Large-Scale R-CNN with Classifier Adaptive
Quantization

Ryota Hinami®?) and Shin’ichi Satoh

National Institute of Informatics, The University of Tokyo, Tokyo, Japan
{hinami,satoh}@nii.ac. jp

Abstract. This paper extends R-CNN, a state-of-the-art object detec-
tion method, to larger scales. To apply R-CNN to a large database storing
thousands to millions of images, the SVM classification of millions to bil-
lions of DCNN features extracted from object proposals is indispensable,
which imposes unrealistic computational and memory costs. Our method
dramatically narrows down the number of object proposals by using an
inverted index and efficiently searches by using residual vector quantiza-
tion (RVQ). Instead of k-means that has been used in inverted indices,
we present a novel quantization method designed for linear classification
wherein the quantization error is re-defined for linear classification. It
approximates the error as the empirical error with pre-defined multiple
exemplar classifiers and captures the variance and common attributes of
object category classifiers effectively. Experimental results show that our
method achieves comparable performance to that of applying R-CNN to
all images while achieving a 250 times speed-up and 180 times memory
reduction. Moreover, our approach significantly outperforms the state-
of-the-art large-scale category detection method, with about a 40~58 %
increase in top-K precision. Scalability is also validated, and we demon-
strate that our method can process 100 K images in 0.13 s while retaining
precision.

Keywords: Image retrieval - Object detection + Image indexing

1 Introduction

With the explosive increase in multimedia data in recent years, there is a grow-
ing demand for information retrieval from large image/video databases. Large-
scale object retrieval is a well-researched task that is used in many applications.
Its purpose is to retrieve specific objects in a large image database as quickly
as possible (i.e., immediately). Most of the existing object retrieval methods
exploit the bag-of-visual-words (BoVW) model, where objects are retrieved using
local descriptor matching. This approach is suited to specific objects (e.g., build-
ings, logos), but not to objects of generic categories (e.g., cat, bicycle), because
Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-46487-9_25) contains supplementary material, which is available to
authorized users.
© Springer International Publishing AG 2016

B. Leibe et al. (Eds.): ECCV 2016, Part III, LNCS 9907, pp. 403—419, 2016.
DOI: 10.1007/978-3-319-46487-9_25

http://dx.doi.org/10.1007/978-3-319-46487-9_25
http://dx.doi.org/10.1007/978-3-319-46487-9_25

404 R. Hinami and S. Satoh

local descriptor matching cannot capture the variation within a category well
enough. A popular object categorization is based on the deformable part model
(DPM) [1,2], which uses HOG features instead of local descriptors to better
describe object appearances in combination with SVM. R-CNN [3] extends the
DPM by using convolutional neural network (CNN) features and achieves a sig-
nificant improvement in accuracy. However, performing immediate object cate-
gory detection on a large image database has not been tried until quite recently.

Recently, Aytar and Zisserman [4] attempted a large-scale object category
detection. Unlike the traditional sliding window approach, their method achieved
immediate detection throughout a large scale dataset. They developed a sparse
representation of a HOG classifier and a new mid-level image representation
using a vocabulary of classifier patches and performed fast retrieval using an
inverted file index. Although this method achieved immediate retrievals on large-
scale image datasets, its accuracy was significantly lower than that of the original
sliding window-based approach. Moreover, because the performance of object
category detection has significantly improved recently, this method still has a
large performance gap compared with state-of-the-art object category detection.
Most of the other work on accelerating object detection such as [5-9] assume
that images are unknown (pre-processing of images is not permitted) and their
runtime grows linearly with the number of images, namely the method that can
process 150 images per second takes over 10 min to detect objects from 100 K
images, which is far from large-scale immediate object detection. Although other
studies [10,11] have focused on fast object retrieval and detection simultaneously,
both methods are based on BoVW models designed for specific object retrieval
and are thus not suitted to object category detection.

The performance of object category detection has dramatically increased in
the past few years. Previously, the sliding window-based method with a HOG-
based classifier such as DPM [1,2] was widely used. Recently though, R-CNN [3]
and its enhancements [12-14] have shown significant performance boosts over
conventional methods. The key ideas of R-CNN are (1) limiting candidates by
using object proposal instead of the exhaustive search with sliding window, and
(2) exploiting features learned by a DCNN, which results in high classification
accuracy even with linear SVM. Our objective is to apply R-CNN to all images
in a large database immediately. However, this is a very difficult problem even
if pre-processing using a database is permitted, because the number of object
proposals grows to the millions or even billions if the database stores thousands
to millions of images. That is, to apply R-CNN to a large database, we must
classify millions to billions of high-dimensional vectors with linear SVM, which
imposes high computational and memory costs.

Litayem et al. [15] accelerated the prediction phase of linear SVM by
using locality sensitive hashing (LSH) [16]. LSH compresses the original high-
dimensional vectors into small binary codes. A linear SVM classifier is then
approximated by using the Hamming distance between the hashed data and the
hashed hyperplane of the classifier, which can be computed extremely quickly.
Although it achieves both high levels of compactness and computational effi-
ciency, it assumes that all features x are Lo-normalized (||z| = 1), and thus,

Large-Scale R-CNN with Classifier Adaptive Quantization 405

(a) k-means (b) error for a given classifier (c) Classifier Adaptive Quantization (CAQ)
1 -
ee o ! « o - :: \. PN
] '.. : ..'. —_,”” ,/... /
° L ° - ° - Mol
Y

margin of
exemplar

margin of * classifiers

.
- .
// [
< /error quantized data v ° _3.~
. . = 2

error = E2 distance error = difference of margin error = empirical effor_f_or
a set of exemplar classifiers

Fig.1. An intuitive illustration of the difference in the quantization error between
(a) the error defined by k-means and (b) the error in terms of a given classifier. (c)
illustrates the error of CAQ, where red arrows indicate the error for each exemplar
classifier (the error of CAQ is the sum of these).

information on the original unnormalized feature is lost. Although many work
have investigated the scalable SVM such as [17], most of them focus on the accel-
eration of the training phase and there is few work that focus on the acceleration
of the prediction (testing) phase.

