
A Simple Hierarchical Pooling Data Structure
for Loop Closure

Xiaohan Fei, Konstantine Tsotsos, Stefano Soatto

UCLA Vision Lab
University of California, Los Angeles

{feixh, ktsotsos, soatto}@cs.ucla.edu

Abstract. We propose a data structure obtained by hierarchically pool-
ing Bag-of-Words (BoW) descriptors during a sequence of views that
achieves average speedups in large-scale loop closure applications rang-
ing from 2 to 20 times on benchmark datasets. Although simple, the
method works as well as sophisticated agglomerative schemes at a frac-
tion of the cost with minimal loss of performance.

Keywords: loop closure; hierarchical pooling; Bag-of-Words; descriptor
aggregation

1 Introduction

We tackle the problem of loop closure in vision-based navigation. This is a par-
ticular classification task whereby a training set of images is indexed by location,
and given a test image one wants to query the database to decide whether the
former is present in the latter, and if so return the indexed location. This is
closely related to scene recognition, where the focus is on a particular instance,
as opposed to an object class (we want to determine whether we are at par-
ticular intersection in a given city, not whether we are at some intersection of
some urban area). As such, test images are only subject to nuisance variability
due to viewpoint, illumination and partial occlusion from moving objects, but
otherwise there is no intrinsic (intra-class) variability.

The state-of-the-art for image retrieval is based on convolutional neural net-
work (CNN) architectures, trained to marginalize nuisance and intrinsic variabil-
ity. In a discriminatively trained network, the compositionality property afforded
by linear convolutions, while critical to model intra-class variability, is unhelpful
for loop closure, as there is no intrinsic variability. At the same time, a CNN
does not respect the topology of data space at higher levels of the hierarchy,
since filters at any given layer are supported on the entire feature map of the
previous layer. In loop closure, locality is key, and while one could retrieve from
the feature map the locations that correspond to active units, this requires some
effort [26].

Given the critical importance of loop closure in location services ranging from
smartphones to autonomous vehicles, we focus on its peculiarities, and attempt

ar
X

iv
:1

51
1.

06
48

9v
2 

 [
cs

.C
V

] 
 2

3 
O

ct
 2

01
8



2 Fei et al.

to harvest some of the components of neural networks to improve the state-of-
the-art. Stripped of the linear convolutions (we do not need to model intrinsic
variability) and ReLu, what we have left is a hierarchical spatially pooled data
structure built upon local photometric descriptors [11,18]. There are no filters,
and no learning other than the trivial pooling of local descriptors. Motivated
by this intuition, we propose a new hierarchical representation for loop closure,
detailed in Sec. 2.

Loop closure is also closely related to location, or “place,” recognition [35,33,6]
and large-scale visual search [21,5,13], but with some important restrictions.

First, both previous data (training images) and current (test, or query) data
are usually available as time-indexed sequences, even if they are captured by
different agents, and training images may be aggregated into a “map” [14] or
reduced to a collection of “keyframes” [20]. Second, as a binary classification
task (at each instant of time, a loop closure is either detected or not), the cost of
missed detections and false alarms are highly asymmetric: We pay a high price
for declaring a loop closure that isn’t, but there is minor harm in missing one,
as temporal continuity affords many second chances in subsequent images. This
is unlike large-scale image retrieval, where we wish to find what we are looking
for (few missed detections, or high recall) even if we have to wade through some
irrelevant hits (many false alarms, or low precision).

Like image retrieval, however, the challenge with loop closure is scaling. In
navigation applications, it may be hours before we return to a previously seen
portion of the scene. Therefore, we have to store, and search through, hundreds of
thousands to millions of images. Our goal in this paper is to design a hierarchical
data structure that helps speed up matching by leveraging on the two domain-
specific constraints above: temporal adjacency, and high precision.

Assuming continuous trajectories, the first translates to proximity in pose
space SE(3) (position and orientation). For the second, the best trade-off with
missed detections can be achieved by testing every datum in the training set
via linear search accelerated via an inverted index. Our goal is to achieve similar
performance at a fraction of the cost compared to inverted index search. This
cannot be achieved in a worst-case setting. What matters instead is average
performance trading off precision with computational cost. We evaluate such
average performance empirically on the KITTI [9], Oxford [6] and TUM RGB-
D [29] datasets, as well as demonstrate extensions to general image retrieval on
the ukbench [21] and INRIA Holidays [13] datasets. To demonstrate scalability,
we also evaluate our algorithm on augmented datasets with around 40K images.

We propose a simple data structure based on hierarchical pooling of location
likelihoods – in the form of sample distributions of BoW descriptors – with re-
spect to the topology of pose space. In practice, this means simply constructing
BoW descriptors, that represent the likelihood of the locations that generated
them, and pooling them temporally in a fine-to-coarse fashion, either by aver-
aging, summing, or taking the index-wise maximum.

While averaging likelihoods may seem counter-productive, in Sec. 2 we show
it makes sense in the context of the classical theories of sampling and anti-



A Simple Hierarchical Pooling Data Structure for Loop Closure 3

aliasing. In Sec. 3 we show that, despite its simplicity, it works as well as sophis-
ticated agglomerative schemes at a fraction of the effort.

