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Abstract. Though a large body of computer vision research has investi-
gated developing generic semantic representations, efforts towards devel-
oping a similar representation for 3D has been limited. In this paper, we
learn a generic 3D representation through solving a set of foundational
proxy 3D tasks: object-centric camera pose estimation and wide baseline
feature matching. Our method is based upon the premise that by provid-
ing supervision over a set of carefully selected foundational tasks, gen-
eralization to novel tasks and abstraction capabilities can be achieved.
We empirically show that the internal representation of a multi-task
ConvNet trained to solve the above core problems generalizes to novel
3D tasks (e.g., scene layout estimation, object pose estimation, surface
normal estimation) without the need for fine-tuning and shows traits of
abstraction abilities (e.g., cross modality pose estimation).

In the context of the core supervised tasks, we demonstrate our repre-
sentation achieves state-of-the-art wide baseline feature matching results
without requiring apriori rectification (unlike SIFT and the majority of
learnt features). We also show 6DOF camera pose estimation given a pair
local image patches. The accuracy of both supervised tasks come compa-
rable to humans. Finally, we contribute a large-scale dataset composed
of object-centric street view scenes along with point correspondences and
camera pose information, and conclude with a discussion on the learned
representation and open research questions.

Keywords: Generic vision · Representation · Descriptor learning · Pose
estimation · Wide-baseline matching · Street view

1 Introduction

Supposed an image is given and we are interested in extracting some 3D infor-
mation from it, such as, the scene layout or the pose of the visible objects. One
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potential approach would be to annotate a dataset for every single desired prob-
lem and train a fully supervised system for each (i.e., supervised learning). This
is undesirable as an annotated dataset for each problem would be needed as
well as the fact that the problems would be treated independently. In addition,
unlike semantic annotations such as, object labels, certain annotations in 3D
are cumbersome to collect and often require special sensors (imagine manually
annotating exact pose of an object or surface normals). An alternative approach
is to develop a system with a rather generic perception that can conveniently
generalize to novel tasks. In this paper, we take a step towards developing a
generic 3D perception system that (1) can solve novel 3D problems without fine-
tuning, and (2) is capable of certain abstract generalizations in the 3D context
(e.g., reason about pose similarity between two drastically different objects).

But, how could one learn such a generalizable system? Cognitive studies
suggest living organisms can perform cognitive tasks for which they have not
received supervision by supervised learning of other foundational tasks [28,45,
51]. Learning the relationship between visual appearance and changing the van-
tage point (self-motion) is among the first visual skills developed by infants
and play a fundamental role in developing other skills, e.g., depth perception.
A classic experiment [28] showed a kitten that was deprived from self-motion
experienced fundamental issues in 3D perception, such as failing to understand
depth when placed on the Visual Cliff [22]. Later works [45] argued this finding
was not, at least fully, due to motion intentionality and the supervision signal
of self-motion was indeed a crucial elements in learning basic visual skills. What
these studies essentially suggest are: (1) by receiving supervision on a certain
proxy task (in this case, self-motion), other tasks (depth understanding) can
be solved sufficiently without requiring an explicit supervision, (2) some vision
tasks are more foundational than others (e.g., self-motion perception vs depth
understanding).

Fig. 1. Learning a generic 3D representation: we develop a supervised joint framework for

camera pose estimation and wide baseline matching. We then show the internal representation of

this framework can be used as a 3D representation generalizable to various 3D prediction tasks.
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Inspired by the above discussion, we develop a supervised framework where
a ConvNet is trained to perform 6DOF camera pose estimation. This basic task
allows learning the relationship between an arbitrary change in the viewpoint and
the appearance of an object/scene-point. One property of our approach is per-
forming the camera pose estimation in a object/scene-centric manner: the train-
ing data is formed of image bundles that show the same point of an object/scene
while the camera moves around (i.e., it fixates - see the Fig. 2(c)). This is differ-
ent from existing video+metadata datasets [20], the problem of Visual Odom-
etry [20,42], and recent works on ego-motion estimation [4,29], where in the
training data, the camera moves independent of the scene. Our object/scene-
centric approach is equivalent to allowing a learner to focus on a physical point
while moving around and observing how the appearance of that particular point
transforms according to viewpoint change. Therefore, the learner receives an
additional piece of information that the observed pixels are indeed showing the
same object, giving more information about how the element looks under dif-
ferent viewpoints and providing better grounds for learning visual encoding of
an observation. Infants also explore object-motion relationships [51] in a similar
way as they hold an object in hand and observe it from different views.