Recent progress in approximate nearest neighbor (ANN) searches has made
it possible to handle billions of vectors efficiently. Several approaches have been
studied for selecting nearest neighbor candidates from large amounts of vectors
quickly, including tree-based indexing (e.g., k-d tree [18] and FLANN [19]), and
hashing represented by LSH [16]. Product quantization (PQ) [20] is a widely
used approach to compress vectors into very short code so that all vectors can
be stored in memory. PQ divides the feature space into a Cartesian product of
subspaces that are quantized independently, which permits much finer quanti-
zation with an efficient learning procedure. PQ also permits efficient distance
computations with a table lookup. Moreover, it has been shown to be more
accurate than hashing-based methods such as spectral hashing [21] and ham-
ming embedding [22].

An inverted index is another useful technique to avoid brute-force scans in
large-scale searches. Inverted indices are built upon codewords learned from large
datasets, and each codeword stores a list of data. This allows immediate access
to a list of vectors close to any query vector and enables one to reduce the
search time significantly over that of an exhaustive scan. The effectiveness of an
inverted index for image retrieval was first demonstrated by Sivic and Zisserman
in [23]. Jegou et al. in [20] also exploited an inverted index wherein the inverted
list stores PQ-compressed data instead of the image IDs and performed well on
billion-scale ANN searches. Most recent ANN search methods are based on this
system, which is called IVFADC and combines an inverted index with coarse
quantization and reranking based on compact code.

An inverted multi-index (IMI) [24,25] is the current state-of-the-art index-
ing method of ANN searches; it is used instead of normal inverted indices.
IMI achieves much finer subdivisions of the search space by constructing an

406 R. Hinami and S. Satoh

inverted index using PQ. However, in our case, we find IMI does not improve the
performance or even worse than IVFADC (k-means) in some cases (discussed in
Sect. 4.4). Therefore, we use the standard inverted index and explore another
novel quantizer suited to our task that improves performance without using
IMI.

In this paper, we extend R-CNN to larger scales by incorporating state-of-
the-art ANN search techniques (IVFADC). Our method narrows down a huge
amount of feature vectors extracted from object proposals by using an inverted
index and efficiently applies linear SVM by using fast distance computation with
compressed code. We use residual vector quantization (RVQ) [26,27] to compress
data instead of PQ because RVQ achieves significantly better performance than
PQ does at a similar cost in our task.

In addition, we present a novel quantizer designed for linear classification
to improve the performance of the inverted index. Most inverted indices meth-
ods utilize k-means, wherein the quantization error is defined as the Euclidean
distance between a data point and its assigned codeword, and learns the code-
book that minimizes the error. Although it is effective in a ANN search whose
objective is to find the closest vector in Euclidean space, it is not suited to our
task. We therefore re-define the quantization distortion that adapts a large-scale
linear classification task. The basic idea is to define the quantization error as the
difference in classification score before and after quantization as in Figure1 (b).
However, this error depends on the classification boundary which, as indicated
by the red line in Fig. 1, is defined by each object category we want to detect, and
is unknown in advance. We therefore prepare exemplar classifiers, a set of cate-
gory classifiers trained beforehand and approximate the quantization distortion
by their empirical error. This is equivalent to k-means with another metric that
can capture the variation and essence of object classifiers, as shown in Fig. 1 (c).
We demonstrate that this quantization, called Classifier Adaptive Quantization
(CAQ), is more effective than k-means in our task. It even outperforms IMI that
is a state-of-the-art ANN search. We demonstrate our method—index inversion
by CAQ and RVQ compression—can perform object detection immediately from
a large database (takes 0.12 second from 100 K images) while retaining the high
accuracy of R-CNN, and thereby demonstrating that ANN search techniques are
extremely effective at immediate large-scale object category detection.

Contributions. Our contributions are as follows: (1) a large-scale R-CNN archi-
tecture using the state-of-the-art techniques of an ANN search. It achieves excel-
lent memory and computational efficiency while retaining the high level of accu-
racy of R-CNN, which itself outperforms a recent state-of-the-art large-scale
object detection method by 40~58 % in top-K precision; (2) classifier adaptive
quantization, a novel quantization method for linear classification that performs
better than traditional k-means in large-scale object detection tasks. To the best
of our knowledge, no quantizations has been designed for linear classification.

Large-Scale R-CNN with Classifier Adaptive Quantization 407

Offline procedure: Classifier Adaptive Quantization Exampler classifiers
= SmmIN TN
i - coarse P K4 II/ . H2
L | : quantization e | '/’ v 2 reate
. -
=L -

RVQ Compression

. -) .
~_ - PN inverted list

e < .
L _ DT i
. 70 e M °
object proposals CNN features /g I\ -
(oo o toss

(~2K/image) (~200M)

Online procedure:
scan pa H2
centroids

\ S(2)
SVM: h(x) = wx+b |:> M
object category classifier 1St

1S(u)
(query) K

Fig. 2. Architecture of the proposed method.