1.1 Related work

Loop closure is a key component in robotic mapping (SLAM) [37], autonomous
driving, location services on hand-held devices, and for wearables such as virtual
reality displays. Loop closure methods can be roughly divided into 3 categories:
appearance-only, map-only and methods in between. Appearance-only meth-
ods [6] are essentially large-scale image retrieval algorithms, influenced by [21]
and more in general the literature of BoW object recognition and categoriza-
tion [27]. Map-only methods [15] use the data (images, but most often range
sensors) to infer the configuration of points in 3D space, and then seek to match
subsets of these points, often using variants of ICP [4] as a building block. These
methods do not scale beyond a few hundreds of thousands of points, or thou-
sands of keyframes, and are often limited to what is referred to as “short-term”
loop closure [15], necessary for instances when complete loss of visual reference
occurs while tracking. There are also a variety of map-to-image and image-to-
map [25] methods that show great promise, but have yet to prove scalability to
the point where the map spans tens if not hundreds of kilometers [6].

For scalability, the most common choice is to combine quantized local de-
scriptors into a BoW and then use an inverted index. FAB-MAP [6] extends the
basic setup by learning a generative model of the visual words using a Chow-Liu
tree to model the probability of co-occurrence of visual words. FAB-MAP 2.0
scales further by exploiting sparsity to make the inverted index retrieval archi-
tecture more efficient. Starting from [8], SIFT or SURF descriptors were replaced
by more efficient binary descriptors such as BRIEF [3] and ORB [23] to achieve
comparable precision and recall to FAB-MAP 2.0 with an order of magnitude
speed increase. Several recent mapping and localization systems adopt it as a
module, including [17] and ORB-SLAM [19].

In addition to the specific loop closure literature, general ideas from spa-
tial data structures and agglomerative clustering [31] are also relevant to this
work, including k-d trees [24], dual trees and decision trees [10], as well as data
structures used for retrieval such as pyramid matching [12] and its spatial ver-
sion [16]. In more general terms, this work also relates to visual navigation and
mapping, structure-from-motion, and location recognition, including the use of
global descriptors [33].

Our method can be considered appearance-only, but it is loosely informed by
geometry, in the sense that the scene domain (pose space) provides the topology
with respect to which we pool descriptors. Also closely related to our approach
are [34,32], which present techniques for merging only pairs of BoWs; in [5]
queries are expanded by using retrieved and verified images, which is orthogonal
to and can be viewed as a query-end version of our method.



4 Fei et al.

2 Methodology

Since our focus is on a spatial structure that facilitates accelerated loop closure
queries, we integrate components from recent state-of-the-art methods within
our data structure and adopt such methods as a baseline, against which we com-
pare our method. Specifically, we adopt [19] as a baseline, consisting of a BoW
where each word is an element of a dictionary of descriptors obtained off-line
by hierarchical k-means clustering, with each word weighted by its inverse doc-
ument frequency. FAST detectors [22] and BRIEF descriptors [3] are employed,
and TF-IDF [2,1,27] is used to weigh the BoW relative to the inverse docu-
ment frequency. This standard pipeline, with different clustering procedures to
generate the dictionary and different features, comprises most basic large-scale
retrieval systems, including appearance-only loop closure. However, the number
of false alarms in large-scale settings is crippling, so temporal consistency and
geometric verification are typically used as correction mechanisms.

2.1 Hierarchical testing

Construction of hierarchy Our data structure can be interpreted as a hier-
archical version of TF-IDF. To illustrate the method, we first assume that every
frame is a “keyframe” and therefore we have a time-series of BoWs, obtained
as described above, and organized into a linear structure or un-oriented list, as
we wish to retrieve frames regardless of the direction of traversal. Each node is
associated with a histogram, in the form of a BoW, representing the likelihood
of a pose g(t) ∈ SE(3) (position T (t) ∈ R3 and orientation R(t) ∈ SO(3)) given
the data (the image at time t, I(t)): ht

.
= BoW(t) ∼ p(I(t)|g(t)), where the

equivalence is up to normalization, and the density function is approximated
with a histogram with N bins, equal to the size of the dictionary.

(a) Construction of hierarchy (b) Hierarchical testing
Fig. 1: (a) Construction of hierarchy for an 8-long sequence of (key)frames and
constant branching factor of 2. Dashed lines indicate temporal order. (b) Hierarchical
testing: If he does not score higher than the threshold, the whole sub-tree rooted at
he (shaded) will not be searched. In the case of sum- or max-pooling, this would not
introduce loss of precision compared to searching only the lowest level nodes.

We now construct a second level, or “layer”, of the data structure, simply by
pooling adjacent histograms (Fig. 1a). This is repeated for higher layers until



A Simple Hierarchical Pooling Data Structure for Loop Closure 5

either a maximum depth is reached, or until a single root node is left. Several
standard choices for the pooling operation are available which allow us to trade
off between precision and cost (Sec. 3). Suppose hp is the parent histogram
which has child histograms {hk}, k = 1, 2 . . .K. Both hp and hk ∈ RN . Mean- or

average-pooling refers to hp = 1
K

∑K
k=1 h

k, sum-pooling refers to hp =
∑K

k=1 h
k,

and max-pooling refers to hpi = maxk{hki }, where i = 1, 2 . . . N . Once we have
constructed the hierarchy for database histograms, raw histograms are used as
queries for loop closure detection.

