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Abstract. Markov Random Fields (MRFs), a formulation widely used
in generative image modeling, have long been plagued by the lack of
expressive power. This issue is primarily due to the fact that conven-
tional MRF's formulations tend to use simplistic factors to capture local
patterns. In this paper, we move beyond such limitations, and propose a
novel MRF model that uses fully-connected neurons to express the com-
plex interactions among pixels. Through theoretical analysis, we reveal
an inherent connection between this model and recurrent neural net-
works, and thereon derive an approximated feed-forward network that
couples multiple RNNs along opposite directions. This formulation com-
bines the expressive power of deep neural networks and the cyclic depen-
dency structure of MRF in a unified model, bringing the modeling capa-
bility to a new level. The feed-forward approximation also allows it to
be efficiently learned from data. Experimental results on a variety of
low-level vision tasks show notable improvement over state-of-the-arts.
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1 Introduction

Generative image models play a crucial role in a variety of image processing and
computer vision tasks, such as denoising [1], super-resolution [2], inpainting [3],
and image-based rendering [4]. As repeatedly shown by previous work [5], the
success of image modeling, to a large extent, hinges on whether the model can
successfully capture the spatial relations among pixels.
Existing image models can be roughly categorized as global models and low-
level models. Global models [6-8] usually rely on compressed representations
to capture the global structures. Such models are typically used for describing
objects with regular structures, e.g. faces. For generic images, low-level models
are more popular. Thanks to their focus on local patterns instead of global
appearance, low-level models tend to generalize much better, especially when
there can be vast variations in the image content.
Over the past decades, Markov Random Fields (MRF's) have evolved into
one of the most popular models for low-level vision. Specifically, the clique-based
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Fig. 1. We present a new class of markov random field models whose potential functions
are expressed by powerful deep neural networks. We show applications of the model
on texture synthesis, image super-resolution and image synthesis.

structure makes them particularly well suited for capturing local relations among
pixels. Whereas MRF's as a generic mathematical framework are very flexible
and provide immense expressive power, the performance of many MRF-based
methods still leaves a lot to be desired when faced with challenging conditions.
This occurs due to the widespread use of simplistic potential functions that
largely restrict the expressive power of MRFs (Fig. 1).

In recent years, the rise of Deep Neural Networks (DNN) has profoundly
reshaped the landscape of many areas in computer vision. The success of DNNs
is primarily attributed to its unparalleled expressive power, particularly their
strong capability of modeling complex variations. However, DNNs in computer
vision are mostly formulated as end-to-end convolutional networks (CNN) for
classification or regression. The modeling of local interactions among pixels,
which is crucial for many low-level vision tasks, has not been sufficiently explored.

The respective strengths of MRFs and DNNs inspire us to explore a new
approach to low-level image modeling, that is, to bring the expressive power
of DNNs to an MRF formulation. Specifically, we propose a generative image
model comprised of a grid of hidden states, each corresponding to a pixel. These
latent states are connected to their neighbors — together they form an MRF.
Unlike in classical MRF formulations, we use fully connected layers to express
the relationship among these variables, thus substantially improving the model’s
ability to capture complex patterns.

Through theoretical analysis, we reveal an inherent connection between our
MRF formulation and the RNN [9], which opens an alternative way to MRF
formulation. However, they still differ fundamentally: the dependency structure
of an RNN is acyclic, while that of an MRF is cyclic. Consequently, the hidden
states cannot be inferred in a single feed-forward manner as in a RNN. This posts
a significant challenge — how can one derive the back-propagation procedure
without a well-defined forward function?
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Our strategy to tackle this difficulty is to unroll an iterative inference proce-
dure into a feed-forward function. This is motivated by the observation that while
the inference is iterative, each cycle of updates is still a feed-forward procedure.
Following a carefully devised scheduling policy, which we call the Coupled Acyclic
Passes (CAP), the inference can be unrolled into multiple RNNs operating along
opposite directions that are coupled together. In this way, local information can
be effectively propagated over the entire network, where each hidden state can
have a complete picture of its context from all directions.

