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Abstract. The aggregation of image statistics – the so-called pooling
step of image classification algorithms – as well as the construction of
part-based models, are two distinct and well-studied topics in the litera-
ture. The former aims at leveraging a whole set of local descriptors that
an image can contain (through spatial pyramids or Fisher vectors for
instance) while the latter argues that only a few of the regions an image
contains are actually useful for its classification. This paper bridges the
two worlds by proposing a new pooling framework based on the discovery
of useful parts involved in the pooling of local representations. The key
contribution lies in a model integrating a boosted non-linear part clas-
sifier as well as a parametric soft-max pooling component, both trained
jointly with the image classifier. The experimental validation shows that
the proposed model not only consistently surpasses standard pooling
approaches but also improves over state-of-the-art part-based models,
on several different and challenging classification tasks.

1 Introduction

This paper addresses the problem of image classification with Part-Based Models
(PBMs). Decomposing images into salient parts and aggregating them to form
discriminative representations is a central topic in the computer vision literature.
It is raising several important questions such as: How to find discriminative
features? How to detect them? How to organize them into a coherent model? How
to model the variation in the appearance and spatial organization? Even if works
such as the pictorial structure [1], the constellation model [2], object fragments
[3], the Deformable Part Model [4] or the Discriminative Modes Seeking approach
of [5] brought interesting contributions, as well as those in [6–8], the automatic
discovery and usage of discriminative parts for image classification remains a
difficult and open question.

Recent PBMs for image classification e.g., [5–9] rely on five key components:
(i) The generation of a large pool of candidate regions per image from (anno-
tated) training data; (ii) The mining of the most discriminative and representa-
tive regions from the pool of candidate parts; (iii) The learning of part classifiers
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using the mined parts; (iv) The definition of a part-based image model aggre-
gating (independently) the learnt parts across a pool of candidate parts per
image; (v) The learning of final image classifiers over part-based representations
of training images.

One key challenge in the 2nd and 3rd components of PBMs lies in the selec-
tion of discriminative regions and the learning of interdependent part classifiers.
For instance, one cannot learn the part classifiers before knowing discriminative
regions and vice-versa. Extensive work has been done to alleviate the problem
of identifying discriminative regions in a huge pool of candidate regions, e.g.,
[5,7,8].

Once the discriminative regions are discovered and subsequently part clas-
sifiers are trained, the 4th component in a PBM – i.e., the construction of the
image model based on the per image part presence – is basically obtained by
average or sum pooling of part classifier responses across the pool of candidate
regions in the image. The final classifiers are then learnt on top of this part-based
image representation. Although the aforementioned methods address one of the
key components of PBMs, i.e., mining discriminative regions by using some
heuristics to improve final classification, they fail to leverage the advantage of
jointly learning all the components together.

The joint learning approach of all components of PBMs is indeed particu-
larly appealing since the discriminative regions are explicitly optimized for the
targeted task. But intertwining all components makes the problem highly non-
convex and initialization critical. The recent works of Lobel et al. [10] and Parizi
et al. [9] showed that the joint learning of a PBM is possible. However, these
approaches suffer from several limitations. First, their intermediate part classi-
fiers are simple linear classifiers and the expression power of these part classifiers
is limited in capturing complex patterns in regions. Furthermore, they pool the
part classifier responses over candidate regions per image using max pooling
which is suboptimal [11]. Finally, as the objective function is non-convex they
rely on a strong initialization of the parts.

In the present work, we propose a novel framework, coined “Soft Pooling
of Learned Parts” (SPLeaP), to jointly optimize all the five components of the
proposed PBM. A first contribution is that we describe each part classifier as a
linear combination of weak non-linear classifiers, learned greedily and resulting
in a strong classifier which is non-linear. This greedy approach is inspired by
[12,13] wherein they use gradient descent for choosing linear combinations of
weak classifiers. The complexity of the part detector is increased along with
the construction of the image model. This classifier is eventually able to better
capture the complex patterns in regions. A second contribution is that we softly
aggregate the computed part classifier responses over all the candidate regions
per image. We introduce a parameter, referred as the “pooling parameter”, for
each part classifier independently inside the optimization process. The value of
this pooling parameter determines the softness level of the aggregation done over
all candidate regions, with higher softness levels approaching sum pooling and
lower softness levels resembling max pooling. This permits to leverage different
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pooling regimes for different part classifiers. It also offers an interesting way to
relax the assignment between regions and parts and lessens the need for strong
initialization of the parts. The outputs of all part classifiers are fed to the final
classifiers driven by the classifier loss objective.