Query processing Similarities between pooled and query histograms are com-
puted using the intersection kernel [30], that is the area of the intersection of
the two histograms. Thus, if hq (a query histogram) has bin values hq1, . . . , h

q
N ,

and similarly for hp, we have that

I(hq, hp) =

N∑
i=1

min{hqi , h
p
i } (1)

The intersection kernel is related to many divergence functions [36] as well as to
metrics used in optimal transport problems.

Sum- and max-pooling operators have the following upper bound property
when intersection kernel is applied: For a query histogram hq, a parent histogram
hp and its child hk in the database,

I(hq, hp) > I(hq, hk) (2)

therefore if I(hq, hp) < τ , I(hq, hk) < τ must hold.

Since our goal is to search for the closest match, or at least for all matches
that exceed a threshold τ > 0 (we seek large values of I), if I(hq, hp) < τ , the
chance of any of hp’s descendants exceeding the threshold is rare (or impossible,
in the case of max- or sum-pooling as shown by the upper bound property),
therefore we stop searching the sub-tree rooted at hp (Fig. 1b).

Therefore, search in a hierarchical TF-IDF setting simply boils down to greedy
breadth-first search, while maintaining an inverted index for each layer. If only
one layer is used, this reduces to standard linear search using an inverted index.

A key point is that with sum- or max-pooling, the proposed method has
exactly the same precision-recall behavior as standard inverted index search while
still achieving a substantial speedup. With mean-pooling, a large speedup can
be achieved with only a minimal loss of precision (Sec. 3).

Different trees with different depths and different branching factors can be
constructed, trading off expected risk and computation time, characterized em-
pirically in Sec. 3.4. In addition to a fixed depth and branching factor, one could
devise more clever schemes to determine the topology of the tree, discussed in
Sec. 2.2. However, we find that the benefit is limited compared to the straight-
forward fixed-topology architecture.



6 Fei et al.

2.2 Keyframes and adaptive tree topology

So far we have assumed that the time-series of data {ht}Tt=1 is sampled regularly
(at constant time or space intervals), but it can also be sampled adaptively, by
exploiting statistics of the data stream to decide which samples, or keyframes,
to use. The data structure above does not change, since all that is required is a
topology or adjacency structure to construct the tree.

Adaptive (sub)-sampling can be done in many ways, and there are a wide
variety of standard heuristics for selecting keyframes. Our goal here is not
to determine the best method for selecting keyframes, but to focus on the data
structure regardless of the sub-sampling mechanism. Consequently, we limit our-
selves to constructing it either on the raw time series, or on any subsampling of
it, as generated by standard keyframe selection methods.

Just like selecting keyframes, building the hierarchy can be understood as
a form of (sub)-sampling. Regardless of whether subsampling is regular (as in
building the tree above) or adaptive (as in selecting keyframes), classical sam-
pling theory [28] suggests that what should be stored at the samples is not the
value of the function, but the local average relative to the topology of the do-
main where the data are defined (anti-aliasing). This lends credence to the use
of mean-pooling, which initially may seem counter-intuitive since our goal is to
maintain high precision.

In our case, the domain is time, or the order of keyframes, as a proxy of
location in SE(3). The range of the data is the space of likelihood functions,
approximated by histograms ht. Therefore, anti-aliasing simply reduces to aver-
aging neighboring histograms. The study of the optimal averaging, both in terms
of support and weights, is beyond our scope here, where for mean-pooling we
simply average nearest neighbors in the tree topology relative to a uniform prior.
We do not delve into considering more sophisticated anti-aliasing schemes, since
we have found that simple topologies yield attractive precision-computational
cost trade-off, which is unlikely to be significantly disrupted by fine-tuning the
weights.

The practice of averaging likelihood functions as a way of anti-aliasing de-
scriptors has also been recently shown by [7] in the context of pooling local
descriptors for correspondences in wide-baseline matching. Our method can be
considered an extension (or special case) where the correspondence and pool-
ing are performed in time, and the descriptors are histograms of visual words,
a mid-level representation, rather than histograms of gradient orientation, the
result of low-level processing.

While the choice of heuristics for keyframe selection has no effect on our
method, which can be applied to the raw time series or to the sequence of
keyframes, the same (adaptive sampling) heuristics used to (down)-sample keyframes
from the regularly sampled images could be used to aggregate nodes at one level
into parents one level above. This would give rise to trees having different levels
of connectivity at different layers, and indeed potentially at each node.

We have found that, in practice, these heuristics fail to yield significant per-
formance improvements when compared to trees with fixed topology having con-



A Simple Hierarchical Pooling Data Structure for Loop Closure 7

stant splitting factors that match the average of their adaptive counter-part.
Representative experiments are shown in Sec. 3.4.

3 Evaluation

The most important evaluation for the proposed method is to test performance
in-the-loop when incorporated into a real system (ORB-SLAM [19], in this case),
discussed in Sec. 3.2 where we find a 65% reduction in mean query time with
no loss in localization performance and no missed loop closures relative to the
baseline. We investigate query-time reduction and precision-recall behavior while
varying vocabulary size and tree topology in Sec. 3.3 and Sec. 3.4, respectively. In
Sec. 3.5 we augment standard datasets to explore various test-time scenarios, and
Sec. 3.6 presents a generalization of our method to other image retrieval tasks.
Sec. 3.1 discusses the datasets and methodology used throughout the evaluation.