Our dataset also provides supervision for the task of wide baseline match-
ing, defined as identifying if two images/patches are showing the same point
regardless of the magnitude of viewpoint change. Wide baseline matching is also
an important 3D problem and is closely related to object/scene-centric camera
pose estimation: to identify whether two images could be showing the same point
despite drastic changes in the appearance, an agent could learnt how viewpoint
change impacts the appearance. Therefore, we perform our supervised training
in a multi-task manner to simultaneously solve for both wide baseline matching
and pose estimation. This has the advantage of learning a single representation
that encodes both problems. In experiments Sect. 4.1, we show it is possible
to have a single representation solving both problems without a performance
drop compared to having two dedicate representations. This provides practical
computational and storage advantages. Also, training ConvNets using multiple
tasks/losses is desirable as it has been shown to be better regularized [23,58,63].1

We train the ConvNet (siamese structure with weight sharing) on patch pairs
extracted from the training data and use the last FC vector of one siamese tower
as the generic 3D representation (see Fig. 1). We will empirically investigate if
this representation can be used for solving novel 3D problems (we evaluated on
scene layout estimation, object pose estimation, surface normal estimation), and
whether it can perform any 3D abstraction (we experimented on cross category
pose estimation and relating the pose of synthetic geometric elements to images).

Dataset: We developed an object-centric dataset of street view scenes from the
cities of Washington DC, NYC, San Francisco, Paris, Amsterdam, Las Vegas,

1 Though visual matching/tracking is also one of early developed cognitive skills [10],
we are unware of any studies investigating its foundational role in developing visual
perception. Therefore, we presume (and empirically observe) that the generality of
our 3D representation is mostly attributed to the camera pose estimation component.
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and Chicago, augmented with camera pose information and point correspon-
dences (with >half a billion training data points). We release the dataset, trained
models, and an online demo at http://3Drepresentation.stanford.edu/.

Novelty in the Supervised Tasks: Independent of providing a generic 3D
representation, our approach to solving the two supervised tasks is novel in a few
aspects. There is a large amount of previous work on detecting, describing, and
matching image features, either through a handcrafting the feature [5,11,35,38–
40] or learning it [9,19,25,49,50,65,66]. Unlike the majority of such features that
utilize pre-rectification (within either the method or the training data), we argue
that rectification prior to descriptor matching is not required; our representation
can learn the impact of viewpoint change, rather than canceling it (by directly
training on non-rectified data and supplying camera pose information during
training). Therefore, it does not need an apriori rectification and is capable
of performing wide baseline matching at the descriptor level. We report state-
of-the-art results on feature matching. Wide baseline matching has been also
the topic of many papers [24,44,54,62,67] with the majority of them focused
on leveraging various geometric constraints for ruling out incorrect ‘already-
established’ correspondences, as well as a number of methods that operate based
on generating exhaustive warps [41] or assuming 3D information about the scene
is given [61]. In contrast, we learn a descriptor that is supervised to internally
handle a wide baseline in the first place.

In the context of pose estimation, we show estimating a 6DOF camera pose
given only a pair of local image patches, and without the need for several
point correspondences, is feasible. This is different from many previous works
[3,8,14,20,26,52,59] from both visual odometery and SfM literature that per-
form the estimation through a two step process consisting of finding point cor-
respondences between images followed by pose estimation. Koser and Koch [30]
also demonstrate pose estimation from a local region, though the plane on which
the region lies is assumed to be given. The recent works of [4,29] supervise a
ConvNet on the camera pose from image batches but do not provide results on
matching and pose estimation. We report a human-level accuracy on this task.

Existing Unsupervised Learning and ConvNet Initialization Works:
The majority of previous unsupervised learning, transfer learning, and represen-
tation learning works have been targeted towards semantics [17,18,46,47,53].
It has been practically well observed [18,46] that the representation of a con-
vnet trained on imagenet [32] can generalize to other, mostly semantic, tasks.
A number of methods investigated initialization techniques for ConvNet training
based on unsupervised/weakly supervised data to alleviate the need for a large
training dataset for various tasks [17,57]. Very recently, the methods of [4,29]
explored using motion metadata associated with videos (KITTI dataset [20])
as a form of supervision for training a ConvNet. However, they either do not
investigate developing a 3D representation or intent to provide initialization
strategies that are meant to be fine-tuned with supervised data for a desired
task. In contrast, we investigate developing a generalizable 3D representation,
perform the learning in an object-centric manner, and evaluate its unsupervised

http://3Drepresentation.stanford.edu/
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performance on various 3D tasks without any fine-tuning on the representation.
We experimentally compare against the related recent works that made their
models available [4,57].