The proposed PBM can be applied to various visual recognition problems,
such as the classification of objects, scenes or actions in still images. In addi-
tion, our approach is agnostic to the low-level description of image regions and
can easily benefit from the powerful features delivered by modern Convolutional
Neural Nets (CNNs). By relying on such representations, and outperforming
[14,15], the proposed approach can also be seen as a low-cost adaptation mech-
anism: pre-trained CNNs features are fed to a mid-to-high level model that is
trained for a new target task. To validate this adaptation scheme we use the
pre-trained CNNs of [15]. Note that this network is not fine-tuned on target
datasets.

We validated our method on three challenging datasets: Pascal-VOC-
2007 (object), MIT-Indoor-67 (scenes) and Willow (actions). We improve over
state-of-the-art PBMs on the three of them.

The rest of the paper is organized as follows. The next section presents a
review of the related works, followed by the presentation of the method in Sect. 3.
Section 4 describes the algorithm proposed to jointly optimize the parameters,
while Sect. 5 contains the experimental validation of our work.

2 Related Works

Most of the recent advances on image classification are concentrated on the
development of novel Convolutional Neural Networks (CNNs), motivated by
the excellent performance obtained by Krizhevsky et al. [16]. As CNNs require
huge amount of training data (e.g., ImageNet) and are expensive to train, some
authors such as Razavian et al. [17] showed that the descriptors produced by
CNNs pre-trained on a large dataset are generic enough to outperform many clas-
sification tasks on diverse small datasets, with reduced training cost. Oquaba et
al. [14] and Chatfield et al. [15] were the first to leverage the benefit of fine-tuning
the pre-trained CNNs to new datasets such as Pascal-VOC-2007 [18]. Oquab et
al. [14] reused the weights of initial layers of CNN pre-trained on ImageNetand
added two new adaptation layers. They trained these two new layers using
multi-scale overlapping regions from Pascal-VOC-2007 training images, using
the provided bounding box annotations. Chatfield et al. [15], on the other hand,
fine-tuned the whole network to new datasets, which involved intensive compu-
tations due to the large number of network parameters to be estimated. They
reported state-of-art performance on Pascal-VOC-2007 till date by fine-tuning
pre-trained CNN architecture.

In line with many other authors, [15,17] utilized the penultimate layer of
CNNs to obtain global descriptors of images. However, it has been observed
that computing and aggregating local descriptors on multiple regions described
by pre-trained CNNs provides an even better image representation and improves
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classification performance. Methods such as Gong et al. [19], Kulkarni et al.
[20] and Cimpoi et al. [21] relied on such aggregation using standard pooling
techniques, e.g., VLAD, Bag-of-Words and Fisher vectors respectively.

On the other hand, Part-Based Models (PBMs) proposed in the recent lit-
erature, e.g., [5–8], can be seen as more powerful aggregators compared to
[19,20,22]. PBMs attempt to select few relevant patterns or discriminative
regions and focus on them in the aggregation, making the image representation
more robust to occlusions or to frequent non-discriminative background regions.

PBMs differ in the way they discover discriminative parts and combine them
into a unique description of the image. The Deformable Part Model proposed by
Felzenszwalb et al. [4] solves the aforementioned problems by selecting discrimi-
native regions that have significant overlap with the bounding box location. The
association between regions and part is done through the estimation of latent
variables, i.e., the positions of the regions w.r.t. the position of the root part
of the model. Differently, Singh et al. [6] aimed at discovering a set of relevant
patches by considering the representative and frequent enough patches which are,
in addition, discriminative w.r.t. the rest of the visual world. The problem is for-
mulated as an unsupervised discriminative clustering problem on a huge dataset
of image patches, optimized by an iterative procedure alternating between clus-
tering and training discriminative classifiers. More recently, Juneja et al. [7] also
aimed at discovering distinctive parts for an object or scene class by first identi-
fying the likely discriminative regions by low-level segmentation cues, and then,
in a second time, learning part classifiers on top of these regions. The two steps
are alternated iteratively until a convergence criterion based on Entropy-Rank is
satisfied. Doersch et al. [5] used density based mean-shift algorithms to discover
discriminative regions. Starting from a weakly-labeled image collection, coherent
patch clusters that are maximally discriminative with respect to the labels are
produced, requiring a single pass through the data.