3.1 Datasets and methodology for loop closure

We perform experiments using the common loop closure datasets of KITTI,
Oxford City Centre, and Oxford New College [9,6]. The KITTI dataset consists
of several sequences on the order of 1000 stereo pairs in length. To provide
additional experimental evaluation at large scale, we augment KITTI by con-
catenating all sequences, to form the concatenated KITTI dataset consisting of
approx. 40K images. For all sequences we construct the data structure using all
frames unless otherwise noted, in which case we adopt the keyframe selection
strategy of our baseline (Sec. 3.2).

Unless otherwise stated, we build the hierarchical data structure using the left
stereo images of the sequences (when stereo is available) and evaluate loop clo-
sure correctness using the provided ground truth poses. The evaluation protocol
is as follows: traverse the sequence and insert BoW of images into the database
incrementally, while using each image to query the database before it is added.
Two images are regarded as a correct match if they were taken within 15 meters
of each other. To avoid trivial matches, we prevent the query from matching
temporally adjacent images. This evaluation protocol mimics loop closure in a
practical SLAM system, which we test in Sec. 3.2.

To evaluate matching, missed detection and false alarms are traded off by an
arbitrary choice of threshold, as in any detection algorithm. Since the thresh-
old affects the average query time (we can make that quite short by choosing a
threshold that yields no false alarms while rejecting every hypothesis) we must
come to a reasonable choice. Unless otherwise stated, we adopt the following
policy: We generate precision-recall curves on KITTI 00. Then, we select the
smallest threshold that yields zero false alarms and use it on other sequences. Of
course, that may yield a non-zero false alarm rate in datasets that are not used
in setting the threshold, but this (as is customary) can be handled by verification
steps afterwards. This is a limitation inherent to the choice of image representa-
tion, in this case Bag-of-Words, and not a sensitivity that our hierarchical data
structure is designed to circumvent.



8 Fei et al.

3.2 In-the-loop with the baseline

We use components of ORB-SLAM [19], made available by the authors, as the
baseline for our experiments. We use this as a black box and implement our
hierarchy atop its single-layer inverted index architecture for performing image
queries. As a result, we also inherit some of the limitations of its components
(e.g. keyframe selection, discriminability of quantized descriptors and BoW rep-
resentations, sensitivity to matching threshold selection), which are common to
the majority of SLAM systems.

We first show that when using ORB-SLAM as is, with no change in thresh-
olds or tuning, a significant reduction in image query time can be achieved
simply by applying our max-pooling hierarchy, which by construction achieves
identical precision-recall performance to the original system, missing no loop
closures that may be critical to pose-graph optimization algorithms. In Fig. 2b,
we compare the trajectories estimated by ORB-SLAM with and without our
max-pooling hierarchy on KITTI. Errors relative to ground truth are similar
(within 1σ of each other over multiple trials); mean query times are reduced
by 65% (2.04ms from 5.80ms). No loop closures are missed by our max-pooling
method that would not be missed without our data structure, confirming that
improvement in speed comes at no loss of classification performance. In Fig. 2a
we show this speedup holds with increasing scale by showing query times for the
concatenated KITTI dataset for different vocabulary sizes (Sec. 3.3) and various
pooling strategies using the methodology of Sec. 3.5.

0 5000 10000 15000 20000 25000 30000 35000
database size

0

100

200

300

400

500

600

qu
er

y 
tim

e 
(m

s)

1M baseline
1M sum-pooling
1M max-pooling
10K baseline
10K mean-pooling

(a) Scaling

−300 −200 −100 0 100 200 300

0

50

100

150

200

250

300

350

400

450

 

 
ground truth
ours
orb−slam

(b) Comparison to ORB-SLAM
Fig. 2: (a) Scaling: Timings for concatenated KITTI sequences (approx. 40K images)
with 1M and 10K vocabularies. (b) Comparison to ORB-SLAM with and without
our data structure. Multiple trials yield nearly identical trajectories with and without
our data structure, with no loop closures missed while achieving a 2-3x speedup.

3.3 Varying vocabulary size

Some may argue that a speedup could be easily gained by just using a larger
vocabulary. It is true that with a larger vocabulary, each visual word is associated



A Simple Hierarchical Pooling Data Structure for Loop Closure 9

with a much smaller list of documents in the inverted index system which leads
to shorter query time. However, the vocabulary size should be determined by
the performance of the specific task as well as the volume of the data and a
larger vocabulary is not always better. A larger vocabulary has finer division
of feature space compared to a smaller vocabulary but is also more sensitive to
quantization errors (two slightly different images may have completely different
histograms). In this case, mean-pooling may not be ideal as shown in Fig. 4c
and 4d. However, sum/max-pooling can still be applied to gain further speedup
while maintaining same precision-recall as shown in Fig. 3c and 3d, and also on
augmented dataset as shown in Fig. 2a.