Primary contributions of this paper are summarized as: (I) A generic 3D repre-
sentation with empirically validated abstraction and generalization abilities. (II)
A learned joint descriptor for wide baseline matching and camera pose estima-
tion at the level of local image patches. (III) A large-scale object-centric dataset
of street view scenes including camera pose and correspondence information.

2 Object-Centric Street View Dataset

The dataset for the formulated task needs to not only provide a large amount
of training data, but also show a rich camera pose variety, while the scale of
the aimed learning problem invalidates any manual procedure. We present a
procedure that allows acquiring a large amount of training data in an automated
manner, based on two sources of information: (1) Google street view [2] which is
an almost inexhaustible source of geo-referenced and calibrated images, (2) 3D
city models [1,2] that cover thousands of cities around the world.

The core idea of our approach is to form correspondences between the geo-
referenced street view camera and physical 3D points that are given by the 3D
models. More specifically, at any given street view location, we densely shoot
rays into space in order to find intersections with nearby buildings. Each ray
back projects one image pixel into the 3D space, as shown in Fig. 2-(a). By
projecting the resulting intersection points onto adjacent street view panoramas
(see Fig. 2-b), we can form image to image correspondences (see Fig. 2c). Each
image is then associated with a (virtual) camera that fixates on the physical
target point on a building by placing it on the optical center. To make the
ray intersection procedure scalable, we perform occlusion reasoning on the 3D
models to pre-identify from what GPS locations an arbitrary target would be
visible and perform the ray intersection on those points only.

Pixel Alignment and Pruning: This system requires integration of multi-
ple resources, including elevation maps, GPS from street view, and 3D models.

Fig. 2. Illustration of the object-centric data collection process. We use large-scale geo-

registered 3D building models to register pixels in street view images on world coordinates system

(see (a)) and use that for finding correspondences and their relative pose across multiple street view

images (see (b)). Each ray represents one pixel-3D world coordinate correspondence. Each of the red,

green, and blue colors represent one street view location. Each row in (c) shows a sample collected

image bundle. The center pixel (marker) is expected to correspond to the same physical point. (Color

figure online)



540 A.R. Zamir et al.

Though the quality of output exceeded our expectation (see samples in Fig. 2(c)),
any slight inaccuracy in the metadata or 3D models can cause a pixel mis-
alignment in the collected images (examples shown in the first and last rows of
Fig. 2(c)). Also, there are undocumented objects such as trees or moving objects
that cause occlusions. Thus, a content-based post alignment and pruning was
necessary. We again used metadata in our alignment procedure to be able to
handle image bundles with arbitrarily wide baselines (note that the collected
image bundles can show large, often >100◦, viewpoint changes). In the interest
of space, we describe this procedure in supplementary material (Sect. 3).

This process forms our dataset composed of matching and non-matching
patches as well as the relative camera pose for the matching pairs. We stopped
collecting data when we reached the coverage of >200 km2 from the 7 cities
mentioned in Sect. 1. The collection procedure is currently done on Google street
view, but can be performed using any geo-referenced calibrated imagery. We
will experimentally show that the trained representation on this data does not
manifest a clear bias towards street view scenes and outperforms existing feature
learning methods on non-street view benchmarks.

Noise Statistics: We performed a user study through Amazon Mechanical
Turk to quantify the amount of noise in the final dataset. Please see
supplementary material (Sect. 3.2) for the complete discussion and results.
Briefly, 68% of the patch pairs were found to have at least 25% of overlap
in their content. The mean and standard deviation of pixel misalignment was
16.12 (≈11 % of patch width) and 11.55 pixels, respectively. We did not perform
any filtering or geo-fencing on top of the collected data as the amount of noise
appeared to be within the robustness tolerance of ConvNet trainings and they
converged.