Contrasting with previous approaches, Li et al. [23] were among the first
to rely on CNN activations as region descriptors. Their approach discovers the
discriminative regions using association rule mining techniques, well-known in
the data mining community. Sicre et al. [24] also build on CNN-encoded regions,
introducing an algorithm that models image categories as collections of auto-
matically discovered distinctive parts. Parts are matched across images while
learning their visual model and are finally pooled to provide images signatures.

One common characteristic of the aforementioned approaches is that they
discover the discriminative parts first and then combine them into a model of
the classes to recognize. There is therefore no guaranty that the so-learned parts
are optimal for the classification task. Lobel et al. [10] showed that the joint
learning of part and category models was possible. More recently, Parizi et al.
[9] build on the same idea, using max pooling and l1/l2 regularization.

Variour authors have likewise studied learned soft-pooling mechanisms. Gul-
cehre et al. [25] investigate the effect of using generalized soft pooling as a non-
linear activation unit, bearing some similarity with the maxout non-linear unit
of [26]. In contrast, our method uses a generalized soft pooling strategy as a
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down sampling layer. Our method is close to that of Lee et al. [27], who use
linear interpolation of max and average pooling. Our approach, on the other
hand, uses a non-linear interpolation of these two extrema.

3 Proposed Approach

Our goal is to represent each category involved in the visual recognition problem
of interest as a collection of discriminative regions. These regions are automat-
ically identified using learned part classifiers, that will operate on a pool of
proposed fragments. A “part” classifier is meant to capture specific visual pat-
terns. As such it does not necessarily capture a strong, human understandable
semantic: it might respond highly on more than one region of the given image or,
conversely, embrace at once several identifiable parts of the object. On images
from “horse” class for instance, one part classifier might focus on the head of
the animal when another one turns out to capture a large portion of the horse
body.

Formally, we consider an image as a bag of R regions, each one equipped
with a descriptor xr ∈ R

D. The image is thus represented at first by the descrip-
tor collection X = {xr}R

r=1. The number of regions will be image-dependent in
general even if we assume it is not for notational convenience.

Based on training images spanning C images categories, P “part” classifiers
will be learned, each as a weighted sum of K base classifiers applied to a region’s
descriptor (K chosen by cross-validation). The score of the p-th part classifier
for a given descriptor x is defined as:

Hp(x;θp) =
K∑

k=1

ap
kσ(x�up

k + bp
k), (1)

where σ is the sigmoid function, ap
k is the weight of the k-th base classifier, up

k ∈
R

D and bp
k ∈ R are its parameters and θp = vec(ap

1:K ,up
1:K , bp

1:K) ∈ R
K(D+2)

is the vector of all the parameters that define the part classifier. This score is
aggregated over the pool of R regions a follows:

fp(X) =
R∑

r=1

πp
rHp(xr;θp), (2)

where normalized weights are defined as

πp
r ∝ exp

(
βpHp(xr;θp)

)
,

R∑

r=1

πp
r = 1, (3)

with βp a part-dependent “pooling” parameter. For large values of this parameter
the scores are max-pooled, while they are averaged for very small values.
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Given a set of part classifiers with parameter Θ = [θ1| · · · |θP ] and associated
pooling parameters β = [βp]Pp=1, the bag of R region descriptors X = {xr}r

attached to an input image is turned into a part-based description:

f(X;Θ,β) = [fp(X)]Pp=1. (4)

The multiclass classification problem at hand is cast on this representation.
Resorting to logistic regression, we aim at learning P -dimensional vectors, wc =
[wc

1 · · · wc
P ]� ∈ R

P , one per class, so that the class label y ∈ {1 · · · C} of an input
image X is predicted according to distribution

Pr(y = c|X;Θ,β,W ) =
exp

(
w�

c f(X;Θ, β)
)

∑C
d=1 exp

(
w�

d f(X;Θ, β)
) , (5)

where W = [w1| · · · |wC ]. For simplicity in notation, we have omitted the bias
term associated with each class. In practice, we append each of them to the
corresponding vectors wcs and entry one is appended to descriptor f(X;Θ, β).