The primary contribution of this work is a new generative model that unifies
MRFs and DNNs in a novel way, as well as a new learning strategy that makes
it possible to learn such a model using mainstream deep learning frameworks.
It is worth noting that the proposed method is generic and can be adapted to a
various problems. In this work, we test it on a variety of low-level vision tasks,
including texture synthesis, image super-resolution, and image synthesis.

2 Related Works

In this paper, we develop a generative image model that incorporates the expres-
sive power of deep neural networks with an MRF. This work is related to several
streams of research efforts, but moves beyond their respective limitations.

Generative image models. Generative image models generally fall into two
categories: parametric models and non-parametric models. Parametric models
typically use a compressed representation to capture an image’s global appear-
ance. In recent years, deep networks such as autoencoders [10] and adversarial
networks [11,12] have achieved substantial improvement in generating images
with regular structures such as faces or digits. Non-parametric models, including
pizel-based sampling [13-15] and patch-based sampling [16-18], instead rely on
a large set of exemplars to capture local patterns. Whereas these methods can
produce high quality images with local patterns directly sampled from realistic
images. Exhaustive search over a large exemplar set limits their scalability and
often leads to computational difficulties. Our work draws inspiration from both
lines of work. By using DNNs to express local interactions in an MRF, our model
can capture highly complex patterns while maintaining strong scalability.

Markov random fields. For decades, MRF's have been widely used for low-level
vision tasks, including texture synthesis [19], segmentation [20,21], denoising [1],
and super-resolution [2]. Classical MRF models in earlier work [22] use simple
hand-crafted potentials (e.g., Ising models [23], Gaussian MRFs [24]) to link
neighboring pixels. Later, more flexible models such as FRAME [25] and Fields
of Experts [26] were proposed, which allow the potential functions to be learned
from data. However, in these methods, the potential functions are usually para-
meterized as a set of linear filters, and therefore their expressive power remains
very limited.

Recurrent neural networks. Recurrent neural networks (RNNs), a special
family of deep models, use a chain of nonlinear units to capture sequential rela-
tions. In computer vision, RNNs are primarily used to model sequential changes
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Fig. 2. Graphical model of deep MRF's. Left: The hidden states and the pixels together
form an MRF. Right: Each hidden state connects to the neighboring states, the neigh-
boring pixels, and the pixel at the same location.

in videos [27], visual attention [28,29], and hand-written digit recognition [30].
Previous work explores multi-dimensional RNNs [31] for scene labeling [32] as
well as object detections [33]. The most related work is perhaps the use of 2D
RNNS for generating gray-scale textures [34] or color images [35]. A key distinc-
tion of these models from ours is that 2D RNNs rely on an acyclic graphs to
model spatial dependency, e.g. each pixel depends only on its left and upper
neighbors — this severely limits the spatial coherence. Our model, instead, allows
dependencies from all directions via iterative inference unrolling.

MRF and neural networks. Connections between both models have been
discussed long ago [36]. With the rise of deep learning, recent work on image
segmentation [37,38] uses mean field method to approximate a conditional ran-
dom field (CRF) with CNN layers. A hybrid model of CNN and MRF has also
been proposed for human pose estimation [39]. These works primarily target
prediction problems (e.g. segmentation) and are not as effective at capturing
complex pixel patterns in a purely generative way.

3 Deep Markov Random Field

The primary goal of this work is to develop a generative model for images that
can express complex local relationships among pixels while being tractable for
inference and learning. Formally, we consider an image, denoted by x, as an
undirected graph with a grid structure, as shown in Fig. 2 left. Each node u cor-
responds to a pixel x,,. To capture the interactions among pixels, we introduce,
hy, a hidden variable for each pixel denoting the hidden state corresponding to
the pixel z,. In the graph, each node u has a neighborhood, denoted by N,,.
Particularly, we use the 4-connected neighborhood of a 2D grid in this work.