3.4 Varying tree topology

Variable depth and branching factor Fig. 3 shows timings of the baseline
and our algorithm with different topologies and pooling schemes at the same
threshold on two of the KITTI sequences with many loop closures. Only time
to query the database is counted, time for feature extraction and descriptor
quantization are excluded. Fig. 4a and Fig. 4b show precision-recall curves for
the mean-pooling variants. We use dibj-X to denote a hierarchy with i layers,
a branching factor of j and pooling strategy X. Note that for baseline and our
proposed algorithm with configuration d2b4-mean and d2b8-mean, the precision-
recall curves are nearly identical, while our approach is 2-5 times faster. For
configuration d2b16-mean, while its performance is slightly worse, it achieves an
order of magnitude speedup relative to the baseline.

As mentioned in Sec. 2.1, sum/max-pooling have exactly the same precision-
recall behavior as the baseline. In these two datasets, sum/max-pooling are
slightly slower than inverted index search. Since both of these operations rapidly
reduce sparsity in the histograms, we expect slower performance relative to
mean-pooling. However, sum/max-pooling have their advantages when a much
larger vocabulary is used as shown in Sec. 3.3.

Adaptive domain-based clustering In addition to the baseline algorithm, we
generate a second baseline by applying the same algorithm to keyframes, rather
than to all stored images. In principle, the heuristics involved in the selection of
keyframes could be propagated to all nodes of the data structure, as discussed
in Sec. 2.2. However, our experiments indicate that this yields minor benefits
compared to simple averaging. The second row of Tab. 2a shows average time-
cost rate 1 for searching via an inverted index among keyframes, which is worse
than searching in a simple hierarchy built on raw images, as shown in the second
row of Tab. 1c. A simple regular sampling strategy on top of keyframes can
speedup searching by a large margin as shown in Tab. 2a.

Instead of a fixed topology of the data structure, corresponding to regu-
lar grouping, we can consider adaptive grouping based on a variety of criteria.

1
Time-cost rate is defined as the increase of query time per thousand (1k) images in the database.
Average time-cost rate is the average of time-cost rates computed for all sequences in each dataset.



10 Fei et al.

500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

70

database size

qu
er

y 
tim

e 
(m

s)

 

 

baseline
d2b4−mean
d2b8−mean
d2b16−mean
d2b4−sum
d2b4−max
adaptive−mean
regular−mean

(a) KITTI 00-10K

500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

70

80

database size

qu
er

y 
tim

e 
(m

s)

 

 

baseline
d2b4−mean
d2b8−mean
d2b16−mean
d2b4−sum
d2b4−max
adaptive−mean
regular−mean

(b) KITTI 02-10K

500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

database size

qu
er

y 
tim

e 
(m

s)

 

 
baseline
d2b2−max
d2b4−max
d2b2−sum
d2b4−sum
adaptive−max
adaptive−sum
regular−max
regular−sum

(c) KITTI 00-1M

500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

1.5

2

2.5

3

3.5

4

database size

qu
er

y 
tim

e 
(m

s)

 

 
baseline
d2b2−max
d2b4−max
d2b2−sum
d2b4−sum
adaptive−max
adaptive−sum
regular−max
regular−sum

(d) KITTI 02-1M
Fig. 3: Timings of baseline and proposed algorithm with different topologies and pool-
ing strategies on KITTI dataset 00 and 02 using all frames. dibj -X: a hierarchy with
i layers, a branching factor of j and pooling strategy X. Adaptive sampling: spectral
clustering in SE(3). Regular sampling: sampling at the average rate of adaptive sam-
pling scheme. Baseline: inverted index search. Two different vocabulary sizes (10K and
1M) are considered.

Adaptive sampling, or grouping, based on geometry includes performing spectral
clustering in SE(3). Curves in Fig. 3 indicate that adaptive sampling achieves
marginal improvements compared to regular sampling at a constant rate equal
to the average of the adaptive sampling rate. Similarly, parallax-based sampling,
based on clustering only the translational component of pose, also yields under-
whelming improvements. We do, however, expect adaptive sampling to win in
some cases, as it has in a number of smaller-scale experiments we conducted
with different motion characteristics from smooth driving, for instance the TUM
RGB-D dataset (Fig. 5) [29].

3.5 Quantifying speedup using synthetic ground-truth

Depending on the particular query image, our method could reduce or increase
search time relative to the mean. The former occurs when correspondence fails
early allowing us to rule out subsequent tests at finer scales. However, in the
worst-case we may end up performing more comparisons than inverted index



A Simple Hierarchical Pooling Data Structure for Loop Closure 11

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

 

 

baseline
d2b4−mean
d2b8−mean
d2b16−mean
adaptive−mean
regular−mean

(a) KITTI 00-10K

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

 

 

baseline
d2b4−mean
d2b8−mean
d2b16−mean
adaptive−mean
regular−mean

(b) KITTI 02-10K

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

 

 

baseline
d2b2−mean
d2b4−mean

(c) KITTI 00-1M

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

 

 

baseline
d2b2−mean
d2b4−mean

(d) KITTI 02-1M
Fig. 4: Precision-recall curves of baseline and proposed algorithm with different topolo-
gies on KITTI dataset 00 and 02 using all frames. Two different vocabulary sizes (10K
and 1M) are considered. Notations have the same meanings as in Fig. 3.

search when the test reaches the finest scale too often. In practice, what matters
is that our algorithm shortens test time on average during long sequences. Since
most KITTI sequences contain few or no loop closures, we generate synthetic
positive and negative queries as follows: For sequences 01 to 21, we generate
positive queries by sampling the right stereo images of each sequence (slightly
different from the left images from which we constructed the database), and
generate negative queries by sampling images from sequence 00. For the Oxford
datasets, we construct the database using odd-numbered images, generate pos-
itive queries from the even-numbered images, and negative queries again from
KITTI 00.