Discriminative learning is conducted on annotated training dataset T =
{(Xn, yn)}N

n=1, with Xn = {xn
r }R

r=1 and yn ∈ {1, . . . , C}. Part-level and category-
level classifiers are jointly learned by minimizing a regularized multiclass cross
entropy loss:

min
Θ,β,W

−
N∑

n=1

C∑

c=1

[yn = c] ln Pr(c|Xn;Θ,β,W ) + μ‖Θ‖2F + δ‖W‖2F , (6)

where [.] is Iverson bracket. The two regularization weights μ and δ, the number
P of part classifiers and the number K of base learners in each part are set by
cross-validation. Learning is done by block-wise stochastic gradient descent, as
explained next into more details.

The multi-class loss in (6) being based on softmax (5), it requires that each
image in the training set is assigned to a single class. If this is not the case, one
can use instead a one-vs.-all binary classification approach, which can be easily
combined as well with the proposed PBM.

4 Optimization Specific Details

In this section we provide details on how the joint optimization problem (6) is
addressed. It aims at learning the final category-level classifiers (defined W ),
the part classifiers (defined by Θ) and the part-dependent pooling coefficients
in β. By conducting jointly these learnings, part classifiers are optimized for the
target recognition task. Additionally, learning part-specific parameter βp enables
to accommodate better the specifics of each part by adapting the softness of its
region pooling.

Algorithm 1 summarizes the different steps of the optimization. In Algo-
rithm1, we denote θ(k) the vector of parameters associated to k-th base classifiers
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in matrix Θ, that is θ(k) = vec(a1:P
k ,u1:P

k , b1:Pk ) and Ln = log Pr(yn|Xn;Θ,β,W )
the log-likelihood of n-th training pair (Xn, yn).

We perform E epochs of block-coordinate stochastic gradient descent. If part-
related parameters Θ and β were known and fixed, the optimization of image
classifiers W alone in the proposed algorithm would amount to the classic learn-
ing of logistic regressors on image descriptors f(X) defined in (4). The interleaved
learning of the P part-classifiers defined by Θ is more involved. It relies on a
stage-wise strategy whereby base classifiers are progressively incorporated. More
precisely, we start with a single weak classifier per part, randomly initialized
and optimized over the first S epochs. Past this first stage with training a single
weak classifier, each part-classifier is then allowed an additional weak classifier
per epoch. With initialization to zero of the parameters of this new learner, non-
zero gradients for these parameters is produced by training samples that were
previously misclassified. Note that at each epoch, only the last weak classifier is
updated for each part while previous ones are kept fixed.

We set all algorithm’s parameters (number P of parts, number K of weak
classifiers per part, number S of epochs with part classifiers based only on a single
weak learner, learning rates γW , γθ and γβ) through careful cross-validation.

Algorithm 1. SPLeaP Training: joint part-category classifier learning
1: procedure Learn(T)
2: parameters: P, K, μ, δ, S, γW , γθ, γβ

3: W ← 0
4: θ(1) ← rand()

5: θ(2:K) ← 0
6: β ← rand()

7: k ← 1
8: for e = 1 to E = K + S − 1 do
9: T ← RandomShuffle(T)

10: for n = 1 to N do
11: W ← (1 − γW )W + γW

∑
(Xn,yn)∈T ∇WLn

12: θ(k) ← (1 − γθ)θ(k) + γθ

∑
(Xn,yn)∈T ∇θ(k)Ln

13: β ← β + γβ

∑
(Xn,yn)∈T ∇βLn

14: end for
15: if e > S then
16: k ← k + 1
17: end if
18: end for
19: Return W, Θ, β
20: end procedure

5 Results

5.1 Experimental Settings

Datasets. We evaluate our proposed method using three well-known datasets
described below:
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Pascal-VOC-2007. The Pascal-VOC-2007 dataset [18] is an image classification
dataset consisting of 9963 images of 20 different visual object classes divided
into 5011 training images (of which 2510 are validation images) and 4952 testing
images. The images contain natural scenes and the visual object classes span a
wide range, including animals (e.g., dog, cat), vehicles (e.g., aeroplane, car) and
other manufactured objects (e.g., tv monitor, chair).

MIT Indoor 67. As opposed to objects, scenes are non-localized visual concepts
and might even be characterized by the presence or absence of several objects.
The MIT-Indoor-67[28] dataset is a scene recognition dataset consisting of 67
indoor scenes (e.g., nursery, movie theater, casino or meeting room) each rep-
resented by 80 training images and 20 test images. We use 20 randomly chosen
training images from each class as a validation set.