Joint Distribution. We consider three kinds of dependencies: (1) the depen-
dency between a pixel z,, and its corresponding hidden state h,,, (2) the depen-
dency between a hidden state h, and a neighbor h, with v € A, and (3) the
dependency between a hidden state h, and a neighboring pixel z,. They are
respectively captured by factors ((zy, hy), ¢(ha, hy), and 9 (hy,, 2,). In addition,
we introduce a regularization factor A(h,) for each hidden state, which gives us
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the leeway to encourage certain distribution over the state values. Bringing these
factors together, we formulate an MRF to express the joint distribution:

p(x,h>:%H<<xu,hu> T (6 )i, 20)tb (B, ) T ABa). (1)

ueV (u,w)EE ueV

Here, V and F are respectively the set of vertices and that of the edges in the
image graph, Z is a normalizing constant. Figure 2 shows it structure.

Choices of Factors. Whereas the MRF provides a principled way to express
the dependency structure, the expressive power of the model still largely depends
on the specific forms of the factors that we choose. For example, the modeling
capacity of classical MRF models are limited by their simplistic factors.

Below, we discuss the factors that we choose for the proposed model. First,
the factor {(a, h,) determines how the pixel values are generated from the hid-
den states. Considering the stochastic nature of natural images, we formalize this
generative process as a Gaussian mizture model (GMM). The rationale behind
is that pixel values are on a low-dimensional space, where a GMM with a small
number of components can usually provide a good approximation to an empir-
ical distribution. Specifically, we fix the number of components to be K, and
consider the concatenation of component parameters as the linear transform of
the hidden state, hI Q = ((7¢, ¢, £¢))E |, where Q is a weight matrix of model
parameters. In this way, the factor {(z,, h,) can be written as

K

c=1

To capture the rich interactions among pixels and their neighbors, we formulate
the relational factors ¢(hy, h,) and ¥(h,,, x,) with fully connected forms:

¢(hys hy) = exp (RYWhy,), (g, x0) = exp (hLRz,) . (3)

Finally, to control the value distribution of the hidden states, we further incor-
porate a regularization term over h,,, as

A(ha) = exp (<17n(h)) = exp (=n(aD) = =n(hD)) . (4)

Here, 1 is an element-wise nonlinear function and d is the dimension of h,. In
summary, the use of GMM in ((xy, h,) effectively accounts for the variations
in pixel generation, the fully-connected factors ¢(h,,, h,) and ¥ (hy,x,) enable
the modeling of complex interactions among neighbors, while the regularization
term A(h,) provides a way to explicitly control the distribution of hidden states.
Together, they substantially increase the capacity of the MRF model.

Inference of Hidden States. With this MRF formulation, the posterior dis-
tribution of the hidden state h,,, conditioned on all other variables, is given by

P (hy | Ty, zn,, ha,) X C(@, hy)A(hy) - H O(hu, ho) Y (B, 20). (5)
vENy
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Here, h, depends on its neighboring states, the corresponding pixel values, as
well as that of its neighbors. Since the pixel z, and its neighboring pixels s,
are highly correlated, to simplify our later computations, we approximate the
posterior distribution as,

P (hu | 2w, b)) 2 p (B | 2, hv,) < ACR) T @k, ho)do(h, ). (6)
VEN,

We performed numerical simulations for this approximation. They are indeed
very close to each other, as illustrated in Fig. 3. Consequently, the MAP estimate
of h, can be approzximately computed from its neighbors. It turns out that this
optimization problem has an analytic solution given by,

Euza<z Whv—l—Racv). (7)

veNu

Here, o is an element-wise function that is related to n as 0~ 1(z) = 1/ (), where
1’ is the first-order derivative w.r.t. n, and o~ the inverse function of o.