3 Learning Using ConvNets

A joint feature descriptor was learnt by supervising a Convolutional Neural
Network (ConvNet) to perform 6DOF camera pose estimation and wide base-
line matching between pairs of image patches. For the purpose of training, any
two image patches depicting the same physical target point in the street view
dataset were labelled as matching and other pairs of images were labelled as
non-matching. The training for camera pose estimation was performed using
matching patches. The patches were always cropped from the center of the col-
lected street view image to keep the optical center at the target point.

The camera pose between each pair of matching patches was represented by
a 6D vector; the first three dimensions were Tait-Bryan angles (roll, yaw, pitch)
and the last three dimensions were cartesian (x, y, z) translation coordinates
expressed in meters. For the purpose of training, 6D pose vectors were pre-
processed to be zero mean and unit standard deviation (i.e., z-scoring). The
ground-truth and predicted pose vectors for the ith example are denoted by
p∗
i , pi respectively. The pose estimation loss Lpose(p∗

i , pi) was set to be the

http://3drepresentation.stanford.edu/supplementary_material
http://3drepresentation.stanford.edu/supplementary_material
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robust regression loss described in Eq. 1:

Lpose(p∗
i , pi) =

{
e if e ≤ 1
1 + log e if e > 1 where e = ||p∗

i − pi||l2 . (1)

The loss function for patch matching Lmatch(m∗
i ,mi) was set to be sigmoid cross

entropy, where m∗
i is the ground-truth binary variable indicating matching/non-

matching and mi is the predicted probability of matching.
ConvNet training was performed to optimize the joint matching and pose

estimation loss (Ljoint) described in Eq. 2. The relative weighting between the
pose (Lpose) and matching (Lmatch) losses was controlled by λ (we set λ = 1).

Ljoint(p∗
i ,m

∗
i , pi,mi) = Lpose(p∗

i , pi) + λLmatch(mi,m
∗
i ). (2)

Our training set consisted of patch pairs drawn from a wide distribution
of baseline changes ranging from 0◦ to over 120◦. We consider patches of size
192× 192 (<15 % of the actual image size) and rescaled them to 101 × 101 before
passing them into the ConvNet.

A ConvNet model with siamese architecture [15] containing two identical
streams with identical set of weights was used for computing the relative pose and
the matching score between the two input patches. A standard ConvNet architec-
ture was used for each stream: C(20, 7, 1)-ReLU-P(2, 2)-C(40, 5, 1)-ReLU-P(2,
2)-C(80, 4, 1)-ReLU-P(2, 2)-C(160, 4, 2)-ReLU-P(2, 2)-F(500)-ReLU-F(500)-
ReLU. The naming convention is as follows: C(n, k, s): convolutional layer n
filters, spatial size k × k, and stride s. P(k, s): max pooling layer of size k × k
and stride s. ReLU: rectified linear unit. F(n): fully connected linear layer with
n output units. The feature descriptors of both streams were concatenated and
fed into a fully connected layer of 500 units which were then fed into the pose
and matching losses. With this ConvNet configuration, the size of the image
representation (i.e., the last FC vector of one siamese half - see Fig. 1) is 500.
Our architecture is admittedly pretty common and standard. This allows us to
evaluate if our good end performance is attributed to our hypothesis on learning
on foundational tasks and the new dataset, rather than a novel architecture.

We trained the ConvNet model from scratch (i.e., randomly initialized
weights) using SGD with momentum (initial learning rate of .001 divided by
10 per 60 K iterations), gradient clipping, and a batch size of 256. We found that
the use of gradient clipping was essential for training as even robust regression
losses produce unstable gradients at the starting of training. Our network con-
verged after 210 K iterations. Training using Euler angles performed better than
quaternions (17.7◦ vs 29.8◦ median angular error), and the robust loss outper-
formed the non-robust l2 loss (17.7◦ vs 22.3◦ median angular error). Additional
details about the training procedure can be found in the supplementary material.

4 Experimental Discussions and Results

We implemented our framework using data parallelism [31] on a cluster of 5–10
GPUs. At the test time, computing the representation is a feed-forward pass

http://3drepresentation.stanford.edu/supplementary_material
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through a siamese half ConvNet and takes ∼2.9 ms per image on a single proces-
sor. Sections 4.1 and 4.2 provide the evaluations of the learned representation on
the supervised and novel 3D tasks, respectively.