Willow Dataset. Recognizing human action in photos is a challenging task due
the absence of temporal information. Dedicated to this task, the Willow dataset
[29] consists of 7 action categories such as “play instrument”, “walk” or “ride
horse” spread across 490 training images (of which 210 are validation images)
and 421 test images.

Region Proposal Schemes. We explored three different strategies to extract
the pool of region proposals from each image:

Selective Search (SS). We use the selective search region proposal scheme of [30]
to extract between 100 and 5000 region proposals per image, with an average of
800, using Matlab code provided by [31].

Augmentation (aug). Following the data augmentation technique of [15], we
derive ten images from each input image by taking one center crop and four
corner crops from the original image and further mirroring each crop vertically.
The ten resulting modified image crops are used as region proposals.

Selective search+augmentation (SS+aug). We also explore merging the outputs
of the two previous strategies into a single pool of region proposals.

Region Feature Extraction. From each of the candidate regions obtained
using one of the above described region proposal methods, we extract one feature
vector consisting of the activation coefficients of the previous-to-last layer of
several state-of-the-art CNN architectures. The CNN architectures we consider,
available in CAFFE [32], are (i) the 128-dimensional feature extracted from the
13-layer architecture of [15] (VGG-128), (ii) the 16-layer architecture of [33]
producing 4096 dimensional features (VD-16) and (iii) the architecture of [34]
corresponding to Krizhevsky’s architecture [16] pre-trained using ImageNet (978
categories) and the Places database (HybridCNN).
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Cross-Validation of Hyper-parameters. We use Stochastic Gradient
Descent (SGD) to train our model. The performance of the model depends on
the value of the various hyper-parameters: the number of parts P and of weak
learners in each part classifier K, the regularization weights μ and δ in (6), the
number of epochs E and the various learning rates (see Algorithm1). For the
Pascal-VOC-2007 and Willow datasets, we use piecewise-constant learning rates
decreased every ten epochs empirically, similarly to the appraoch of [15]. For the
MIT-Indoor-67dataset, we use learning rates of the form γ(i) = γ0

1.0+λi , where
γ0 and λ are hyper parameters that are cross-validated.

We select the values of these hyper-parameters using cross-validation. After
the cross-validation phase, the hyper-parameters are set accordingly and the
training and validation data are merged to re-train our model.

5.2 Experimental Validation of the Contributions

We now establish experimentally the benefits of our main contributions: weakly
supervised parts learning, soft-max pooling with learned, per-part softness coef-
ficients, and part detectors based on weak learners. To this end, we use the
Pascal-VOC-2007 dataset along with the mean Average Precision (mAP) per-
formance measure specified by the dataset’s authors, using VGG-128 features to
represent all region proposals.

Comparison with Unsupervised Aggregation. In Table 1, we first verify
that the improvements of our method are not due to simply the region pro-
posal strategies we employ. We hence compare our supervised SPLeaPmethod
to three analogous baseline features not employing supervised learning. The first
baseline, denoted VGG-128-G, uses the global feature vector extracted from the
whole image. The second baseline, denoted VGG-128-sum, aggregates VGG-128
features extracted from each candidate region using average pooling, similarly
to an approach used in [35]. Both of these baselines result in 128-dimensional
feature vectors. In a third baseline, denoted VGG-128-K-means, we perform
K-means on all candidate regions from all images in the database to obtain
P = 40 centroids. Computing an image feature then consists of selecting the
image’s P � R candidate region whose features are closest to the P centroids
and concatenating them into a single vector of size 128P .

For each of the aforementioned feature construction methods, the resulting
image feature vectors are 	2-normalized and then used to learn linear SVMs
using a one-vs.-rest strategy.

The results in Table 1 establish that large performance gains (more than
8 mAP points) are obtained by proposed SPLeaPmethod relative to the differ-
ent baseline aggregation strategies, and hence the gain does not follow simply
from using our region proposal strategies. Interestingly, contrary to the base-
line strategies, our method succeeds in exploiting the merged SS+aug region
proposal strategy (0.47 mAP improvement relative to SS ).
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Table 1. Comparison against unsupervised aggregation baselines