Connections to RNNs. We observe that Eq. (7) has a form that is similar
to the feed-forward computations in Recurrent Neural Networks (RNN) [9]. In
this sense, we can view the feed-forward RNN as an MAP inference process for
MRF models. Particularly, given the RNN computations in the form of Eq. (7),
one can formulate an MRF as in Eq. (1), where regularization function 7 can be
derived from o according to the relation o=1(2) = 7/(2), as

h
n(h) = /b o Y (z)dz + C. (8)

Here, b is the minimum of the domain of h, which can be —oco, and C is an
arbitrary constant. This connection provides an alternative way to formulate an
MRF model. More importantly, in this way, RNN models that have been proven
to be successful can be readily transferred to an MRF formulation. Figure 3 shows
the regularization functions n(h) corresponding to popular activation functions
in RNNs, such as sigmoid and ReLU [40].

—  htrue distribution
—  h approximation

0.07
h approximation ReLU Regularizer Sigmoid Regularizer

Fig. 3. Left shows the numerical simulation of approximated inference for the hidden
variables. Right shows the ReLU, sigmoid activation function and their corresponding
regularizations for the hidden variables.
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4 Learning via Coupled Recurrent Networks

Except for special cases [41], inference and learning on MRFs is generally
intractable. Conventional estimation methods [8,42,43] either take overly long
time to train or tend to yield poor estimates, especially for models with a high-
dimensional parameter space. In this work, we consider an alternative approach
to MRF learning, which allows us to draw on deep learning techniques [44,45]
that have been proven to be highly effective [40].

Variational Learning Principle. Estimation of probabilistic models based on
the maximum likelihood principle is often intractable when the model contains
hidden variables. Expectation-mazimization [46] is one of the most widely used
ways to tackle this problem, which iteratively calculates the posterior distribu-
tion of h; (in E-steps) and then optimizes 8 (in M-steps) as

0= argmax — ZE hi|x;,0) 11og p(xi, h;(0)} . (9)

i=1

Here, 0 = {W,Q, R} is the model parameter, x; is the i-th image, and h; is the
corresponding hidden state. As exact computation of this posterior expectation
is intractable, we approximate it based on h;, the MAP estimate of h;, as below:

A 1 & - -
60 = argmax — Zlogp(xi|hi, 0), with h; £ f(x;,0). (10)
o N4

This is the learning objective of our model. Here, f is the function that approxi-
mately infers the latent state h; given an observed image x;. When the posterior
distribution p(h;|x;,0) is highly concentrated, which is often the case in vision
tasks, this is a good approximation. For an image x, log p(x\fl, 0) can be further
expanded as a sum of terms defined on individual pixels:

log p(x|h, 8) = ZlongMM zy|h) = Zlong N (2 |ps, X6, (11)

where p¢ = pu$ + X%(>°, hT)R. For our problem, this learning principle can be
interpreted in terms of encoding/decoding — the hidden states h = f(x, ) can
be understood as an representation that encodes the observed patterns in an
image x;, while log p(x\fl, 0) measures how well h explains the observations.

Coupled Acyclic Passes. In the proposed model, the dependencies among
neighbors are cyclic. Hence, the MAP estimate h = f (x,0) cannot be computed
in a single forward pass. Instead, Eq. (7) needs to be applied across the graph
in multiple iterations. Our strategy is to unroll this iterative inference proce-
dure into multiple feed-forward passes along opposite directions, such that these
passes together provide a complete context to each local estimate.
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Fig. 4. Coupled acyclic passes. We decouple an undirected cyclic graph into two
directed acyclic graphs with each one allowing feed-forward computation. Inference
is performed by alternately traversing the two acyclic graphs, while coupling their
information at each step.