2 Overview of Large-Scale R-CNN

In this section, we briefly overview our method. Our objective is to apply R-
CNN [3] to all images in a large database immediately. R-CNN consists of the
following steps: (i) detect object proposals by using a selective search; (ii) extract
CNN features from the object proposals; (iii) apply SVM to the extracted fea-
tures. In our setting, because the image database is given in advance, steps (i)
and (ii) can be done offline. Therefore, our main focus is step (iii), i.e., applying
SVM to a large amount of vectors efficiently.

The database consists of N images and around 2000 object proposals are
detected in each image (n; proposals from the ith image). v;; (i = 1,...,N,
j=1,..,n;) is a D-dimensional DCNN feature vector (D = 4096 in our case)
extracted from each object proposal. SVM computes the classification score
S(v;j) = w-v;; —b, where w and b represent the hyperplane and bias of the
SVM classifier. Since the total number of v; ;s is very large in a large database,
computing the classification score for all vectors entails a huge number of com-
putations and takes up a huge amount of memory. However, we can solve this
problem by using an inverted index and reranking based on compact code.

2.1 Offline Procedure

Fig.2 is an overview of our method. Our approach can be divided into offline
and online procedures. The offline procedure is performed as follows:

1. Detect proposal objects and Extract features: We follow a similar pro-
cedure to that of R-CNN. Object proposals are first detected in a selective
search [28], entailing around 2000 proposals per image. Around 2000 x N pro-
posals are thus obtained from the image datasets. DCNN features are then
extracted from each proposal.

2. Construct an inverted index: To avoid an exhaustive search, we construct
an inverted index. We use a structure similar to the one proposed in [20].
Feature vectors v; ; are quantized coarsely into k clusters represented by &
codewords ¢(1), ..., c(k) (k-means is used in [20]). An inverted index is then

408 R. Hinami and S. Satoh

constructed with k lists L1, ..., Ly, where each list L; stores data that belongs
to the corresponding cluster with a codeword ¢(7). Instead of k-means, we use
a novel quantization designed for linear classification (see Sect.3). We call
this Classifier Adaptive Quantization (CAQ).

Compress data with residual vector quantization: To reduce mem-
ory and computational costs, feature vectors are stored in an inverted file
structure after compressing them into small codes. We take a product quan-
tization (PQ)-based approach [20]. Although it is mainly used for Euclidean
distance approximations, it can be easily extended to approximations of inner
products. We tested various compression method and found that residual vec-
tor quantization (RVQ) [26,27] has significantly better performance than PQ
or optimized product quantization (OPQ) that is used in IVFADC and IMI.
Figure 3 shows a comparison of object detection performance with compressed
features. It also indicates the number of sub-codebooks M should be large
enough (M=32 to 128) to achieve sufficient object detection performance
with compressed codes.

RVQ learns multiple sub-codebooks one by one by minimizing the error
greedily. The first sub-codebook is learned by performing k-means on original
vectors. The second sub-codebook is learned by performing k-means on resid-
ual vectors with respect to the assigned codewords of the first sub-codebook,
which is a similar process to the residual encoding used in IVFADC. This
process is repeated until all sub-codebooks are learned. RVQ is also related
to additive quantization (AQ), where the vector is approximated by the sum
of codewords from different codebooks. However, encoding of AQ using such
and such a method becomes too slow as the number of codebooks grows,
and this makes it impossible to compress a large number of high-dimensional
CNN features. Therefore, we decided to use RVQ with M=64.

We do not encode the residual vector with respect to the coarse quantizer
as in IVFADC [20] because we found that residual encoding does not improve
performance. This suggested that the quantization of CNN features has to
be extremely fine in order to achieve reasonable performance (M=64), and
therefore, the effect of coarse quantization is more limited than in the original
IVFADC (M=~16 is used).

2.2 Online Procedure

Next, we describe the online procedure of the proposed architecture. We assume
that an SVM classifier h(z) = wqy - © + b, is given as query. We scan an inverted
file structure by using the following procedure:

1.

Scan the codewords of the coarse quantizer: Query SVM is applied to
codewords of an inverted index; i.e., a classification score S(c(2)) = wq-c(i)+b,
is computed for each codeword ¢(i)(i = 1, ..., k).

Scan the data in list with the highest score: The codewords with [
highest score c¢(i1), ¢(i2), ..., ¢(i;) are selected, and their corresponding inverted

Large-Scale R-CNN with Classifier Adaptive Quantization 409

mAP

— R-CNN
o PQ
-4 OPQ
= RVQ

Fig. 3. Comparison of data compression methods on the PASCAL VOC 2007 object
detection task. R-CNN calculates detection scores for all object proposals by applying
SVM to the original DCNN features. The detection procedures of PQ, OPQ, and RVQ
are also based on R-CNN, but approximate the SVM score by using compressed codes.

lists L;,, Lj,, ..., L;, are scanned. The inner product wq - v is approximated by
the inner product between the query and RVQ-compressed data, i.e., wq-v ~
Wq - Z%Zl Cm(tm) ~ Zle Wq * Cm (i), Where ¢, (ir,) is the i,,th codeword
of the mth sub-codebook assigned to v. This can be computed very quickly
using a pre-computed distance table. The table is created in a manner similar
to the asymmetric distance computation (ADC) in [20]

3. Perform non-maximum suppression and output results: The scanned
candidates are sorted in the order of the computed score, and a ranked list
is output after non-maximum suppression (NMS). NMS rejects regions that
overlap with a higher scoring region and have an intersection-over-union (IoU)
value of > 0.3. Note that if only the top-K scoring objects have to be detected,
NMS is applied to only the top-ranked regions.