VGG-128-G VGG-128-sum VGG-128-K-means SPLeaP

SS aug SS+aug SS SS+aug SS SS+aug

75.32 77.31 78.21 77.36 76.28 76.8 84.21 84.68

Table 2. Importance of per-part softness coefficients

Average pooling Max pooling Cross-valid. βp = β Learned βp

80.77 83.23 84.31 84.68

Importance of Per-Part Softness Coefficient. In Table 2, we evaluate our
proposed soft-max pooling strategy in (3) that employs a learned, per-part soft-
ness coefficient βp. We compare per-part softness coefficients to three alterna-
tives: (i) average pooling, wherein ∀p, βp = 0; (ii) max pooling, which is equiva-
lent to ∀p, βp → ∞; and (iii) a cross-validated softness coefficient that is constant
for all parts, ∀p, βp = β. In all three of these alternatives, we run the complete
SPLeaPoptimization process discussed in Sect. 4. As illustrated in the table,
using our proposed learned, per-part softness coefficient yields the best perfor-
mance, with an improvement of close to 4 mAP points over average pooling,
1.5 mAP points over max pooling, and 0.4 mAP points over a cross-validated
but constant softness coefficient. Note that allowing the algorithm to choose βp

during the optimization process eliminates the need for a costly cross validation
of the βp.

Effect of Number of Weak Learners K. In Fig. 1 we evaluate the effect of
the number K of weak learners per part by plotting mAP as a function of the
number of training epochs. Note that, for a fixed number of learning iterations,
adding more weak learners results in higher performance. We have tried the
effect of other design choices such as averaging K weak learners in contrast to
greedily adding the weak learners. We obtain slight improvement i.e. we obtain
84.78 mAP for K = 3. We also compared adding weak learners to dropout,
which is known to behave as averaging multiple thinned networks, and obtained
a reduction in mAP of 0.5 % (83.98 mAP with 50 % dropout).

5.3 Parameters/Design Related Choices

Per-Category Parts and Number P of Parts. When learning SPLeaPfor
the MIT-Indoor-67dataset, we learn P part classifiers that are common to all
67 categories using the multi-class objective described in Sect. 3. For Willow and
Pascal-VOC-2007, on the other hand, we learn P different part classifiers for
each category, using a one-vs.-rest strategy to learn each SPLeaPmodel indepen-
dently for each class.
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Fig. 2. Plot of test mAP versus the
number of parts P .

In Fig. 2 we evaluate mAP on Pascal-VOC-2007 as a function of the number
of parts P . We show that even with a small number of parts P = 6 per class, we
obtain a very good mAP of 83.94.

5.4 Comparisons with State-of-the-art

Pascal-VOC-2007. In Table 3 we compare SPLeaPto various existing state-of-
the-art methods on the Pascal-VOC-2007 dataset.

Methods Employing Krizhevsky-Type Architectures. On the left side of Table 3,
we compare against Krizhevsky’s original 13-layer architecture [16] and vari-
ants thereof such as VGG-128 [15]. In particular, the architectures of [14,15]
were first learned on ImageNet and subsequently fine-tuned specifically for
Pascal-VOC-2007.

Note that, when using architectures derived from [16], including architectures
fine-tuned specifically for Pascal-VOC-2007, our method outperforms all of these
baselines by at least 3 absolute mAP points, despite using the 128-dimensional

Table 3. Comparison of results on Pascal-VOC-2007 dataset (P = 40 parts per class,
K = 1) using CNN features extracted from (left) Krizhevsky-like [16] and (right) very
deep architectures [33]

Methods mAP Methods mAP

VGG-G 75.35

Oquab et al. [14] 77.31 VD-16-G [33] 81.73

Li et al. [23] 77.90 VD-16 (dense evaluation) 84.67

Cimpoi et al. [21] 79.50 VD-16-sum (SS+ext. aug) 82.58

CNN-S fine tuned [15] 82.42 Cimpoi et al. [21] 85.10

SPP [36] 82.44

SPLeaP-VGG-128 (SS+ext. aug) 84.68 SPLeaP-VD-16 (SS+ext. aug) 88.01
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VGG-128 feature that is not fine-tuned for Pascal-VOC-2007. In particular,
our method outperforms the recent, part-based representation of [23], which is a
state-of-the-art part-based method employing association rule mining to discover
discriminative patterns/regions. In Table 3 we present their results based on
features from [16].

Methods Employing Very Deep Architectures. On the right side of Table 3, we
compare against the deep pipelines of Simonyan et al. [33], using the pre-
computed models provided by the authors in [32] to reproduce the baselines.
We use the state-of-the-art VD-16 feature to reproduce three different baselines
using our own implementations.

The first one (VD-16-G) uses a global VD-16 feature by feeding the entire
image to the CNN architecture.