Specifically, we decompose the underlying dependency graph G = (V| E),
which is undirected, into two acyclic directed graphs Gf = (V,Ef) and G =
(V, EY), as illustrated in Fig.4, such that each undirected edge {u,v} € E cor-
responds uniquely to an edge (u,v) € E/ and an opposite edge (v,u) € E°. Tt
can be proved that such a decomposition always exists and that for each node
u € V, the neighborhood N, can be expressed as N, = N7 (u) UN®(u), where
N7 (u) and N(u) are the set of parents of u respectively along G¥ and G?.

Given such a decomposition, we can derive an iterative computational pro-
cedure, where each cycle couples a forward pass that applies Eq. (7) along G/
and a backward pass' along G°. After the t-th cycle, the state h,, is updated to

hgﬁza( 3y (Whgt‘1)+ny)+ > (Wh£t>+Rwu)>- (12)
veN (u) veN? (u)

As states above, we have N, = N7 (u) UAN®(u). Therefore, over a cycle, the
updated state h, would incorporate information from all its neighbors. Note
that a given graph G can be decomposed in many different ways. In this work,
we specifically choose the one that forms the zigzag path. The advantage over a
simple raster line order is that zigzag path traverses all the nodes continuously,
so that it conserves spatial coherence by making dependence of each node to
all the previous nodes that have been visited before. The forward and backward
passes resulted from such decomposition are shown in Fig. 4.

This algorithm has two important properties: First, the acyclic decomposi-
tion allows feed-forward computation as in Eq. (7) to be applied. As a result, the
entire inference procedure can be viewed as a feed-forward network that couples
multiple RNNs operating along different directions. Therefore, it can be learned
in a way similar to other deep neural networks, using Stochastic Gradient Descent
(SGD). Second, the feedback mechanism embodied by the backward pass

! The word forward and backward here means the sequential order in the graph. They
are not feed-forward and back-propagation in the context of deep neural networks.
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facilitates the propagation of local information and thus the learning of long-
range dependencies.

Discussions with 2D-RNN. Previous work has explored two-dimensional
extensions of RNN [31], often referred to as 2D-RNN. Such extensions, how-
ever, are formulated upon an acyclic graph, and can be considered as a trimmed
down version of our algorithm. A major drawback of 2D-RNN is that it scans the
image in a raster line order and it is not able to provide a feedback path. There-
fore, the inference of each hidden state can only take into account 1/4 of the
context, and there is no way to recover from a poor inference. As we will show
in our experiments, this may cause undesirable effects. Whereas bidirectional
RNNs [47] may partly mitigate this problem, they decouple the hidden states
into multiple ones that are independent apriori, which would lead to consistency
issues. Recent work [48] also finds it difficult to use in generative modeling.

Implementation Details. For inference and learning, to make the computation
feasible, we just take one forward pass and one backward pass. Thus, each node
is only updated twice while being able to use the information from all possible
contexts. The training patch size varies from 15 to 25 depending on the specific
experiment. Overall, if we unroll the full inference procedure, our model? is more
than thousands of layers deep. We use rmsprop [45] for optimization and we don’t
use dropout for regularization, as we find it oscillates the training.

5 Experiments

In the following experiments, we test the proposed deep MRF on 3 scenarios for
modeling natural images. We first study its basic properties on texture synthesis,
and then we apply it on a prediction problem, image super-resolution. Finally, we
integrate global CNN models with local deep MRF for natural image synthesis.

5.1 Texture Synthesis

The task of texture synthesis is to synthesize new texture images that possess
similar patterns and statistical characteristics as a given texture sample. The
study of this problem originated from graphics [13,14]. The key to successful
texture reproduction, as we learned from previous work, is to effectively capture
the local patterns and variations. Therefore, this task is a perfect testbed to
assess a model’s capability of modeling visual patterns.

Our model works in a purely generative way. Given a sample texture, we train
the model on randomly extracted patches of size 25 x 25, which are larger than
most texels in natural images. We set K = 20, initialize x and h to zeros, and
train the model with back-propagation along the coupled acyclic graph. With
a trained model, we can generate textures by running the RNN to derive the
latent states and at the same time sampling the output pixels. As our model is
stationary, it can generate texture images of arbitrary sizes.