Overall performance is measured by combining both sets of queries. Of course,
even in the negative case our algorithm could find erroneous correspondences,
which are then labeled as false alarms. Similarly, we may find no correspon-
dence in the former case (missed detection). We use average time-cost rate to
evaluate how the searching algorithm scales with size of the database. Tab. 1
reports experiment results on raw KITTI. Tab. 2 reports average speedup when
keyframe selection is applied on both KITTI and Oxford. Fig. 2a shows linear
scaling of average query time on the much larger concatenated KITTI. Practical
deployment on even larger datasets typically comes with context (e.g. GPS or
odometry) that limits the data volume.



12 Fei et al.

200 400 600 800 1000 1200
database size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
qu

er
y 

tim
e 

(m
s)

freiburg3_long_office_household
baseline
regular
adaptive

50 100 150 200 250 300 350
database size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

qu
er

y 
tim

e 
(m

s)

freiburg1_rpy
baseline
regular
adaptive

100 200 300 400 500 600 700
database size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

qu
er

y 
tim

e 
(m

s)

freiburg2_360_kidnap
baseline
regular
adaptive

200 400 600 800 1000 1200
database size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

qu
er

y 
tim

e 
(m

s)

freiburg2_360_hemisphere
baseline
regular
adaptive

100 200 300 400 500 600
database size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

qu
er

y 
tim

e 
(m

s)

freiburg1_room
baseline
regular
adaptive

50 100 150 200 250 300
database size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

qu
er

y 
tim

e 
(m

s)

freiburg1_desk
baseline
regular
adaptive

Fig. 5: Sample results on the TUM RGB-D dataset using adaptive domain clustering
(Sec. 2.2). The experiment setup is similar to that for the Oxford dataset in Sec. 3.5.
Adaptive (yellow) improves with more exciting motion (left to right, up to down).
Limited speedup relative to baseline due to very small dataset size. Variance shown is
derived from multiple trials with sightly differing cluster assignments.

3.6 Experiments in image retrieval tasks

Although our approach is geared towards the loop closure scenario, its usage
is not restricted to it. A hierarchical structure of this form could be built on
top of any histogram-based representation of images where some proxy of topol-
ogy is available. In more general settings when a temporal stream of images is
unavailable, extra labeling information, such as geotags, class labels, or textual
annotations could be used. A hierarchy can be constructed using affinity between
these alternate forms of metadata, provided that affinity implies proximity in the
solution space. We test this using two publicly available image retrieval bench-
marks: ukbench [21] and INRIA Holidays [13].
ukbench 2 consists of 2550 groups of 4 images each (10200 total). Each group
contains the same object under different viewpoint, rotation, scale and lighting
conditions. We use the same evaluation protocol provided by the author: Count
how many of 4 images are top-4 when using a query image from that set of four
images. We use pre-computed visual words provided by the authors, which are
quantized SIFT descriptors using a 1M vocabulary.
INRIA Holidays 3 contains 500 image groups (1491 total), each of which
represents a distinct scene under different rotations, viewpoint and illumina-
tion changes, blurring, etc. Performance is measured by mean average precision
(mAP) averaged over all 500 queries. We use the 4.5 million SIFT descriptors
and 100K vocabulary provided by the authors.

The baseline remains to search using an inverted index system. We use a
three-layer hierarchy with the original histograms at the bottom layer. At the

2
http://vis.uky.edu/~stewe/ukbench/

3
https://lear.inrialpes.fr/~jegou/data.php

http://vis.uky.edu/~stewe/ukbench/
https://lear.inrialpes.fr/~jegou/data.php


A Simple Hierarchical Pooling Data Structure for Loop Closure 13

Table 1: Average time-cost rate and speedup over 21 sequences of KITTI using all
frames. 1st col: grouping strategies. 2nd col: pooling operations. 3rd col: average time-
cost rate, which describes how the query time increases per 1k images inserted into the
database. In 1a, 1b and 1c, a 10K vocabulary is used; in 1d, a 1M vocabulary is used.

(a) positive queries; KITTI - 10K

structure pooling rate(ms/1k) speedup

inverted index N/A 10.07 1.00

hierarchical
mean 0.69 14.59
sum 8.70 1.16
max 6.65 1.52

(b) negative queries; KITTI - 10K

structure pooling rate(ms/1k) speedup

inverted index N/A 9.86 1.00

hierarchical
mean 0.34 29.00
sum 6.28 1.57
max 5.04 1.96

(c) overall; KITTI - 10K

structure pooling rate(ms/1k) speedup

inverted index N/A 9.88 1.00

hierarchical
mean 0.38 26.00
sum 7.92 1.25
max 6.06 1.63

(d) overall; KITTI - 1M

structure pooling rate(ms/1k) speedup

inverted index N/A 0.64 1.00

hierarchical
mean N/A N/A
sum 0.30 2.13
max 0.30 2.13

Table 2: A comparison of search in flat and hierarchical structure on KITTI and Ox-
ford dataset. Notations have the same meanings as in Tab. 1 except that 3rd column
describes average time-cost rate over the 21 KITTI keyframe sequences and all 4 se-
quences in the Oxford dataset respectively. The keyframes are generated by running
ORB-SLAM.