4.1 Evaluations on the Supervised Tasks

Evaluations on the Street View Dataset. The test set of pose estimation
is composed of 7725 pairs of matching patches from our dataset. The test set
of matching includes 4223 matching and 18648 non-matching pairs. It is made
sure that no data from those areas and their vicinity is used in training. Each
patch pair in the test sets was verified by three Amazon Mechanical Turkers to
verify the ground truth is indeed correct. For the matching pairs, the Turkers
also ensured the center pixel of patches are no more than 25 pixels (∼3 % of
image width) apart. Visualizations of the test set can be seen on our website.
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Fig. 3. (a) Sample qualitative results of camera pose estimation. 1st and 2nd rows show the

patches. The 3rd row depicts the estimated relative camera poses on a unit sphere (black: patch 1’s

camera (reference), red: ground-truth pose of patch 2, blue: estimated pose of patch 2). Rightward

and upward are the positive directions. (b)Sample wide baseline matching results. Green and

red represent ‘matching’ and ‘non-matching’, respectively. Three failure cases are shown on the right.

(Color figure online)

Pose Estimation. Figure 3-(a) provides qualitative results of pose estimation.
The angular evaluation metric is the standard overall angular error [20,33],
defined as the angle between the predicted pose vector and the ground truth
vector in the plane defined by their cross product. The translational error metric
is l2 norm of the difference vector between the normalized predicted translation
vector and ground truth [20,33]. The translation vector was normalized to enable
comparing with up-to-scale SfM.

Figure 4-right provides the quantitative evaluations. The plots (a) and (c)
illustrate the distribution of the test set with respect to pose estimation error for
each method (the more skewed to the left, the better). The green curve shows
pose estimation results by human subjects. Two users with computer vision

http://3Drepresentation.stanford.edu/
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Fig. 4. Left: Quantitative evaluation of matching. ROC curves of each method and correspond-

ing AUC and FPR@95 values are shown in (a). Right: Quantitative evaluation of camera pose

estimation. VO and SfM denote Visual Odometery (LIBVISO2) and Structure-from-Motion (visu-

alSfM), respectively. Evaluation of robustness to wide baseline camera shifts is shown in (b) plots.

(Color figure online)

knowledge, but unaware of the particular use case, were asked to estimated
the relative pitch and yaw between a random subset of 500 test pairs. They
were allowed to train themselves with as many training sampled as they wished.
ConvNet outperformed human on this task with a margin of 8◦ in median error.

Pose Estimation Baselines: We compared against Structure-from-Motion
(visualSfM [59,60] with default components and tuned hyper-parameters for
pairwise pose estimation on 192 × 192 patches and full images) and LIBVISO2
Visual Odometery [21] on full images. Both SfM and LIBVISO2 VO suffer from
a large RANSAC failure rate mostly due to the wide baselines in test pairs.

Figure 4-right (b) shows how the median angular error (Y axis) changes as
the baseline of the test pairs (X axis) increases. This is achieved through binning
the test set into 8 bins based on their baseline size. This plot quantifies the ability
of the evaluated methods in handling a wide baseline. We adopt the slope of the
curves as the quantification of deterioration in accuracy as the baseline increases.

Wide Baseline Matching. Figure 3-(b) shows samples feature matching
results using our approach, with three failure cases on the right. Figure 4-left
provides the quantitative results. The standard metric [12] for descriptor match-
ing is ROC curve acquired from sorting the test set pairs according to their
matching score. For unsupervised methods, e.g., SIFT, the matching score is
the l2 distance. False Positive Rate at 95 % recall (FPR@95) and Area Under
Curve (AUC) of ROC are standard scalar quantifications of descriptor match-
ing [12,50].

Matching Baselines: We compared our results with the handcrafted features
of SIFT [35], Root-SIFT [7], DAISY [55], VIP [61] (which requires the surface
normals in the input for which we used the normals from the 3D models), and
ASIFT [41]. The matching score of ASIFT was the number of found correspon-
dences in the test pair given the full images. We also compared against the learning
based features of Zagoruyko and Komodakis [65] (using the models of authors),
Simonyan et al. [50] (with and without retraining), Simo-Serra et al. [49] (using
authors’ best pretrained model) as well as human subjects (the red dot on the
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Table 1. Evaluations on Brown’s Benchmark [12].
FPR@95 (↓) is the metric.