3 Classifier Adaptive Quantization

3.1 Quantization Distortion for Linear Classifier

In this section, we describe a quantization method suited to linear classification.
K-means is a popular vector quantization method that is optimal for some tasks
including a nearest neighbor search by minimizing the quantization distortion.
It defines the quantization distortion as:

B= 5w cfie) 7 (1)

where || - || denotes the ls-norm, n is the total number of data samples, i, is
a codeword ID assigned to data z, and the i,th codeword is denoted as ¢(i).
K-means learns the codebook minimizing this distortion.

Although k-means is suitable for nearest neighbor searches wherein the error
is defined by the distance between a query and a data point in a Euclidean space,
we assert that it is not optimal for linear classification. In our case, through the
quantization process, the classifier score of the original data is approximated by
the score of the quantized data. Therefore, it is natural that the quantization

410 R. Hinami and S. Satoh

error is defined by the difference in the classifier score before and after quanti-
zation, as illustrated in Fig. 1. Here, we denote the hypothesis of a certain linear
SVM classifier as h(z) = w -z +b. We can define the quantization distortion for
this classifier as follows:

B=2 3w —wci)?, 2

where the bias b is canceled by taking the difference and does not affect the quan-
tization distortion at all. Although this distortion can be defined if the classifier
is known in advance, the classifier is often given as a query in a retrieval task, and
hence would be unknown before it is given. We thus modify this quantization
distortion to be able to deal with unknown classifiers.

We prepare a set of SVM classifiers trained on a variety of categories
(180 ~ 2000 classifiers in our case). We call them exemplar classifiers. We
approximate the distortion for any query classifier by the empirical error of
these exemplar classifiers. We assume they capture common attributes in any
category of classifiers, as well as their variance. The training of exemplar classi-
fiers is detailed in Sect. 4.1. Let us denote the hyperplanes of exemplar classifiers
as {w(l), w® . w(”w)}, w® € RP, where n,, is the number of exemplar classi-
fiers, and these form the rows of a matrix W € R™» <P We define the empirical
distortion of exemplar classifiers as follows:

B= 3 W - Welio) |, 3)

which is the distortion of the classifier adaptive quantization (CAQ) we present.
By minimizing F, we can expect reasonable performance for all possible object
classifiers. Furthermore, we use it below to formulate the encoding and codebook
learning.

3.2 Encoding and Codebook Learning

In this section, we formulate the encoding and codebook learning of CAQ and
show that they can be performed by revising the k-means algorithm with little
additional cost. First, let us consider the task of encoding, i.e., finding the code-
word assigned to a data sample x. An assignment i, that minimizes the coding
error is obtained by solving the following equation:

iy = argmin Wz — We@)||?, (4)

which is equivalent to doing a nearest neighbor search to data projected by W.

Next, let us show how to learn a codebook that minimizes the distortion
in Eq. (3). Similarly to k-means, we take an alternating optimization strategy
wherein the codebook and assignment are optimized alternately. The minimiza-
tion over the assignment ¢ with a fixed codebook is performed by solving Eq. (4).

Large-Scale R-CNN with Classifier Adaptive Quantization 411

The following equation is used to update a codebook given an assignment:

¢(i) = arg min Z W —We@i)|?, (5)
e(?) TEN;

where N; is the set of data samples assigned to codeword c(7). If ¢(i) is the
centroid of the cluster (c(i) = n% > zen, T, where n; is the size of N;), Eq. (5)
is satisfied. From Egs. (4) and (5), we can see that this problem is equivalent
to the k-means if data samples are Wz and codewords are We(i). Therefore,
assignments can be obtained simply by applying k-means in the subspace into
which the data samples are projected by W, which is equivalent to the k-means
with Mahalanobis distance. Since the codewords are defined in a data space,
they can be obtained as the centroids of the data assigned to each cluster.

CAQ is based on the simple k-means algorithm, which has two merits. Firstly,
we can make use of the rich literature on k-means and distributed implemen-
tations, e.g., clustering with large datasets and vocabularies can be efficiently
performed using fast k-means such as [29]. Secondly, CAQ is easily incorporated
into other systems based on k-means, such as joint inverted indexing [30]. Note
that although W can be generated with other metric learning approaches, we at
least confirmed that CAQ outperformed the Mahalanobis metrics. This is true
because the CAQ metric considers the bias of the object category classifier while
the Mahalanobis metric considers only the distribution of the data.

4 Experiments

4.1 Datasets and Implementation Details

We used the popular PASCAL VOC 2007 detection dataset to evaluate our
method. The test set consisted of 4952 images from 20 different categories. In
addition, the validation set of ILSVRC 2011 and 2012 [31] (100K images in total)
were used as distractors in the large-scale experiments. A previous study [4] also
used these distractors to evaluate large-scale category detection.

Our implementation was based on R-CNN. We used the same network as
R-CNN, which was pre-trained for ImageNet classification and fine-tuned for
PASCAL VOC object detection. We used 4096-dimensional fc7 feature vectors.
Different from R-CNN, our method is designed for large-scale data, as explained
in Sect. 2; data is accessed through an inverted index and each inverted list stores
data compressed by RVQ. To learn the codebook, we used randomly selected
regions detected with a selective search. We used 500000 samples to learn a
codebook for coarse quantization (an inverted index) and 100000 samples for
the quantization of the data compressions (PQ, OPQ and RVQ). PQ, OPQ,
and RVQ set K=256 as the size of the sub-codebook (8 bits assigned per sub-
codebook) in all experiments, while k=4096 and 16384 are used for coarse quan-
tization. We used hard negative mining to train the SVMs used in the test phase
(the same training algorithm and hyper-parameters as in the original R-CNN).

