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Abstract. Depth boundaries often lose sharpness when upsampling
from low-resolution (LR) depth maps especially at large upscaling fac-
tors. We present a new method to address the problem of depth map
super resolution in which a high-resolution (HR) depth map is inferred
from a LR depth map and an additional HR intensity image of the
same scene. We propose a Multi-Scale Guided convolutional network
(MSG-Net) for depth map super resolution. MSG-Net complements LR
depth features with HR intensity features using a multi-scale fusion strat-
egy. Such a multi-scale guidance allows the network to better adapt
for upsampling of both fine- and large-scale structures. Specifically, the
rich hierarchical HR intensity features at different levels progressively
resolve ambiguity in depth map upsampling. Moreover, we employ a high-
frequency domain training method to not only reduce training time but
also facilitate the fusion of depth and intensity features. With the multi-
scale guidance, MSG-Net achieves state-of-art performance for depth
map upsampling.

1 Introduction

The use of depth information of a scene is essential in many applications such
as autonomous navigation, 3D reconstruction, human-computer interaction and
virtual reality. The introduction of low-cost depth camera facilitates the use of
depth information in our daily life. However, the resolution of depth maps which
is provided in a low-cost depth camera is generally very limited. To facilitate the
use of depth data, we often need to address an upsampling problem in which
the corresponding high-resolution (HR) depth map is recovered from a given
low-resolution (LR) depth map.

Depth map super-resolution is a non-trivial task. Specifically, fine structures
in HR image are either lost or severely distorted (depending on the scale factor
used) in LR image because they cannot be fully represented by the limited spatial
resolution. A brute-force upsampling of LR image simply causes those structures
which are supposed to have sharp boundaries become blurred in the upsampled
image. Ambiguity in super-resolving the severely distorted fine structures often
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Fig. 1. Ambiguity in upsampling depth map. (a) Color image. (b) Ground truth. (c)
(Enlarged) LR depth map downsampled by a factor of 8. Results for upsampling:
(d) SRCNN [11], (e) Our solution without ambiguity problem.

() (d)

Fig. 2. Over-texture transfer in depth map refinement and upsampling using intensity
guidance. (a) Color image. (b) Ground truth. (c) Refinement of (b) using (a) by Guided
Filtering [8] (r = 4,¢ = 0.01?). Results of using (a) to guide the 2x upsampling of
(b): (d) Ferstl et al. [4], (e) Our solution.

()

exists, especially for the case of single-image upsampling. Figure 1(c-d) demon-
strates the upsampling ambiguity problem.

To address the aforementioned problem, a corresponding intensity image’
is often used to guide the upsampling process [1-7] or enhance the low-quality
depth maps [8-10]. This is due to the fact that a correspondence between an
intensity edge and a depth edge can be most likely established. Since the intensity
image is at a higher resolution, its intensity discontinuities can be used to locate
the associated depth discontinuities in a higher resolution. Although there could
be an exception that an intensity edge does not correspond to a depth edge or
vice versa, this correspondence assumption has been used widely in the literature.

One would encounter issues too in exploiting the intensity guidance. Specifi-
cally, suppose we have a perfectly registered pair of depth map D and intensity
image Y possessing the same resolution. It is not straight forward to use Y to
guide the refinement of D or the upsampling of LR D. The variation of depth
structures in D may not be consistent with that of the intensity structures in Y
as they are different in nature. Using image-guided filtering, features in intensity
images are often over-transferred to the depth image at the boundaries between
textured and homogeneous regions. Figure 2(c—d) illustrates two examples for
the over-texture transferring problem. Our proposed method that complements
D with only consistent structures from Y can avoid this problem (Fig. 2(e)).

! Intensity image represents either a color or grayscale image. We only study grayscale
image in this paper.
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In this paper, we present a novel end-to-end upsampling network, a Multi-
Scale Guided convolutional network (MSG-Net), which learns HR features in
the intensity branch and complements the LR depth structures in the depth
branch to overcome the aforementioned problems. MSG-Net is appealing in that
it allows the network to learn rich hierarchical features at different levels. This
in turn makes the network to better adapt for upsampling of both fine- and
large-scale structures. At each level, the upsampling of LR depth features is
closely guided by the associated HR intensity features possessing the same res-
olution. The integrated multi-scale guidance progressively resolves ambiguity in
depth map upsampling. We further present a high-frequency training approach
to reduce training time and facilitate the fusion of depth and intensity fea-
tures. Note that unlike existing super-resolution networks [11,12] that require
pre-upsampling of input image by a conventional method such as bicubic inter-
polation outside the network. Our approach learns upsampling kernels inside a
network to fully explore the upsampling ability of a CNN. We show that such a
multi-scale upsampling method uses a more effective way to upscale LR images,
while capable of exploiting the guidance from HR intensity features seamlessly.

