deeply learned attributes for crowded

scene understanding. In: CVPR (2015)
17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. In: International Conference on Learning Representations
(2015)

18. Straehle, C., Koethe, U., Hamprecht, F.A.: Weakly supervised learning of image
partitioning using decision trees with structured split criteria. In: ICCV (2013)

19. Van Horn, G., Branson, S., Farrell, R., Haber, S., Barry, J., Ipeirotis, P., Perona, P.,
Belongie, S.: Building a bird recognition app. and large scale dataset with citizen
scientists: the fine print in fine-grained dataset collection. In: CVPR (2015)

20. Wang, T., Han, B., Collomosse, J.: Touchcut: fast image and video segmentation
using single-touch interaction. Comput. Vis. Image Underst. 120, 14–30 (2014)

21. Welinder, P., Branson, S., Perona, P., Belongie, S.J.: The multidimensional wisdom
of crowds. In: NIPS (2010)

22. Whitehill, J., Wu, T.f., Bergsma, J., Movellan, J.R., Ruvolo, P.L.: Whose vote
should count more: Optimal integration of labels from labelers of unknown exper-
tise. In: NIPS (2009)

http://arxiv.org/abs/1506.02142
www.robots.ox.ac.uk/~vgg/research/penguins
http://arxiv.org/abs/1506.02106


498 C. Arteta et al.

23. Wolley, C., Quafafou, M.: Learning from multiple naive annotators. In: Zhou, S.,
Zhang, S., Karypis, G. (eds.) ADMA 2012. LNCS (LNAI), vol. 7713, pp. 173–185.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-35527-1 15

24. Xie, W., Noble, J.A., Zisserman, A.: Microscopy cell counting with fully convolu-
tional regression networks. In: MICCAI 1st Workshop on Deep Learning in Medical
Image Analysis (2015)

25. Xie, W., Noble, J.A., Zisserman, A.: Microscopy cell counting and detection with
fully convolutional regression networks. Comput. Methods Biomech. Biomed. Eng.
Imaging Visual. 1–10 (2016)

26. Zhang, C., Li, H., Wang, X., Yang, X.: Cross-scene crowd counting via deep con-
volutional neural networks. In: CVPR (2015)

27. Zooniverse. penguinwatch.org

http://dx.doi.org/10.1007/978-3-642-35527-1_15
http://penguinwatch.org

	Counting in the Wild
	1 Introduction
	2 Background
	3 The Penguin Dataset
	4 Learning Model
	4.1 Learning from Multiple Dot-Annotations and Depth Information
	4.2 Learning from Multiple Dot-Annotations Without Depth

	5 Experiments
	6 Discussion
	References