412 R. Hinami and S. Satoh

The training and validation parts of the PASCAL VOC 2007 (5011 images
in total) were used to train the SVMs and learn the codebooks.

In addition, we prepared exemplar classifiers for CAQ. Here, we describe how
we constructed these exemplar classifiers W. The training set of the ILSVRC
2014 detection datasets, which has 200 categories, was used to train detectors.
This set is completely separated from the test datasets. We constructed four sets
of exemplar classiﬁers, W180, WQO(), ngoo, and WQOQ(). W200 was formed from 200
classifiers trained on 200 categories of the ILSVRC training set. Wigy excluded
the 20 categories corresponding to PASCAL VOC from these 200 categories.
Wapoo and Wigge were constructed from 200 and 180 categories of ILSVRC; ten
detectors were constructed from each category. For each category, 10 sets of 500
positive samples were randomly selected from the training set of ILSVRC and
they formed 10 detectors (one detector per set). Wagg and Waggg were not used
in most of our experiments in order to strictly reproduce the situation that the
query is completely unknown during training.

In addition to these four sets, we used eigen queries as exemplar classifiers
(introduced in [32]). We generated eigen queries from Wiyggg. Here, we performed
eigenvalue decomposition on the covariance matrix of Wiggy and selected eigen-
vectors corresponding to the largest d eigen values to be eigen queries that were
the principal components of Wiggg.

4.2 Comparison with R-CNN

We first demonstrate that our method compares well with R-CNN on the
PASCAL VOC 2007 dataset. We compared R-CNN with three versions of
our method: (i) an exhaustive search where all feature vectors compressed by
RVQ are scanned (referred to as RVQ), (ii) a non-exhaustive search where
an inverted index is constructed by CAQ and inverted lists store the original
4096-dimensional vectors (referred to as CAQIVF + original), and (iii) a non-
exhaustive search where inverted lists store RVQ-compressed vectors (referred
to as CAQIVF 4+ RVQ). M =64 (64 bytes code) was used in RVQ, and k=16384
and [=64 were used in the inverted file retrieval. We used Wiggg as the exemplar
classifiers for CAQ. Note that R-CNN which is used as baseline in this paper
corresponds to an exhaustive search to the original 4096-dimensional vectors,
and other settings (e.g., feature extraction are done offline) are the same as our
method.

Table 1 shows the average precision on PASCAL VOC 2007 for our three
versions and R-CNN as a baseline. Our methods compare well with R-CNN;
even the non-exhaustive retrieval RV(Q compression (CAQIVF + RVQ) achieved
a mAP of 50.1 %, while R-CNN obtained a mAP of 54.2 %. Next, we evaluated
the efficiency. Table 2 lists the number of code comparisons, timings, and amount
of memory used. The number of code comparisons and the timings are the means
over PASCAL’s 20 categories. The results for CAQIVF + RVQ show the first
scan for codewords of the inverted index and the second scan for compressed
vectors separately. RVQ achieved a 90x speed-up and 256X memory reduction
compared with R-CNN, which demonstrates the efficiency of RVQ compression.

Large-Scale R-CNN with Classifier Adaptive Quantization 413

CAQIVF + RVQ reduced the number of comparisons from about 10M to 42K,
including both codewords and compressed data, which led to a 250x faster (and
180x memory efficient) search compared with R-CNN. An inverted index is
more effective on a larger database, as we show later in Sect. 4.6. Note that the
timings in Table 2 exclude the NMS processing, because it depends on the way
of evaluation. We found that NMS takes 0.1s to detect all objects on PASCAL
VOC 2007 and takes ~10ms to detect the top-100 scored objects. It should be
noted that our method is compatible with Fast and Faster R-CNN and offline
processing time for feature extraction can be reduced by using these methods.

Table 1. Comparison of our method with R-CNN on PASCAL VOC 2007 (%). M =64,
k=16384, and [=64 were used for our methods.

VOC 2007 aero bike bird boat bott bus car cat chair cow table dog horse mbik pers plant sheepsofa train tv = |mAP
R-CNN 64.3 69.6 50.1 41.9 32.1 62.6 70.9 60.9 32.7 58.5 46.2 56.1 60.4 67.2 54.1 31.5 52.8 48.9 57.8 64.8 [54.2
RVQ(Exhaustive) [62.8 66.6 46.5 38.0 29.0 62.2 68.5 59.5 26.1 54.8 45.3 49.9 56.3 66.0 53.1 28.5 52.9 455 522 62.3 |51.3
CAQIVF+original|61.1 67.8 48.3 40.0 32.5 62.4 67.9 57.9 28.6 57.1 449 553 58.4 66.4 479 30.8 53.4 47.5 56.1 64.4 (52.4
CAQIVF+RVQ [60.3 65.6 44.9 36.7 28.9 60.7 66.9 56.8 25.0 53.0 45.7 49.1 55.5 65.6 47.0 27.2 52.4 449 50.9 61.8 [50.0

4.3 Evaluation of CAQ

In this section, we make a detailed evaluation of CAQ. We constructed an
inverted file structure by using coarse quantization with CAQ. For pure eval-
uations of the performance of CAQ as a quantizer of an inverted index, we
measured the recall without RVQ re-ranking. Recall is defined as the number
of relevant objects in a list returned by the inverted index divided by the total
number of ground truth objects. The performance of k-means was also mea-
sured as a baseline. To investigate the effect of exemplar classifiers, we tested
four different cases: Wigg, Wago, Wisoo, and Waggo. We also used eigen queries
as exemplar classifiers while varying the number of eigenvectors d.