The second one, VD-16 dense evaluation, follows [33] in employing their
CNN architecture as a fully convolutional architecture by treating the weights
of the last two fully connected layers as 7 × 7 and 1 × 1 convolutional kernels,
respectively. This enables them to process images of arbitrary size. The approach
further employs scaling, cropping and flipping to effectively produce a pool of
close to 500 region proposals that are subsequently average-pooled. The resulting
descriptor is 	2 normalized and used to compute linear SVMs, and achieves state-
of-the-art results on Pascal-VOC-2007.1

For completeness, we further explore a third baseline that employs the
extended augmentation (ext. aug.) strategy employed by [37], which effectively
produces 144 crops per image, as opposed to the 10 crops of the aug strategy
discussed above. We further extend this region proposals by the selective search
region proposals and employ sum pooling.

The results, summarized in Table 3, show that proposed SPLeaPsystem out-
performs all three baselines, and further outperforms a very recent baseline [21]
relying on a hybrid bag-of-words/CNN scheme.

Willow Action Dataset. Our best results on Willow (Table 4 left) likewise
outperforms VD-16-G by 3.35 mAP points and VD-16 dense evaluation (Table 4
left) by 2.8 mAP points. For completeness, we have included several, previously-
published results. To our knowledge, our approach outperforms the highest pub-
lished results on this dataset.

MIT-Indoor-67. In Table 4, we present results on the MIT-Indoor-67dataset.
For this dataset, we represent candidate regions using the Hybrid CNN model of
[34], which is learned on a training set obtained by merging ImageNet and the
Places database [34] and is better suited for scene recognition. Given the large
size (4096) of these features, we reduce them to size 160 using PCA, similarly
to the approach of [9]. Note that our method outperforms all other methods in

1 Our own implementation of this method achieves results below those reported in
[33].
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Table 4. Comparison of results on the Willow dataset (P = 7 parts per-class, K = 1)
(left) and the MIT-Indoor-67dataset (P = 500 parts, common to all classes, K = 2)
(right)

Methods mAP Methods mAP

Khan et al. [38] 70.10 Orderless [19] 68.80

Sharma et al. [39] 65.90 MLPM [23] 69.69

Sharma et al. [40] 67.60 HybridCNN-G [34] 72.54

Sicre et al. [24] 81.90 HybridCNN-sum [34] 70.36

VD-16-G 85.12 Parizi et al. [9] 73.30

VD-16 (dense evaluation) 85.67 SPLeaP-PCA160 (SS) 73.45

SPLeaP (SS+aug) 88.47

Table 4. Unlike our reported results, those of [9] use a spatial pyramid with two
scales and five cells (1 × 1, 2 × 2), as well as a different number of parts and
PCA-reduction factor, resulting in features that are 3.73 times bigger than ours.

6 Qualitative Analysis

We now present qualitative results to illustrate the response of our learned part
classifiers on Pascal-VOC-2007 test examples.

In Fig. 3 we demonstrate the selectivity of our part detectors by presenting
image triplets consisting, in order, of (i) the image with candidate region bound-
ing boxes superposed, (ii) the original image, and (iii) heatmaps for the part
responses of each candidate region. Note in particular the selectivity of our part
detectors: in all examples, the actual object occupies but a small fraction of the
image area.

Fig. 3. Heatmaps for images Pascal-VOC-2007 of classes (clockwise from top-left) “pot-
ted plant”, “bird”, “bottle” and “TV monitor”.
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Fig. 4. Discriminative parts for the four Pascal-VOC-2007 classes (clockwise from top-
left) “horse”, “motorbike”, “dining table”, and “potted plant”.

In Fig. 4, we illustrate the highest ranking candidate regions from all images
for the part classifiers associated to the largest entries in the corresponding
weight vector wc, with each row of each group of images corresponding to a
different part classifier. Note that the part classifiers all become specialized to
different object parts or poses.

7 Conclusions

We introduce SPLeapP, a novel part-based model for image classification. Based
on non-linear part classifiers combined with part-dependent soft pooling – both
being trained jointly with the image classifier – this new image model consistently
surpasses standard pooling approaches and part-based models on several chal-
lenging classification tasks. In addition, we have experimentally observed that
the proposed method does not need any particular initialization of the parts,
contrarily to most of the recent part-based models which require a first step for
selecting a few regions candidates from the training images before they actually
start learning the parts.
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