Train Test MatchNet
[25]

Zagor.
siam
[65]

Simonyan
[50]

Trzcinski
[56]

Brown
[12]

Root-
SIFT
[7]

Ours

Yos ND 7.70 5.75 6.82 13.37 11.98 22.06 4.17

Yos Lib 13.02 13.45 14.58 21.03 18.27 29.65 11.66

Lib ND 4.75 4.33 7.22 14.15 N/A 22.06 1.47

ND Lib 8.84 8.77 12.42 18.05 16.85 29.65 7.39

Lib Yos 13.57 14.89 11.18 19.63 N/A 26.71 13.78
ND Yos 11.00 13.23 10.08 15.86 13.55 26.71 12.30
mean 9.81 10.07 10.38 17.01 15.16 26.14 8.46

Table 2. Evaluation on
Mikolajczyk and Schmid’s
[39]. The metric is mAP(↑).

Transf.
magnitude

1 2 3 4 5

SIFT [35] 40.1 28.0 24.3 29.0 17.1
Zagor. [65] 43.2 37.5 29.2 28.0 16.8
Fischer
et al. [19]

42.3 33.9 26.1 22.1 14.6

Ours-
rectified

46.4 41.3 29.5 23.7 17.9

Ours-
unrectified

51.4 37.8 34.2 30.8 20.8

ROC plot). Figure 4-left(b) provides the evaluations in terms of handling wide
baselines, similar to Fig. 4-right(b).

Brown et al. Benchmark and Mikolajczyk’s Benchmark. We per-
formed evaluations on the non-street view benchmarks of Brown et al. [12] and
Mikolajczyk and Schmid [39] to find if (1) if our representation was performing
well only on street view scenery, and (2) if wide baseline handling capability
was achieved at the expense of lower performance on small baselines (as these
benchmarks have a narrower baseline compared to our dataset for the most part).
Tables 1 and 2 provide the quantitative results. We include a thorough descrip-
tion of evaluation setup and detailed discussions in the supplementary material
(Sect. 2).

Joint Feature Learning. We studied different aspects of joint learning the rep-
resentation and information sharing among the core supervised tasks. In the inter-
est of space, we provide quantitative results in supplementary material (Sect. 1).
The conclusion of the tests was that: First, the problems of wide baseline match-
ing and camera pose estimation have a great deal of shared information. Second,
one descriptor can encode both problems with no performance drop.

4.2 Evaluating the 3D Representation on Novel Tasks

The results of evaluating our representation on novel 3D tasks are provided in
this section. The tasks as well as the images (e.g., Airship images from ImageNet)
used in these evaluations are significantly different from what our representation
was trained for (i.e., camera pose estimation and matching on local patches
of street view images). The fact that, despite such differences, our representa-
tion achieves best results among all unsupervised methods and gets close to
supervised methods for each of the tasks empirically validates our hypothesis on
learning on foundational tasks (see Sect. 1).

Our ways of evaluating and probing the representation in an unsupervised
manner are (1) tSNE [36]: large-scale 2D embedding of the representation.

http://3drepresentation.stanford.edu/supplementary_material
http://3drepresentation.stanford.edu/supplementary_material
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Fig. 5. 2D embedding of our representation on 3,000 unseen patches using tSNE. An

organization based on the Manhattan pose of the patches can be seen. See comparable AlexNet’s

embedding in the supplementary material’s Sect. 6. (best seen on screen)
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Fig. 6. (a) tSNE of a superset of various vanishing point benchmarks [6,16,34] (to battle the small

size of datasets). (b) inversion [37] of our representation. Both plots shows traits of vanishing points.

This allows visualizing the space and getting a sense of similarity from the per-
spective of the representation, (2) Nearest Neighbors (NN) on the full dimen-
sional representation, and (3) training a simple classifier (e.g., KNN or a linear
classifier) on the frozen representation ( i.e., no fine-tuning) to read out a desired
variable. The latter enables quantifying if the required information for solving a
novel task is encoded in the representation and can be extracted using a simple
function. We compare against the representations of related methods that made
their models available [4,57], various layers of AlexNet trained on ImageNet [32],
and a number of supervised techniques for some of the tasks. Additional results
are provided in the supplementary material and the website.