Figure4(a), (b) show the recall as a function of the list length, i.e., the number
of codes returned by an inverted index. We used codebook sizes of k=16384in
(a) and k=4096in (b) and varied I, the number of lists to be scanned, from 1
to 128. All our methods using CAQ outperformed k-means, which demonstrates
the superiority of CAQ over k-means as an inverted index of this task. The
performance on Wagy (Wagoo) was higher than on Wigy (Wiggo). This indicates
that the accuracy depends on whether exemplar classifiers include the same
category as the query. In addition, Wiggg (Wagoo) was higher than Wigy (Wisgo)-
It appears that exemplar classifiers with a larger number of classes can better
capture the essence of the category classifier. The eigen queries method with
d = 180 was inferior to Wiggg, but superior to Wigg in most case, especially
with a larger list length. The results of eigen queries for various d are shown in
Fig.4(c). The highest recall was on d = 100,200, although the value is not so
sensitive to changing d. Although accuracy of the eigen queries was not so good,
it can reduce the computational cost of encoding and learning the codebook, an
effect that stands out when the number of exemplar classifiers is large.

414 R. Hinami and S. Satoh

Table 2. Number of code comparisons, search time, and memory consumption in
PASCAL VOC 2007 test (4952 images). The accuracy of the corresponding methods
are shown in Table 1. The times were measured on a single core.

Method Comparisons | Search time | Memory
R-CNN 9927228 6258.5ms | 163GB
RVQ 9927228 69.5ms |0.64GB
CAQIVF + original | 41892 518.0ms | 163GB
CAQIVF + RVQ

inverted index 16384 15.0ms |0.27GB
compressed 25508 6.5ms |0.64GB
total 41892 24.5ms |0.91GB

(a) k=16384 (b) k=4096

o (c) eigen queries

Jra” 0.6f

recall
recall

= -8 k-means i =& kmeans y ——A—————4 |
0.4 e—e CAQ(1800) | 0.4 - e—e CAQ(1800) o A./'.r/ —
B8 CAQ(2000) e B8 CAQ(2000) : s k=16384,1=16
o v-v CAQ(180) Vv CAQ(180) o—o k=16384, =64
7 +—¢ CAQ(200) L 4 CAQ(200) =& k=4096, |=4
a—a CAQ(eigen) a-4 CAQ(eigen) — k=4096, =16

0.2 7 0.2 g 0
0 10) X 10 20 0 100 200 500 1000
list length T list length T d

Fig. 4. Evaluation of CAQ on PASCAL VOC 2007. (a), (b): Recall as a function of
the candidate list length. CAQ (eigen) used eigen queries with d=180. The codebook
size is k=16384in (a) and k=4096in (b). (c): using eigen queries as exemplar classifiers
while varying their number d from 20 to 1000.

4.4 Comparison of Object Detection Performance

In this section, we compare the object detection performances of various indexing
methods. We measured mAP and changed the inverted index as follows: CAQ
with various exemplar classifiers, k-means, and IMI [24,25] using PQ and OPQ.
IMI was adapted for our task by changing the order of the priority queue to
the score of the linear classifier. IMI was constructed using PQ and OPQ with
two sub-codebooks. We performed RVQ-based re-ranking and NMS on a list of
candidates returned by the inverted index to evaluate the performance of the
overall object detection pipeline.

Figure5 shows the performance comparisons for codebook sizes (sub-
codebook sizes in IMI) of k=16384in (a) and k=4096in (b). CAQ outperformed
k-means, IMI (PQ), and IMI (OPQ) in most cases. Note that IMI was inferior
to even the k-means-based inverted index with larger list length despite that
it has been shown to outperform IVFADC (k-means) in ANN searches. This
implies that a finer partition is not always a good thing, which has a differ-
ent nature from that of a nearest neighbor search. In our task, relevant regions
sometimes have lower scores than irrelevant regions do because the classifier

Large-Scale R-CNN with Classifier Adaptive Quantization 415

(a) k=16384 (b) k=4096

a kmeans

» |e—e CAQ(1800)
== CAQ(2000)
v—v CAQ(180)
& CAQ(200)
=@ IMI(PQ)

* -+ IMI(OPQ)

— RCNN

& k-means
e—e CAQ(1800)
=—s CAQ(2000)
v—¥ CAQ(180)
+—¢ CAQ(200)
58 IMI(PQ)

* - IMI(OPQ)

— RCNN

10° 10°
list length T list length T

Fig. 5. Object detection performance of CAQ, k-means, and IMI with PQ and OPQ on
PASCAL VOC 2007. The figure plots mAP as a function of the candidate list length.
The codebook size is k=16384in (a) and k=40961in (b).

(SVM + CNN feature) is not perfect, due to the so-called semantic gap [33].
By coarse quantization, in our case, regions with similar appearances tend to
be clustered together and relevant regions with lower scores can be detected
together along with other many relevant regions with higher scores. Conversely,
isolated regions (not similar to relevant objects) that have high scores but are
irrelevant can be excluded by the inverted index. We consider these are the rea-
sons that a coarser inverted index sometimes outperformed a finer one. Thus,
we consider that a moderate-grained quantizer in which objects of similar cat-
egories belong to the same cluster is the best as an inverted index used in this
task. From this perspective, CAQ is certainly reasonable because it exploits the
response to the various object classifiers, and thus, objects that are semantically
close in terms of object category tend to belong to the same cluster. This seems
to be the reason that the CAQ-based inverted index outperformed the k-means
one and IMI.