Contributions: (1) We propose a new framework to address the problem of
depth map upsampling by complementing a LR depth map with the corre-
sponding HR intensity image using a convolutional neural network in a multi-
scale guidance architecture (MSG-Net). To the best of our knowledge, no prior
studies have proposed this idea for CNN before. (2) With the introduction of
multi-scale upsampling architecture, our compact single-image upsampling net-
work (MS-Net) in which no guidance from HR intensity image is present already
outperforms most of the state-of-the-art methods requiring guidance from HR
intensity image. (3) We discuss detailed steps to enable both MSG-Net and
MS-Net to perform image-wise upsampling and end-to-end training.

2 Related Work

There is a variety of methods to perform image super resolution in the literature.
Here, we categorize them into four groups:

Local methods are based on filtering. Yang et al. used the joint bilateral filter
[1] to weight the degree of smoothing in each depth patch by considering the
color similarity between the center pixel and its neighborhood [13]. Liu et al.
designed the upsampling weights using geodesic distances [14]. With the use of
image segmentation, Lu et al. developed a smoothing method to reconstruct
depth structures within each segment [6].

Global methods formulate depth upsampling as an optimization problem
where a large cost is given to a pixel in depth map if neighboring depth pixels
have similar color in the associated intensity image but different depth values.
Diebel et al. proposed Markov Random Field (MRF) formulation, which consists
of a data term from LR depth map and a smoothness term from the correspond-
ing HR intensity image for depth upsampling [15]. Park et al. utilized nonlocal
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means filtering in which intensity features are acted as weights in depth regular-
ization [2]. Ferstl et al. used an anisotropic diffusion tensor to regularize depth
upsampling [4]. Yang et al. developed an adaptive color-guided auto regression
model for depth recovery [5]. Aodha et al. especially focused on single-image
upsampling as MRF labeling problem [16].

Dictionary methods exploit the relationship between a paired LR and HR
depth patches through sparse coding. Yang et al. sought the coefficients of this
representation to generate HR output [17]. Timofte et al. improved sparse-coding
method by introducing the anchored neighborhood regression [18]. Ferstl et al.
proposed to learn a dictionary of edge priors for an anisotropic guidance [19].
Li et al. proposed a joint examples-based upsampling method [20]. Kwon et al.
formulated an upscaling problem which consists of scale-dependent dictionaries
and TV regularization [7].

CNN-based methods are in distinction to dictionary-based approaches in that
CNN do not explicitly learn dictionaries. With the motivation from convolu-
tional dictionaries [21], Osendorfer et al. presented a convolutional sparse cod-
ing method for super-resolving images [22]. Wang et al. developed a cascade of
sparse coding based networks (CSCN) [12] that are constructed by using modules
from the network for the learned iterative shrinkage and thresholding algorithm
(LISTA) [21]. However, their decoder uses sparse code to infer a HR patch sep-
arately. All the recovered patches are required to put back to the corresponding
positions in HR image. Dong et al. proposed an end-to-end super-resolution
convolutional neural network (SRCNN) to achieve image restoration [11].

Comparing to the above methods, our CNNs exhibit several advantages.
We do not explicitly formulate an optimization problem as the global methods
[2,4,5,15] or design a fixed filter as the local methods [6,13,14] because CNN
can be trained to address the upsampling problem. In contrast to the dictionary
methods [7,19], our networks are self-regularized. No extra regularization on the
upsampled image is necessary outside the network. In distinction to other single-
image super resolution CNNs [11,12,22], our networks do not use a single fized
(non-trainable) upsampling operator. More importantly, our MSG-Net is specif-
ically designed for image-guided depth upsampling. Rich hierarchical features in
the HR intensity image are learned to guide the upsampling of the LR depth
map progressively in multiple levels towards the desired HR depth map. The
multi-scale fusion architecture in turn enables MSG-Net to achieve high-quality
upsampling performance especially at large upscaling factors.

Our work is related to the multi-scale CNNs for semantic segmentation (FCN)
[23], inferring images of chairs [24], optical flow generation (FlowNet) [25] and
holistically-nested edge detection (HED) [26]. Our network architecture differs
from theirs significantly. An upsampling network is used in [24]. A downsam-
pling network is used in HED. A downsampling sub-network followed by an
upsampling sub-network is used in FlowNet and FCN. We use an upsampling
(depth) branch in parallel with a downsampling (intensity) branch. This network
architecture has not been studied yet. In common to [23-25], we use multiple
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backwards convolutions for upsampling. But we do not use feed-fowarding and
unpooling. All the above networks do not use deep supervision except HED.

3 Intensity-Guided Depth Map Upsampling

Suppose we have a LR depth map D; which is down-sampled from its HR coun-
terpart Dj. Additionally, a corresponding HR intensity image Y} of the same
scene is available. Our goal is to recover Dy, using D; and Y3,.