2 Code available at https://github.com/zhirongw /deep-mrf.
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Fig. 5. Texture synthesis results.

We work on two texture datasets, Brodatz [49] for grayscale images, and
VisTex [50] for color images. From the results shown in Fig.5, our synthesis
visually resembles to high resolution natural images, and the quality is close to
the non-parametric approach [13]. We also compare with the 2D-RNN [34]. As
we can see, the results obtained using 2D-RNN, which synthesizes based only
on the left and upper regions, exhibit undesirable effects and often evolve into
blacks in the bottom-right parts.

Two fundamental parameters control the behaviors of our texture model.
The training patch size decides the farthest spatial relationships that could be
learned from data. The number of gaussian mixtures control the dynamics of
the texture landscape. We analyze our model by changing the two parameters.
As shown in Fig. 6, bigger training patch size and bigger number of mixtures
consistently improves the results. For non-parametric approaches, bigger patch
size would dramatically bring up the computation cost. While for our model,
the inference time holds the same regardless of the patch size that the model
is trained on. Moreover, our parametric model is able to scale to large dataset
without bringing additional computations.

5.2 Image Super-Resolution

Image super-resolution is a task to produce a high resolution image given a single
low resolution one. Whereas previous MRF-based models [2,55] work reasonably,



Deep Markov Random Field for Image Modeling 305

_ training patch size

"

]

number of mixtures

Fig. 6. Texture synthesis by varying the patch size and the number of mixtures.

the quality of their products is inferior to the state-of-the-art models based on
deep learning [52,54]. With deep MRF, we wish to close the gap.

Unlike in texture synthesis, the generation of this task is driven by a low-
resolution image. To incorporate this information, we introduce additional con-
nections between the hidden states and corresponding pixels of the low-resolution
image, as shown in Fig.7. It is noteworthy that we just input a single pizel
(instead of a patch) at each site, and in this way, we can test whether the model
can propagate information across the spatial domain. As the task is determinis-
tic, we use a GMM with a single component and fix its variance. In the testing
stage, we output the mean of the Gaussian component at each location as the

Table 1. PSNR (dB) on Set5 dataset with upscale factor 2,3,4

Images 2X upscale 3X upscale 4X upscale

Bicubic | CNN | SE Ours | Bicubic | CNN | SE Ours | Bicubic | CNN | SE Ours
Baby 37.07 38.30 | 38.48 | 38.31 | 33.91 35.01 | 35.22 | 35.15 | 31.78 32.98 | 33.14 | 32.94
Bird 36.81 40.40 | 40.50 | 40.36 | 32.58 34.91 | 35.58 | 36.14 | 30.18 31.98 | 32.54 | 32.49
Butterfly | 27.43 32.20 | 31.86 | 32.74 | 24.04 27.58 | 26.86 | 29.09 | 22.10 25.07 | 24.09 | 25.78
Head 34.86 35.64 | 35.69 | 35.70 | 32.88 33.55 | 33.76 | 33.63 | 31.59 32.19 | 32.52 | 32.41
‘Women 32.14 34.94 | 35.33 | 34.84 | 28.56 30.92 | 31.36 | 31.69 | 26.46 28.21 | 28.92 | 28.97
Average | 33.66 36.34 | 36.37 | 36.38 | 31.92 32.30 | 32.56 | 33.14 | 28.42 30.09 | 30.24 | 30.52
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Fig. 7. Adapting deep MRFs to specific applications. Image super-resolution: the hid-
den state receives an additional connection from the low-resolution pixel. Image syn-
thesis: deep MRF renders the final image from a spatial feature map, which is jointly
learned by a variational auto-encoder.