4.5 Comparison with State-of-the-art Methods

To show the superiority of our method over the previous ones, we compared it
with [4], a recently proposed method of large-scale category detection. We also
compared it with Video Google [23], which is based on the bag-of-visual-words
(BoVW) method. Following [4], we used the top-k precision (k=10, 50, and 100)
to evaluate them. We evaluated RVQ, CAQIVF + original, and CAQIVF +
RVQ using the same settings as in Sect. 4.2. NMS was applied to the top-scored
regions until the number of candidates reached 100.

Table 3 shows the precisions of the top 10, 50, and 100 ranked detections on
PASCAL 2007. Included are the results from [4] (FS + HOG-SC and FS + RR
+ HOG-SC) and for Video Google (also reported in [4]). FS + HOG-SC uses
an inverted index and re-ranking that re-evaluates candidates using the origi-
nal HOG classifier template. FS + RR + HOG-SC adds a second re-ranking
stage similar to what is done in NMS. Video Google was tested with two differ-
ent vocabulary sizes, 10K and 200K. The results show that our method signifi-
cantly outperforms [4] and Video Google. Compared with FS + RR + HOG-SC,
CAQIVF + RVQ increases by 57.5 %, 53.0 %, and 40.0 % on PR@100, PR@50
and PR@10 in mean precision of 20 categories. There are mainly two reasons for

416 R. Hinami and S. Satoh

this significance performance boost: 1) R-CNN was more accurate than DPM,
2) the proposed method was comparable in accuracy to the R-CNN due to its
used of state-of-the-art ANN search techniques and CAQ, while [4] performed
far worse than the original DPM. The search time was also shorter. CAQIVF
+ RVQ can processed the PASCAL VOC 2007 testset in 38.2 ms including the
processing time of NMS, while [4] reported that FS + RR 4+ HOG-SC takes
1.3 s. Note that although these timings were not measured in completely the
same experimental environment, both methods were evaluated using a single
core. Moreover, we can see, by comparing the R-CNN with CAQIVF + original
or by comparing RVQ with CAQIVF + RVQ, that a non-exhaustive search does
not decrease performance at all. Rather, CAQIVF + RVQ outperformed RVQ.
This indicates an inverted index is especially effective in retrieval tasks that only
need to detect top-ranked objects.

Table 3. Comparison with previous methods on PASCAL VOC 2007(%). Mean values
of top 10, 50, and 100 precisions over 20 categories are shown. The search times of our
methods include the time taken by the whole procedure including the NMS re-ranking.
Our versions used M=64, k=16384, and [=64. Although times of FS + HOG-SC and
FS + RR 4+ HOG-SC reported in [4] are also shown in brackets for reference, they are
not directly comparable because the experimental environment was different.

Method PR@10 | PR@50 | PR@100 | Search time
R-CNN 96.5 90.8 87.0 6.2s
RVQ 91.0 89.8 82.9 77.4ms
CAQIVF + original 97.0 90.9 85.2 529.9 ms
CAQIVF 4 RVQ 93.5 89.8 85.0 29.1ms
FS + HOG-SC [4] 459 289 220 (1.2 5)

FS + RR + HOG-SC [4] | 53.5 36.8 27.5 (1.3)
Video Google 10K [23] |25.8 14.8 10.2 -

Video Google 200K [23] |32.9 17.4 11.1 -

4.6 Large-Scale Experiments

To investigate the scalability of our method, we added 100K distractors from
the ILSVRC 2011/2012 validation sets to the PASCAL VOC 2007 dataset (105K
images in total). Since we do not have reliable ground truth for the ILSVRC
validation set, we performed a manual evaluation similar to what is done in [4].
In these experiments, we extracted features using the Fast R-CNN framework
[13], an accelerated version of R-CNN, to speed-up feature extraction. We used
the VGG-16 network [34] distributed by one of the authors of [13]. It was trained
for detection on PASCAL VOC 2007 and used 4096-dimensional fc6 features.
SVM was also trained on these features. We used the CAQIVF + RV(Q with the
parameters of M =64, k=16384, and [=16 in this experiment.

Large-Scale R-CNN with Classifier Adaptive Quantization 417

Table 4 shows the results for PASCAL VOC 2007 alone and the combined set.
We can see that the performance is not affected by the distractors. Moreover,
the search time was only 130 ms while the exhaustive search of RVQ took 2.7s.

Table 4. Large-scale experiments with 100 K added distractors. k=16384, [=16, and
M=64 were used.

Datasets PR@10 | PR@50 | PR@100 | Search time | Memory
PASCAL (5K) 94.0 87.6 81.1 29.1ms 0.91GB
PASCAL+ILSVRC (105K) | 91.0 88.0 81.2 129.6 ms 13.61 GB

5 Conclusion

This paper introduced large-scale R-CNN. The proposed method achieved imme-
diate and accurate object category detection from a large image database by com-
bining the state-of-the-art object detection method and state-of-the-art nearest
neighbor search. Our experiments demonstrated that this method performed
comparably to the original R-CNN on PASCAL VOC 2007 in terms of accuracy,
but with a 250 times speed-up and 180 times memory reduction. Moreover,
it significantly outperformed the state-of-the-art large-scale category detection
method, and its accuracy and search speed were not affected by the addition of
100 K distractors.