We first present some insights about the upsampling architecture. These
motivate us on the design of our proposed upsampling CNNs.

Spectral Decomposition. We have observed that simple upsampling operator
like bicubic interpolation performs very well in smooth region, but sharpness
is lost along edges. Unlike SRCNN [11] and CSCN [12], we do not enlarge D,
using a fized upsampling operator and then refine the enlarged D; afterwards.
To achieve optimal upsampling, we believe that different spectral components of
D; need to be upsampled using different strategies because a single upsampling
operator is unlikely to be suitable for upsampling of all kinds of structures.

Multi-scale Upsampling. Multi-scale representation has played an important
role in the success of addressing low-level problems like motion-depth fusion [27],
optical flow generation [23] and depth map recovery [7]. Different structures in
an image have different scales. A multi-scale upsampling CNN that allows the
use of scale-dependent upsampling kernels can greatly improve the quality of the
recovered HR image especially at large upscaling factors.

3.1 Formulation

We design MSG-Net to upsample a LR image D; not in a single level but pro-
gressively in multiple levels to a desired HR image D}, with multi-scale guidance
from the corresponding HR intensity image Y. We upsample D; in m levels for
the upscaling factor 2. Figure 3 shows an overview of the network architecture.
It consists of five stages, namely feature extraction (each for Y- and D-branches),
downsampling, upsampling, fusion and reconstruction. We will discuss the details
of each stage in this section.

Overview. It is not possible to determine the absolute depth value of a pixel
from an intensity patch alone as it is an ill-posed problem. Flat intensity
patches (regardless of what intensity values they possess) do not contribute
much improvement in depth super resolution. Therefore, we complement depth
features with the associated intensity features in high-frequency domain. In other
words, we perform an early spectral decomposition of D;: D; = I(D;)+h(Dy).
By using the high-frequency (h) components of both Y and D images as the
inputs, this gives room for the network to focus on structured features for joint
upsampling and filtering. This in turn improves the upsampling performance
greatly. We have also experienced a reduction in the convergence time if the
network are trained in high-frequency domain. We obtain the high-frequency
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Fig. 3. The architecture of MSG-Net. For the ease of representation, only an upsam-
pling CNN with upscaling factor 8 is presented. There are three multi-scale upsampling
levels. Each level consists of an upsampling and a fusion stage.

components of D;, Dy, and Y; by applying a low-pass filter W; to them as
follows:

h(Dl) = Dl — Wl * Dl, (1.1)
h(Dy) = Dy, — (W % D) Pn, (1.2)
h(Yh) = Yh — Wl * Yh, (13)

where (1;)"P" performs a bicubic upsampling on I; to the same resolution as Dj,.

Suppose the upscaling factor is s = 2™, then there are M layers (including m
upsampling levels) in the main branch and 2m layers in the Y branch. MSG-Net
can be expressed as follows:

FY = U(Wf(l) * h(Yy) + b)), (feature extraction)

F],Y = g(Wz’(j) * FjY_1 + b}/), (post-feature extraction)

Y
F2J/

Fi = 0(Weqay * h(D;) + by), (feature extraction)
Fo=0 (Wd(k) * F_q + bk) , (upsampling)

= maxpool(Fggl_l), (downsampling)

A/\/\/\/\AA/\/—\
© 0 N o ot W b =
N N N N N N N N N

Fiii=0 (Wc(k+1) * (F2}2m+1—k/3)7Fk) + bk+1> , (fusion)
Froroiw =0 (Weepati) * Frp14r + brgagar ) , k' € {0,1} (post-fusion)
Fy = h(bvh) = W * Far—1 + by, (reconstruction)
Dy, = h(Dyp) + (W Dl)Tbv’l, (post-reconstruction)

where j = {2,3,5,...,2m — 1}, j/ = {4,6,...,2m}, k = {2,5,...,3m — 1} and
M = 3(m + 1). The operators * and * represent convolution and backwards
convolution respectively. Vectors (or blobs) having superscript Y in (2) belongs
to HR intensity (Y) branch of MSG-Net. W ;) /4(;) is a kernel (subscripts ¢ and
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d stand for convolution and deconvolution respectively) of size n;_1 X f; X fi X n;
(ni—1 and n; are the numbers of feature maps in the (i — 1)!* and ** layers,
respectively) and b; is a m;-dimensional bias vector (it is a scalar in the top
layer). Each layer is followed by an activation function for non-linear mapping
except the top layer. We use parametric rectified linear unit (PReLU) [28] as
the activation function (o) due to its generalization and improvement in model
fitting, where o(y) = max(0,y)+amin(0,y) and a is a learnable slope coefficient
for negative y.

Denote F' as our overall network architecture for MSG-Net and @ =
{W,b,a} as the network parameters controlling the forward process, we train
our network by minimizing the mean squared error (MSE) for N training samples
as follows:

1

L(0) = 5 30 IF(h(Yie), h(Di): ) — (DI 3)

The loss is minimized using stochastic gradient descent.