Table 2. PSNR (dB) on various dataset with upscale factor 3

Dataset | Bicubic | A+ [51] | CNN [52] | SE [53] | CSCN [54] | Ours
Seth 30.39  |32.59 32.30 32.56 |33.10 33.14
Set14 27.54 29.13 29.00 29.16 |29.41 29.38
BSD100 | 27.22 28.18 28.20 28.20 |28.50 28.54

inferred high-resolution pixel. This approach is very generic — the model is not
specifically tuned for the task and no pre- and post-processing steps are needed.

We train our model on a widely used super-resolution dataset [56] which
contains 91 images, and test it on Set5, Set14, and BSD100 [57]. The training is
on patches of size 16 x 16 and rmsprop with momentum 0.95 is used. We use
PSNR for quantitative evaluation. Following previous work, we only consider the
luminance channel in the YCrCb color space. The two chrominance channels are
upsampled with bicubic interpolation.

As shown in Tables 1 and 2, our approach outperforms the CNN-based base-
line [52] and compares favorably with the state-of-the-art methods dedicated to
this task [53,54]. One possible explanation for the success is that our model not
only learns the mapping, but also learns the image statistics for high resolu-
tion images. The training procedure which unrolls the RNN into thousands of
steps that share parameters also reduces the risk of overfitting. The results also
demonstrate the particular strength of our model in handling large upscaling
factors and difficult images. Figure 8 shows several examples visually.

5.3 Natural Image Synthesis

Images can be roughly considered as a composition of textures with the guid-
ance of scene and object structures. In this task, we move beyond the synthesis
of homogeneous textures, and try to generate natural images with structural
guidance.

While our model excels in capturing spatial dependencies, learning weak
dependencies across the entire image is both computationally infeasible and
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analytically inefficient. Instead, we adopt a global model to capture the over-
all structure and use it to provide contextual guidance to MRF. Specifically,
we incorporate the variational auto-encoder (VAE) [10] for this purpose — VAE
generates feature maps at each location and our model uses that feature to ren-
der the final image (see Fig. 7). Such features may contain information of scene
layouts, objects, and texture categories.

We train the joint model end-to-end from scratch. During each iteration, the
VAE first encodes the image into a latent vector, then decodes it to a feature
map with the same size of the input image. We then connect this feature map
to the latent states of the deep MRF. The total loss is defined as the addition of
gaussian mixtures at image space and KL divergence at high-level VAE latent
space. For training, we randomly extracts patches from the feature map. The
gradients from the deep MRF back to the VAE thus only cover the patches being
extracted. During testing, VAE randomly samples from the latent space and
decodes it to generate the global feature maps. The output pixels are sampled
from the GMM with 10 mixtures along the coupled acyclic graph.

We work on the MSRC [58] and SUN database [59] and select some scene cat-
egories with rich natural textures, such as Mountains and Valleys. Each category
contains about a hundred images. As we will see, our approach generalizes much
better than the data-hungry CNN approaches. We train the model on images of
size 64 x 64 with a batch size of 4. For each image, we extract 16 patches of size
15 x 15 for training. Figure9 shows several images generated from our models,
in comparison with those obtained from the baselines, namely raw VAE [10] and
DCGAN [60]. The CNN architecture is shared for all methods described in the
DCGAN paper [60] to ensure fair comparison. We can see our model successfully
captures a variety of local patterns, such as water, clouds, wall and trees. The
global appearance also looks coherent, real and dynamic. The state-of-the-art
CNN based models, which focuses too much on global structures, often yield
sub-optimal local effects.

6 Conclusions

We present a new class of MRF model whose potential functions are expressed
by powerful fully-connected neurons. Through theoretical analysis, we draw close
connections between probabilistic deep MRFs and end-to-end RNNs. To tackle
the difficulty of inference in cyclic graphs, we derive a new framework that decou-
ples a cyclic graph with multiple coupled acyclic passes. Experimental results
show state-of-the-art results on a variety of low-level vision problems, which
demonstrate the strong capability of MRF's with expressive potential functions.
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