We also presented classifier adaptive quantization (CAQ), whose quantiza-
tion distortion is defined on the basis of the linear classification score to further
improve the performance of our large-scale R-CNN. We confirmed that perfor-
mance significantly increased as a result of using CAQ as an inverted index
instead of k-means and that it also outperformed an inverted multi-index.

References

1. Felzenszwalb, P., Mcallester, D., Ramanan, D.,; Irvine, U.C.: A discriminatively
trained, multiscale, deformable part model. In: CVPR (2008)

2. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. PAMI 32(9), 1627-1645 (2010)

3. Girshick, R., Donahue, J., Darrell, T., Berkeley, U.C., Malik, J.: Rich feature hier-
archies for accurate object detection and semantic segmentation. In: CVPR (2014)

4. Aytar, Y., Zisserman, A.: Immediate, scalable object category detection. In: CVPR
(2014)

5. Dean, T., Ruzon, M.A., Segal, M., Shlens, J., Vijayanarasimhan, S., Yagnik, J.:
Fast, accurate detection of 100,000 object classes on a single machine. In: CVPR
(2013)

6. Sadeghi, M.A., Forsyth, D.: 30Hz object detection with DPM V5. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689,
pp. 65-79. Springer, Heidelberg (2014)

418

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.
25.

26.

27.

28.

29.

30.
31.

R. Hinami and S. Satoh

Girshick, R.: Fast R-CNN (2015)

Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: NIPS, pp. 1-10 (2015)

Redmon, J., Girshick, R., Farhadi, A.: You only look once: unified, real-time object
detection. In: CVPR (2015)

Lampert, C.H.: Detecting objects in large image collections and videos by efficient
subimage retrieval. In: ICCV (2009)

Shen, X., Lin, Z., Brandt, J., Avidan, S., Wu, Y.: Object retrieval and localization
with spatially-constrained similarity measure and k -NN re-ranking. In: CVPR
(2012)

He, K., Zhang, X., Ren, S., Sun, J.:Spatial pyramid pooling in deep convolutional
networks for visual recognition. In: ECCV (2014)

Girshick, R.: Fast R-CNN. In: ICCV (2015)

Ouyang, W., Wang, X., Zeng, X., Qiu, S., Luo, P., Tian, Y., Li, H., Yang, S.,Wang,
Z., Loy, C.c., Tang, X.: DeepID-Net : Deformable deep convolutional neural net-
works forobject detection. In: CVPR (2015)

Litayem, S., Joly, A., Boujemaa, N.: Hash-Based Support Vector Machines Approx-
imation for Large Scale Prediction. In: BMVC. (2012)

Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In: FOCS, vol. 51, pp. 459-468 (2006)

Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Good practice in large-scale
learning for image classification. IEEE Trans. Pattern Anal. Mach. Intell. 36(3),
507-520 (2014)

Silpa-anan, C., Hartley, R.: Optimised KD -trees for fast image descriptor match-
ing. In: CVPR (2008)

Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algo-
rithmic configuration. In: VISApp. (2009)

Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. PAMI 33(1), 117-128 (2011)

Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS (2009)

Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric con-
sistency for large scale image search. In: ECCV (2008)

Sivie, J., Zisserman, A.: Video Google: a text retrieval approach to object matching
in videos. In: ICCV (2003)

Babenko, A., Lempitsky, V.: The inverted multi-index. In: CVPR (2012)
Babenko, A., Lempitsky, V.: The inverted multi-index. PAMI 37(6), 1247-1260
(2015)

Chen, Y., Guan, T., Wang, C.: Approximate nearest neighbor search by residual
vector quantization. Sensors 10(12), 11259-11273 (2010)

Juang, B.H., Gray Jr., A.H.: Multiple stage vector quantization for speech coding.
In: IEEE International Conference on Acoustics, Speech, and Signal Processing,
ICASSP 1982. vol. 7, pp. 597-600. IEEE (1982)

Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search
for object recognition. IJCV 104(2), 154-171 (2013)

Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with
large vocabularies and fast spatial matching. In: CVPR (2007)

Xia, Y., He, K., Wen, F., Sun, J.: Joint inverted indexing. In: ICCV (2013)
Deng, J., Berg, A., Satheesh, S., Su, H., Khosla, A., Fei-Fei, L.: Imagenet large
scale visual recognition competition 2012 (ILSVRC 2012) (2012)

Large-Scale R-CNN with Classifier Adaptive Quantization 419

32. Raval, N., Tonge, R.V., Jawahar, C.V.: Image retrieval using eigen queries. In: Lee,
K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II. LNCS, vol.
7725, pp. 461-474. Springer, Heidelberg (2013)

33. Smeulders, A., Worring, M.: Content-based image retrieval at the end of the early
years. PAMI 22(12), 1-32 (2000)

34. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale
Image Recognition. In: ICLR (2015)

	Large-Scale R-CNN with Classifier Adaptive Quantization
	1 Introduction
	2 Overview of Large-Scale R-CNN
	2.1 Offline Procedure
	2.2 Online Procedure

	3 Classifier Adaptive Quantization
	3.1 Quantization Distortion for Linear Classifier
	3.2 Encoding and Codebook Learning

	4 Experiments
	4.1 Datasets and Implementation Details
	4.2 Comparison with R-CNN
	4.3 Evaluation of CAQ
	4.4 Comparison of Object Detection Performance
	4.5 Comparison with State-of-the-art Methods
	4.6 Large-Scale Experiments

	5 Conclusion
	References