Feature Extraction. MSG-Net first decomposes a LR high-frequency depth
map h(D;) and the associated HR high-frequency image h(Y},) into different
spectral components (sub-bands) at the bottom layer and the first two layers
of the D- and Y-branches respectively. This facilitates the network to learn for
scale-dependent and spectral-dependent upsampling operators afterwards.

Multi-scale Upsampling. We perform upsampling in m levels. Backwards
convolution (or so-called deconvolution) (deconv) in the i** layer is used to
upsample the sub-bands F;_1 = {f(;_1,4),4 = 1,...,n;_1} in the (i — 1)"" layer.
Each deconv layer has a set of trainable kernels W ;) = {wd(i’j)7j =1,...,n;}
such that wgg jy = {waq k), k = 1,...,ni-1} and wq( k) is a fi x f; filter.
Deconv recovers the j** HR sub-band in the i*" layer by utilizing the depen-

dency across all LR sub-bands in the (i — 1) layer as follows:

ni—1
fagp = Zk:l Wai,jk) * fi-1,k) +0,j)- (4)
More specifically, each element in a HR sub-band is constructed by element-wise
summation of a corresponding set of enlarged blocks of pixels across all the LR
sub-bands in the previous layer. Suppose a stride s is used, each enlarged block
of pixels is centered in a 2D regular grid with length s.

Fischer et al. [25] and Long et al. [23] proposed to feed-forward and concate-
nate feature maps from lower layers. MSG-Net uses a more effective design. We
directly enlarge feature maps which originate from the previous layer without
feed-forwarding. Unlike the “unpooling 4+ convolution” (uconv) layer introduced
by Dosovitskiy et al. [24], our upsampling uses backwards convolution in which
it diffuses a set of feature maps to another set of larger feature maps. The dif-
fusion is governed by the learned deconv filters but not simply filling zeros.
More importantly, uconvs are used in their networks to facilitate the transfor-
mation from a high-level representation generated by multiple fully-connected
(FC) layers to two images but not to upsample a given LR image.
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To compromise both computational efficiency and upsampling accuracy, we
set f; for Wy to be 2s + 1. Having such a kernel size ensures that all the
inter-pixels between the demultiplexed pixels in each feature map are completely
covered by deconv filter W;. We observed that W, with a size larger than
(28 4+ 1) x (2s + 1) does not bring significant improvement.

Downsampling. The associated HR intensity image Y}, posses the same reso-
lution as HR depth map Dj. In our design, D; is progressively upsampled by
a factor of 2in a multi-scale manner. In order to match the size of the feature
maps for D and Y, we progressively downsample the feature maps extracted
from h(Y}) in the reverse pace by a convolution followed by a 3 x 3 maximum
pooling with stride = 2. Downsampling of feature maps in Y-branch can also
be achieved by using a 3 x 3 convolution with stride = 2. The resulting CNN
performs slightly poorer than the one using pooling.

Fusion. The upsampled feature maps F}, are complemented with the correspond-
ing feature maps F;zm 1-k/3) in Y-branch possessing the same resolution. The
fusion kernel W ;1) in (2.6) constructs a new set of sub-bands by fusing the
local features in the vicinity defined by W 1) across all the sub-bands of F;
and F;Em +1—k/3)" As intensity features in Y}, may not be consistent with depth
structures in Dy, a post-fusion layer is introduced to learn a better coupling. An
extra post-fusion layer is included for an enhanced fusion before reconstruction.

Reconstruction. The enlarged feature maps from the previous upsampling lev-
els are generally “dense” in nature. Due to spectral decomposition, the energy
(i.e. intensity) of each pixel in an image is distributed across different spec-
tral components. Reconstruction layer combines nj;—; upsampled sub-bands
and recovers a HR image. Finally, we convert the recovered HR h(l/)vh) from
high-frequency domain back to an ordinary HR depth map EL by a post-
reconstruction step in (2.9). This is achieved by using the upsampled low-
frequency image (W x D;)TP% in (1.2) as the missed low-frequency component
for Dh.

deconv4,
deconv3
deconv2

comvi
R ":::“ii—,
sl % el
IDZ hD) » 5% 5]

[ X
T T
Feature extraction Multi-scale upsampling Reconstruction

Fig. 4. The network architecture of MS-Net for single-image super resolution. For the
ease of representation, only a 8 x upsampling CNN is presented.
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3.2 A Special Case: Single-Image Upsampling

Removing the (intensity) guidance branch and fusion stages of MSG-Net, it
reduces to a compact multi-scale network (MS-Net) for super-resolving images
by sacrificing some upsampling accuracy. Figure 4 illustrates its network archi-
tecture. MS-Net is used for single-image super resolution. It consists of three
stages, namely feature extraction, multi-scale upsampling and reconstruction.
For an upscaling factor s = 2™, there are only (m + 2) layers. MS-Net can be
expressed as follows:

Fi = 0(Weqay * h(D;) + by), (feature extraction) (5.1)
Fy=0(Wyux Fi_1+bg),i =2,..,M — 1, (upsampling) (5.2)
Fy = h(Dy) = W (m) * Far—1 + by, (reconstruction) (5.3)
Dy, = h(Dh) (W % Dl)TDh (post-reconstruction) (5.4)

Denote F' as our overall network architecture for MS-Net and © = {W, b, a}
as the network parameters controlling the forward process, we train our network
by minimizing the mean squared error (MSE) for N training samples as follows:

L(O) = & S IIF (0 (Do) :6) (D) I (6)

The loss is also minimized using stochastic gradient descent.

SS-Net vs MS-Net: Comparing the number of deconv parameters in the
network using a single large-stride deconv layer (SS-Net) with that in a multi-
scale small-stride deconv network (MS-Net), the number of deconv parameters
for the latter one is indeed lower. Suppose all deconv layers in MS-Net have
s = 2, then there are only 25 Zmzl n;_1n; kernel parameters. If they all have
the same number of feature maps i.e. n; = ny = ... = n, then there are 25 mn?
kernel parameters. For SS-Net, there are (2! + 1)2n? kernel parameters.

4 Experiments

4.1 Training Details

We collected 58 RGBD images from MPI Sintel depth dataset [29], and 34 RGBD
images (6, 10 and 18 images are from 2001, 2006 and 2014 datasets respectively)
from Middlebury dataset [30-32]. We used 82 images for training and 10 images
for validation. We augmented the training data by a 90°-rotation. The training
and testing RGBD data were normalized to the range [0, 1].

Instead of using large-size images for training, sub-images were generated
from them by dividing each image into a regular grid of small overlapping
patches. This training approach does not reduce the performance of CNN but it
leads to a reduction in training time [23]. We performed a regular sampling on
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the raw images with stride = {22, 21, 20, 242} for the scale = {2, 4, 8,16} respec-
tively. We excluded patches without depth information due to occlusion. There
were roughly 190, 000 training sub-images. To synthesize LR depth samples {D; },
we first filtered each full-resolution sub-image by a 2D Gaussian kernel and then
downsampled it by the given scaling factor. The LR/HR patches {D;}/{ Dy}
(and {Y},}) were prepared to have sizes 20%/39%, 162/632, 122/95%, 82/127?% for
the upscaling factors 2,4, 8,16, respectively. We do not prefer to use a set of
large-size sub-images for training upsampling networks with large upscaling fac-
tors (e.g. 8x,16x). We have experienced that using them cannot improve the
training accuracy significantly. Moreover, this increases the computation time
and memory burden for training.

It is possible to train MS-Net (but not MSG-Net) without padding as SRCNN
[11] to reduce memory usage and training time. We have to pad zeros for convolu-
tion layers in MSG-Net so that the dimension of the feature maps in the intensity
branch can match that in the depth branch. We need to crop the resulted fea-
ture maps after performing backwards convolution so that the reconstructed HR
depth map Dy, is close to the desired resolution®. For consistency, we trained all
our CNNs except SRCNN and its variant with a padding scheme.

We built our networks on top of the caffe CNN implementation [33]. CNNs
were trained with smaller base learning rates for large upscaling factors. Base
learning rates varied from 3e—3 to 6e—5 for MSG-Net and 4e—3 to 4e—4 for
MS-Net. We chose momentum to be 0.9. Unlike SRCNN [11], we used stepwise
decrease (5 steps with learning rate multiplier v = 0.8) as the learning policy
because we experienced that a lower learning rate usage in the later part of
training process can reduce fluctuation in the convergence curve. We trained
each MS-Net and MSG-Net for 5e+5 iterations. We set the network parameters:
W, = %I?,, f1Y = 7,n}/ =49,ny = 64 and (f; = 5, n; = 32) for other layers. We
initialized all the filter weights and bias values as PReLU networks [28].

We trained a specific network for each upscaling factor s € {2,4,8,16}. We
adopted the following pre-training and fine-tuning scheme for MSG-Net: (1) we
pre-trained the Y- and D- branches for a 2x MSG-Net separately, (2) we trans-
fered the first two layers of them (D-branch: {convl, deconv2} and Y-branch:
{conv1Y, conv2Y}) to a plain 2x MSG-Net and then fine-tuned it. For training
MSG-Net with other upsampling factors (2™, m > 1), we transfered all the lay-
ers except the last four layers in the D-branch from the network trained with
upsampling factor 2™~! to a plain network and then fine-tuned it. We trained
SRCNNSs for different upscaling factors using the same strategy as recommended
by the authors [11]. We also modified SRCNN by replacing the activation func-
tions from ReLU to PReLU. We name this variant as SRCNN2.