(a) overall; KITTI - 10K

structure pooling rate(ms/1k) speedup

inverted index N/A 8.97 1.00

hierarchical
mean 0.88 10.14
sum 7.87 1.14
max 6.00 1.50

(b) overall; Oxford - 10K

structure pooling rate(ms/1k) speedup

inverted index N/A 6.98 1.00

hierarchical
mean 1.61 4.34
sum 4.71 1.48
max 4.20 1.66

second layer, histograms belonging to the same object/scene are pooled (pooling
based on prior information available about the data and problem space). At the
top layer, we compare two different strategies to build the hierarchy: Random
grouping and greedy affinity grouping. Random grouping: We randomly group
every N histograms from the second layer. Greedy affinity grouping: We greedily
group every N histograms based on their nearest neighbors in affinity (which is
the histogram intersection score). In each setup, we also compare the different
choices of pooling operators. Tab. 3a and Tab. 3b show results on the ukbench
and INRIA Holidays datasets with N = 16.

In these image retrieval tasks, we completely discard the threshold and only
search down those nodes which have top 10 highest scores. Thus even for sum/max-
pooling, the precision-recall behavior should be different from the baseline. All
hierarchical approaches, regardless of pooling operation and grouping scheme,
are faster than the baseline. The observation that speedup is available even for
the random grouping scheme shows that the speedup does not just hinge on
grouping similar images, though grouping similar images can boost the speedup



14 Fei et al.

Table 3: A comparison of search in flat and hierarchical structure on ukbench and
INRIA Holidays. 1st col: grouping strategies. 2nd col: pooling operations. 3rd col:
average query time. ukbench takes average number of top-4 retrieved images as score.
INRIA Holidays takes mAP as evaluation metric.

(a) ukbench

structure pooling time(ms) speedup score

inverted index N/A 1.47 1.00 2.72

Random
hierarchical

mean 0.38 3.87 2.80
sum 0.37 3.97 2.83
max 0.39 3.77 2.82

Greedy
affinity
hierarchical

mean 0.38 3.87 2.80
sum 0.38 3.87 2.83
max 0.37 3.97 2.82

(b) INRIA Holidays

structure pooling time(ms) speedup mAP

inverted index N/A 9.11 1.00 0.56

Random
hierarchical

mean 5.57 1.63 0.58
sum 6.19 1.47 0.63
max 6.24 1.46 0.62

Greedy
affinity
hierarchical

mean 5.58 1.63 0.57
sum 6.82 1.34 0.63
max 6.53 1.40 0.62

further as we have shown in previous experiments on the driving data. We also
notice improved score/mAP in these two experiments, likely due to the grouping
of histograms of the same object/scene at the second layer of our hierarchy and
the top-4 scoring mechanism imposed by the benchmark.

4 Discussion

We have presented a hierarchical data structure consisting of pooled local de-
scriptors representing the likelihood of locations given the images they generate,
while maintaining an inverted index at each level of the data structure. While
mean-pooling of histograms may seem counter-productive, it is a sensible choice
when considered an anti-aliasing procedure in the context of classical sampling
theory, where the data structure, as well as keyframes, are tasked with down-
sampling the native rate. We have compared several pooling strategies, and found
that mean-pooling provides the most speedup at a small cost to performance;
sum-pooling has the upper-bound property and accelerates search to a reasonable
degree without loss of performance; and max-pooling shares the same property
with sum-pooling but exhibits a larger speedup due better approximating the
nodes below it.

For simplicity, we chose a fixed topology (depth and branching factor) and
studied the resulting performance empirically. We have found that sophisticated
heuristics do not improve performance enough to justify the added complexity.
We have benchmarked our scheme on public datasets, where we have shown that
even a shallow tree can significantly cut down on test time with minimal impact
to precision, which is the main goal of loop closure.

Acknowledgements

This work was supported by AFRL FA8650-11-1-7156, ONR N00014-15-1-2261
and ARO W911NF-15-1-0564.



A Simple Hierarchical Pooling Data Structure for Loop Closure 15

References

1. Aizawa, A.: An information-theoretic perspective of tf–idf measures. Information
Processing & Management 39(1), 45–65 (2003)

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine
Learning Research 3, 993–1022 (2003)

3. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: Binary robust independent el-
ementary features. In: Computer Vision–ECCV 2010, pp. 778–792. Springer (2010)

4. Chetverikov, D., Svirko, D., Stepanov, D., Krsek, P.: The trimmed iterative closest
point algorithm. In: Pattern Recognition (ICPR), 2002 IEEE Intl. Conf. on. vol. 3,
pp. 545–548. IEEE (2002)

5. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Automatic
query expansion with a generative feature model for object retrieval. In: Computer
Vision (ICCV), 2007 IEEE Intl. Conf. on. pp. 1–8. IEEE (2007)

6. Cummins, M., Newman, P.: Highly scalable appearance-only slam-fab-map 2.0. In:
Robotics: Science and Systems. vol. 5. Seattle, USA (2009)

7. Dong, J., Soatto, S.: Domain size pooling in local descriptors: Dsp-sift. In: Com-
puter Vision and Pattern Recognition (CVPR), 2015 IEEE Conf. on (2015)