Surface Normals and Vanishing Points. Figure 5 shows tSNE embedding of
3,000 unseen patches showing that the organization of the representation space
is based on geometry and not semantics/appearance. The ConvNet was trained
to estimate the pose between matching patches only while in the embedding, the
non-matching patches with a similar pose are placed nearby. This suggests the
representation has generalized the concept of pose to non-matching patches. This
indeed has relations to surface normals as the relative pose between an arbitrary

http://3drepresentation.stanford.edu/supplementary_material
http://3drepresentation.stanford.edu/supplementary_material
http://3Drepresentation.stanford.edu/
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Query 1st NN 2nd NN 1st NN 2nd NN 1st NN 2nd NN 1st NN 2nd NN
Ours Wang&Gupta Agrawal et al. AlexNet - Pool5

Query 
Ours Wang&Gupta Agrawal et al. AlexNet - Pool5

1st NN 2nd NN 1st NN 2nd NN 1st NN 2nd NN 1st NN 2nd NN

Fig. 7. Scene layout NN search results between LSUN images and synthetic concave

cubes defining abstract 3D layouts. Images with yellow boundary show the ground truth layout.

(Color figure online)

Table 3. Layout classifi-
cation (LSUN)

Representation Classification
accuracy

AlexNet FC7 45.9%
AlexNet Pool5 47.7%
Ours 57.6%

Table 4. Layout estimation (LSUN)

Method Corner
error

Pixelwise
error

UIUC (supervised) 0.11 0.17
Hedau et al. (supervised) 0.15 0.24
Ours (unsupervised) 0.16 0.29

Table 5. Object pose esti-
mation (PASCAL3D)

Method Av. pose
error (◦)

scratch 34◦
AlexNet (ImaneNet) 23◦
Ours 26◦

and a frontal patch is equal to the pose of the arbitrary patch; Fig. 5 can be
perceived as the organization of the patches based on their surface normals.

To better understand how this was achieved, we visualized the activations
of the ConvNet at different layers. Similar to other ConvNets, the first few
layers formed general gradient based filters while in higher layers, the edges
parallel in the physical world seemed to persist and cluster together. This is
similar to the concept of vanishing points, and from the theoretical perspective,
would be intriguing and explain the pose estimation results, since three com-
mon vanishing points are theoretically enough for a full angular pose estimation
[13,26]. To further investigate this, we generated the inversion of our represen-
tation using the method of [37] (see Fig. 6-(b)), which show patterns correlating
with the vanishing points of the image. Figure 6-(a) also illustrates the tSNE of a
superset of several vanishing point benchmarks showing that images with similar
vanishing points are embedded nearby. Therefore, we speculate that the Con-
vNet has developed a representation based on the concept of vanishing points2.
This would also explain the results shown in the following sections.

Surface Normal Estimation on NYUv2 [48]: Numerical evaluation on unsu-
pervised surface normal estimation provided in supplementary material Sect. 4.

Scene Layout Estimation. We evaluated our representation on LSUN [64]
layout benchmark using the standard protocol [64]. Table 4 provides the results

2
We attempted to quantitatively evaluate this, but the largest vanishing point datasets (e.g.,
York [16] and PKU [34]) include only 102–200 images for both training and testing. Given a 500D
descriptor, it was not feasible to provide a statistically significant evidence.

http://3drepresentation.stanford.edu/supplementary_material
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Query 
Ours Wang&Gupta Agrawal et al. AleNet - Pool5 AleNet - FC7

1st NN 2nd NN 3rd NN 1st NN 2nd NN 3rd NN 1st NN 2nd NN 3rd NN 1st NN 2nd NN 3rd NN1st NN 2nd NN 3rd NN

Query 1st NN 2nd NN 3rd NN 1st NN 2nd NN 3rd NN 1st NN 2nd NN 3rd NN 1st NN 2nd NN 3rd NN1st NN 2nd NN 3rd NN

Fig. 8. NN search results between EPFL dataset images and a synthetic cube defining

an abstract 3D pose. See the supplementary material (Sect. 5) for tSNE embedding of all cubes

and car poses in a joint space. Note that the 3D poses defined by the cubes are 90◦ congruent.

of layout estimation using a simple NN classifier on our representation along
with two supervised baselines, showing that our representation (with no fine-
tuning) achieved a performance close to Hedau et al.’s [27] supervised method
on this novel task. Table 3 provides the results of layout classification [64] using
NN classifier on our representation compared to AlexNets FC7 and Pool5.

Abstraction: Cube�Layout: To evaluate the abstract generalization abilities
of our representation, we generated a sparse set of 88 images showing the interior
of a simple synthetic cube parametrized over different view angles. The rendered
images can be seen as an abstract cubic layout of a room. We then performed NN
search between these images and LSUN dataset using our representations and
several baselines. As apparent in Fig. 7, our representation retrieves meaningful
NNs while the baselines mostly overfit to appearance and retrieve either an
incorrect or always the same NN. This suggests our representation could abstract
away the irrelevant information and encode some information essential to the 3D
of the image.