2 For training 16x MSG-Net, we reduced the amount of training samples by about
35% using stride = 24 (instead of 19) in order to fulfill the blob-size limit in caffe.

3 As we used odd-size deconv kernels, both the horizontal and vertical dimension of
each feature map is one pixel lesser than the ideal one.
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Fig. 5. Visualization of the bottom-layer kernels for five CNNs trained for 8 X upsam-
pling. Their kernel sizes are: 9 x 9 for SRCNN and SRCNN2, 5 x 5 for MS-Net, 7 x 7
(Top: Y-branch), 5 x 5 (Bottom: D-branch) for MSG-Net.

4.2 Analysis of the Learned Kernels

The bottom-layer filters of SRCNN which is trained for depth map upsampling
are different than the one trained for image super resolution [11]. As shown
in Fig. ba, we can recognize some flattened edge-like and Laplacian filters. The
filters near the right of second row are completely flat (or so-called “dead” filters).
Figure 5b visualizes the filters of the trained SRCNN2. In comparison to SRCNN|,
SRCNN2 has sharper edge-like filters and fewer “dead” filters.

We trained MS-Net in two approaches: using ordinary and high-frequency
(i.e. with early spectral decomposition) domains. As shown in Fig. 5¢ and d, we
can recognize simple gradient operators such as horizontal, vertical and diagonal
filters for both of the cases. When MS-Net is trained in ordinary domain, it
first decomposes the components of LR depth map into a complete spectrum
and performs spectral upsampling subsequently. By training MS-Net in high-
frequency domain, all the bottom-layer kernels become high-pass filters. Similar
patterned filters (bottom of Fig. 5e) are present in the first layer of the D-branch
of MSG-Net as well. For the Y-branch, the learned filters (top of Fig. 5e) contain
both textured and low-varying filters.

4.3 Results

We provide both quantitative and qualitative evaluations on our image-guided
upsampling CNN (MSG-Net) and single-image upsampling CNN (MS-Net) to
the state-of-the-art methods. We report upsampling performance in terms of



364 T.-W. Hui et

al.

Table 1. Quantitative comparison (in RMSE) on dataset A.
Art Books Moebius
2x  4x  8x  16x 2x  4x  8x  16x 2x  4x  8x 16X
Bilinear 2.834 4.147 5.995 8.928 |1.119 1.673 2.394 3.525 |1.016 1.499 2.198 3.179
MRFs [15] 3.119 3.794 5.503 8.657 |1.205 1.546 2.209 3.400 |1.187 1.439 2.054 3.078
Bilateral [13]  |4.066 4.056 4.712 8.268 |1.615 1.701 1.949 3.325 |1.069 1.386 1.820 2.494
Park et al. [2] |2.833 3.498 4.165 6.262 1.088 1.530 1.994 2.760 |1.064 1.349 1.804 2.377
Guided [8] 2.934 3.788 4.974 7.876 |1.162 1.572 2.097 3.186 |1.095 1.434 1.878 2.851
Kiechle et al. [3]|1.246 2.007 3.231 5.744 |0.652 0.918 1.274 1.927 |0.640 0.887 1.272 2.128
Ferstl et al. [4] |3.032 3.785 4.787 7.102 |1.290 1.603 1.992 2.941 |1.129 1.458 1.914 2.630
Lu et al. [6] - - 5.798 7.648 |- - 2.728 3.549 |- - 2422 3.118
SRCNN [11] 1.133 2.017 3.829 7.271 |0.523 0.935 1.726 3.100 |0.537 0.913 1.579 2.689
SRCNN2 0.902 1.874 3.704 7.309 |0.464 0.846 1.591 3.123 |0.454 0.864 1.482 2.679
Wang et al. [12] |1.670 2.525 3.957 6.226 |0.668 1.098 1.646 2.428 |0.641 0.979 1.459 2.202
MS-Net 0.813 1.627 2.769 5.802 |0.417 0.724 1.072 1.802 |0.413 0.741 1.138 1.910
MSG-Net 0.663 1.474 2.455 4.574|0.373 0.667 1.029 1.601|0.357 0.661 1.015 1.633
Table 2. Quantitative comparison (in RMSE) on dataset B.
Dolls® Laundry Reindeer
2% 4x 8% 16x 2% 4x 8% 16x 2% 4x 8% 16x

Bicubic 0.914 1.305 1.855 2.625 |1.614 2.408 3.452 5.095 |1.938 2.809 3.986 5.823
Park et al. [2] |0.963 1.301 1.745 2.412 |1.552 2.132 2.770 4.158 |1.834 2.407 2.987 4.294
Aodha et al. - 1.977 - - - 2.969 - - - 3.178 - -