8. Galvez-Lopez, D., Tardos, J.D.: Real-time loop detection with bags of binary
words. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ Intl. Conf.
on. pp. 51–58. IEEE (2011)

9. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The kitti
dataset. Intl. J. of Robotics Res. p. 0278364913491297 (2013)

10. Geman, D., Jedynak, B.: An active testing model for tracking roads in satellite
images. Pattern Analysis and Machine Intelligence, IEEE Trans. on 18(1), 1–14
(1996)

11. Girshick, R., Iandola, F., Darrell, T., Malik, J.: Deformable part models are con-
volutional neural networks. arXiv preprint arXiv:1409.5403 (2014)

12. Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification
with sets of image features. In: Computer Vision (ICCV), 2015 IEEE Intl. Conf.
on. vol. 2, pp. 1458–1465. IEEE (2005)

13. Jégou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consis-
tency for large scale image search. In: Computer Vision–ECCV 2008, pp. 304–317.
Springer (2008)

14. Jones, E., Soatto, S.: Visual-inertial navigation, localization and mapping: A scal-
able real-time large-scale approach. Intl. J. of Robotics Res. (april 2011)

15. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces.
In: Proc. of the 2007 6th IEEE and ACM Intl. Symp. on Mixed and Augmented
Reality. pp. 1–10. IEEE Computer Society (2007)

16. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In: Computer Vision and Pattern
Recognition (CVPR), 2006 IEEE Conf. on. vol. 2, pp. 2169–2178. IEEE (2006)

17. Lim, H., Lim, J., Kim, H.J.: Real-time 6-dof monocular visual slam in a large-scale
environment. In: Robotics and Automation (ICRA), 2014 IEEE Intl. Conf. on. pp.
1532–1539. IEEE (2014)

18. Mahendran, A., Vedaldi, A.: Understanding deep image representations by invert-
ing them. In: Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conf.
on. pp. 5188–5196. IEEE (2015)

19. Mur-Artal, R., Montiel, J., Tardos, J.D.: Orb-slam: a versatile and accurate monoc-
ular slam system. Robotics, IEEE Trans. on 31(5), 1147–1163 (2015)



16 Fei et al.

20. Newcombe, R.A., Davison, A.J.: Live dense reconstruction with a single moving
camera. In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conf.
on. pp. 1498–1505. IEEE (2010)

21. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Com-
puter Vision and Pattern Recognition (CVPR), 2006 IEEE Conf. on. vol. 2, pp.
2161–2168. IEEE (2006)

22. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In:
Computer Vision–ECCV 2006, pp. 430–443. Springer (2006)

23. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to
sift or surf. In: Computer Vision (ICCV), 2011 IEEE Intl. Conf. on. pp. 2564–2571.
IEEE (2011)

24. Samet, H.: The design and analysis of spatial data structures, vol. 85. Addison-
Wesley Reading, MA (1990)

25. Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct 2d-to-
3d matching. In: Computer Vision (ICCV), 2011 IEEE Intl. Conf. on. pp. 667–674.
IEEE (2011)

26. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
Visualising image classification models and saliency maps. In: Workshop at Inter-
national Conference on Learning Representations (2014)

27. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching
in videos. In: Computer Vision (ICCV), 2003 IEEE Intl. Conf. on. pp. 1470–1477.
IEEE (2003)

28. Smale, S., Zhou, D.X.: Shannon sampling ii: Connections to learning theory. Ap-
plied and Computational Harmonic Analysis 19(3), 285–302 (2005)

29. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for
the evaluation of rgb-d slam systems. In: Intelligent Robot Systems (IROS), 2012
IEEE/RSJ Intl. Conf. on (2012)

30. Swain, M.J., Ballard, D.H.: Color indexing. Intl. J. of Computer Vision 7(1), 11–32
(1991)

31. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. In: Proc.
of the Allerton Conf. (2000)

32. Torii, A., Sivic, J., Pajdla, T.: Visual localization by linear combination of image
descriptors. In: Computer Vision Workshops (ICCV Workshops), 2011 IEEE Intl.
Conf. on. pp. 102–109. IEEE (2011)

33. Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A.: Context-based vision
system for place and object recognition. In: Computer Vision (ICCV), 2003 IEEE
Intl. Conf. on. pp. 273–280. IEEE (2003)

34. Turcot, P., Lowe, D.G.: Better matching with fewer features: The selection of useful
features in large database recognition problems. In: Computer Vision Workshops
(ICCV Workshops), 2009 IEEE Intl. Conf. on. pp. 2109–2116. IEEE (2009)

35. Ulrich, I., Nourbakhsh, I.: Appearance-based place recognition for topological lo-
calization. In: Robotics and Automation (ICRA), 2000 IEEE Intl. Conf. on. vol. 2,
pp. 1023–1029. IEEE (2000)

36. Vasconcelos, N.: On the efficient evaluation of probabilistic similarity functions for
image retrieval. Information Theory, IEEE Trans. on 50(7), 1482–1496 (2004)

37. Williams, B., Cummins, M., Neira, J., Newman, P., Reid, I., Tardós, J.: A com-
parison of loop closing techniques in monocular slam. Robotics and Autonomous
Systems (2009)


	A Simple Hierarchical Pooling Data Structure for Loop Closure