3D Object Pose Estimation.

Abstraction: Cube�Object: We performed a similar abstraction test
between a set of 88 convex cubes and the images of EPFL Multi-View Car
dataset [43], which includes a dense sampling of various viewpoints of cars in
an exhibition. We picked this simple cube pattern as it is the simplest geomet-
ric element that defines three vanishing points. The same observation as the
abstraction experiment on LSUN’s is made here with our NNs being meaningful
while baselines mostly overfit to appearance with no clear geometric abstraction
trait (Fig. 8).

ImageNet: Figure 9 shows the tSNE embedding of several ImageNet categories
based on our representation and the baselines. The embeddings of our representa-
tion are geometrically meaningful, while the baselines either perform a semantic
organization or overfit to other aspects, such as color.

http://3drepresentation.stanford.edu/supplementary_material
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Ours

AlexNet FC7 AlexNet FC7Agrawal Agrawal AlexNet Pool5AlexNet FC7 Wang Wang Wang 

Ours Ours Ours Ours

HOG

 Pickup  Truck (n03930630) Chest (n03014705) Polaroid camera (n03976467) Airship (n02692877) Bathtub (n02808440)

Fig. 9. tSNE of several ImageNet categories using our unsupervised representation along

with several baselines. Our representation manifests a meaningful geometric organization of objects.

tSNE of more categories in the supplementary material and the website. (best seen on screen) (Color

figure online)

PASCAL3D: Figure 10 shows cross-category NN search results for our repre-
sentation along with several baselines. This experiment also evaluates a certain
level of abstraction as some of the object categories can be drastically different
looking. We also quantitatively evaluated on 3D object pose estimation on PAS-
CAL3D. For this experiment, we trained a ConvNet from scratch, fine-tuned
AlexNet pre-trained on ImageNet, and fine-tuned our network; we read the pose
out using a linear regressor layer.3 Our results outperform scratch network and
come close to AlexNet that has seen thousands of images from the same cat-
egories from ImageNet and other objects (Table 5). Note that certain aspects
of object pose estimation, e.g., distinguishing between the front and back of a
bus, are more of a semantic task rather than geometric/3D. This explains a
considerable part of the failures of our representation which is object/semantic
agnostic.

Query 

Ours Wang&Gupta Agrawal et al. AleNet - Pool5 AleNet - FC7
Bus
NN

Train
NN

Boat
NN

Sofa
NN

Monitor
NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN

TV
Bus Train Boat Sofa Monitor

TV
Bus Train Boat Sofa Monitor

TV
Bus Train Boat Sofa Monitor

TV
Bus Train Boat Sofa Monitor

TV

Fig. 10. Qualitative results of cross-category NN-search on PASCAL3D using our repre-

sentation along with baselines.

3
The classes of boat, sofa, and chair were showing a performance near statistical random for all
methods and were removed from the evaluations.

http://3drepresentation.stanford.edu/supplementary_material
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5 Discussion and Conclusion

To summarize, we developed a generic 3D representation through solving a set of
supervised foundational proxy tasks. We reported state-of-the-art results on the
supervised tasks and showed the learned representation manifests generalization
and abstraction traits. However, a number of questions remain open:

Though we were inspired by cognitive studies in defining the foundational
supervised tasks leading to a generalizable representation, this remains at an
inspiration level. Given that a ‘taxonomy’ among basic 3D tasks has not been
developed, it is not concretely defined which tasks are foundational and which
ones are secondary. Developing such a taxonomy (i.e., whether task A is inclusive
of, overlapping with, or disjoint from task B) or generally efforts understanding
the task space would be a rewarding step towards soundly developing the 3D
complete representation. Also, semantic and 3D aspects of the visual world are
tangled together. So far, we have developed independent semantic and 3D rep-
resentations, but investigating concrete techniques for integrating them (beyond
simplistic late fusion or ConvNet fine-tuning) is a worthwhile future direction for
research. Perhaps, inspirations from partitions of visual cortex could be insightful
towards developing the ultimate vision complete representation.

Acknowledgement. MURI (1186514-1-TBCJE), Nissan (1188371-1-UDARQ).
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