CLMFO [34] 0.990 1.271 1.878 2.291 [1.689 2.312 3.084 4.312 |1.955 2.690 3.417 4.674
CLMF1 [34] 0.972 1.267 1.707 2.232 [1.689 2.512 2.892 4.302 |1.948 2.699 3.331 4.774
Ferstl et al. [4] |1.118 1.355 1.859 3.574 1.989 2.511 3.757 6.407 |2.407 2.712 3.789 7.271
Kiechle et al. [3]|0.696 0.921 1.259 1.736 |0.746 1.212 2.077 3.621 |0.920 1.559 2.583 4.644
AP [5] 1.147 1.350 1.646 2.323 |1.715 2.255 2.848 4.656 |1.803 2.431 2.949 4.088
SRCNN [11] 0.581 0.946 1.518 2.445 [0.635 1.176 2.430 4.579 |0.765 1.499 2.864 5.249
SRCNN2 0.473 0.881 1.461 2.422 [0.506 1.084 2.314 4.601 |0.603 1.352 2.740 5.330
Wang et al. [12] [0.670 0.989 1.445 2.107 |1.039 1.630 2.466 3.834 |1.252 1.914 2.878 4.526
MS-Net 0.437 0.740 1.166 1.832 | 0.475 0.883 1.618 3.385 |0.556 1.107 1.972 3.921
MSG-Net 0.345 0.690 1.051 1.597|0.371 0.787 1.514 2.629|0.424 0.984 1.757 2.919
“We excluded 9 pixels for calculating RMSE as they are not filled in the ground

truth.

root mean squared error (RMSE). We evaluate our methods on the hole-filled
Middlebury RGBD datasets. We denote them as A [4], B [5] and C [19]. The
RMSE values in Tables* 1, 2 and 3 for the compared methods are computed using
the upsampled depth maps provided by Ferstl et al. [4], Yang et al. [5] and Ferstl
et al. [19] respectively, except the evaluations for Kiechle et al. [3] and Wang
et al. [12] (code packages provided by the authors), Lu et al. [6] (upsampled depth
maps provided by the authors) and SRCNN(2) (trained by ourself). The best
RMSE for each evaluation is in bold, whereas the second best one is underlined.
Since the ground-truths are quantized to 8-bit, we convert all recovered HR

4 Evaluations of several upscaling factors are not available from the authors.
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Table 3. Quantitative comparison (in RMSE) on dataset C.

Tsukuba Venus Teddy Cones

2% 4x 8% 2X% 4x 8% 2X 4x 8% 2X 4x 8%
Park et al. [2] 6.61 9.75 15.1 1.27 1.8 2.99 3.73 4.89 7.15 4.0 5.64 7.73
Li et al. [20] 8.29 11.9 15.84 |2.29 3.55 5.76 2.78 4.92 7.24 3.24 6.34 8.9
Ferstl et al. [4] 7.2 10.3 17.2 2.15 2.52 4.04 2.71 3.3 5.39 3.5 4.45 7.14
Kiechle et al. [3] 3.48 5.95 10.9 0.8 1.17 1.76 1.28 2.94 2.76 1.7 4.17 5.11
Kwon et al. [7]*> [2.31 5.56 5.67 |0.53 1.14 1.68 |0.83 1.80 2.19 |0.92 2.13 2.37
MSG-Net? 1.143 2.233 3.649|0.142 0.329 0.762|0.695 1.307 2.275 |0.807 1.772 2.748
Aodha et al. [16] 8.993 12.39 - 2.175 2.597 - 3.233 4.030 - 4.262 5.740 -
Timofte et al. [18] 9.135 12.09 - 2.099 2.331 - 3.253 3.718 - 4.257 5.490 -
Kiechle et al. [3] 3.653 6.212 10.08 |0.607 0.819 1.169 |[1.198 1.822 2.370 |1.465 2.974 4.516
Ferstl et al. [19] 5.2564 7.352 - 1.108 1.742 - 1.694 2.595 - 2.185 3.498 -
Lu et al. [6] - 10.29 13.77 |- 1.734 2.134 |- 2.723 3.468 |- 3.985 5.344
SRCNN [11] 3.275 7.939 11.28 |0.456 0.789 1.706 |1.170 1.985 3.252 [1.484 3.585 5.180
SRCNN2 2.796 7.178 11.20 |0.315 0.718 1.593 |0.947 1.891 3.136 |1.183 3.439 5.171
Wang et al. [12] 3.979 6.281 9.589 |0.828 1.191 1.786 |1.368 2.026 3.015 |1.856 3.078 4.865
MS-Net 2.472 4.996 9.986 |0.259 0.422 0.881 |0.822 1.533 2.874 |1.100 2.770 5.217
MSG-Net 1.848 4.292 8.428|0.142 0.346 1.040|0.713 1.485 2.760|0.905 2.595 4.229

#The reported values in the top-half of Table 3 are obtained from their supplementary
material. Please note that depth maps for [7] are initialized using Park et al. [2].
PWe used the RMSE calculation suggested by [7]: (1) Depth maps are normal-
ized, (2) compute the absolute difference and convert it to uint8 and (3) calculate
RMSE.

depth maps in the same data type in order to have a fair evaluation. Following
[6,7,19], we performed evaluation on dataset C' only up to 8x due to the low
resolution (< 450 x 375) of the ground-truths.

As shown in the three tables, our single-image upsampling CNN (MS-Net)
achieves state-of-the-art performance. SRCNN2 performs better than the orig-
inal SRCNN due to the use of PReLU as the activation function. Although
MS-Net and SRCNN(2) are both designed for single-image super resolution,
MS-Net outperforms SRCNN(2). This is because MS-Net performs image upsam-
pling but not image refinement as SRCNN(2). MS-Net (and also MSG-Net) are
trained to learn different upsampling operators for different spectral components
of LR depth map. They are not constrained only to a fixed non-trainable upsam-
pling operator. The upsampling performance is further improved when MSG-Net
upsamples LR depth map with the guidance from HR intensity image of the same
scene. This in turn allows MSG-Net to outperform MS-Net. Figure 6 shows 8x
upsampled depth maps for different methods. It is observed that HR depth
boundaries reconstructed by MSG-Net are sharper than the compared methods.
The evaluations suggest that multi-scale guidance has played an important role
in the success of depth map super resolution in MSG-Net.

The Role of Guidance. We evaluate several variants of MSG-Net at upscaling
factor 8: (1) MS(woG)-Net (without Y-branch), (2) MSG(2,4)-Nets (Intensity-
guidance only applied at deconv(2,4) respectively) and (3) MSG-Net(ord)
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Fig. 6. Upsampled depth maps for dataset A. (a) Color image and ground-truth depth
patches. Upsampled results from (b) Ferstl et al. [4], (c) Kiechle et al. [3], (d) SRCNN
[11], and (e) MSG-Net.

(trained in ordinary domain). As summarized in Table4, MSG-Net outper-
forms the others. Comparing to the partially guided variants MSG(2,4)-
Nets, MS(woG)-Net loses some upsampling performance due to the absence of
guidance branch.

Table 4. RMSE for different vari- Table 5. Computation time (sec).
ants of MSG-Net with upscaling
factor 8. 2x | 4x  |8x | 16X
MS-Net | 0.211 | 0.221 | 0.247 | 0.277
Art Reindeer | Cones
MSG-Net | 0.247 | 0.296 | 0.326 | 0.368
MS(woG)-Net | 2.596 | 1.801 4.667 -
MSG(2)-Net | 2.510 | 1.866 4.514 @35// _____
MSG(4)-Net | 2.574 | 1.788 4.249 %u fomeriictes e
) ——MS-Net
MSG-Net(ord) | 3.110 | 2.386 5.105 2[ ; i MS-Netord)
0 05 1 15 2 2.5_ »3 35 4 45 1055
SSG-Net 2.770 | 1.954 4517 Number o eraons x
MSG-Net 2.455 | 1.757 | 4.229 Fig. 7. Convergence curves.
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The Role of Multi-scale Upsampling. We consider the single-scale variant
of MSG-Net: SSG-Net (deconv4 uses stride = 8, conv3Y - pooldY in Y-branch
and deconv2 - conv3_2 in D-branch are removed). As shown in Table4, SSG-Net
performs poorer than MSG-Net. This suggests that multi-scale architecture is
necessary in guided upsampling.

Training in Frequency-Domain. As presented in Table 4 and Fig. 7, MSG-Net
not only performs better than its ordinary-domain trained counterpart MSG-
Net(ord) in upsampling accuracy but it also converges faster. The difference in
the speed of convergence is more obvious between MS-Net and MS-Net(ord).
This verifies our motivation in earlier section that using high-frequency domain
can facilitate depth-intensity fusion and reduce training time.

Timings. We summarize the computation time for upscaling different LR depth
maps Art to their full resolution (1376 x 1088) using MS-Net and MSG-Net in
Table 5. Upsamplings were performed in MATLAB with a TITAN X GPU.

5 Conclusion

We have presented a new framework to address the problem of depth map upsam-
pling by using a multi-scale guided convolutional neural network (MSG-Net).
A LR depth map is progressively upsampled with the guidance of the associated
HR intensity image. Using such a design, MSG-Net achieves state-of-the-art per-
formance for super-resolving depth maps. We have also studied a special case
of it for multi-scale single-image super resolution (MS-Net) without guidance.
Although sacrificing some upsampling performance, MS-Net in turn has a com-
pact network architecture and it still achieves good performance.

Acknowledgment. This work is partially supported by SenseTime Group Limited.
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