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Abstract. We address the problem of novel view synthesis: given an in-
put image, synthesizing new images of the same object or scene observed
from arbitrary viewpoints. We approach this as a learning task but, crit-
ically, instead of learning to synthesize pixels from scratch, we learn to
copy them from the input image. Our approach exploits the observa-
tion that the visual appearance of different views of the same instance
is highly correlated, and such correlation could be explicitly learned by
training a convolutional neural network (CNN) to predict appearance
flows — 2-D coordinate vectors specifying which pixels in the input view
could be used to reconstruct the target view. Furthermore, the proposed
framework easily generalizes to multiple input views by learning how to
optimally combine single-view predictions. We show that for both ob-
jects and scenes, our approach is able to synthesize novel views of higher
perceptual quality than previous CNN-based techniques.

@—» =~ i=
(a) input K
o A B

Tatarchenko et al. [1] Ours Tatarchenko et al. [1]  Ours

(b) input

Fig. 1. Given an input image, our goal is to synthesize novel views of the same object
(left) or scene (right) corresponding to various camera transformations (73). Our ap-
proach, based on learning appearance flows, is able to generate higher-quality results
than the previous method that directly outputs pixels in the target view [I].

1 Introduction

Consider the car in Figure a). Actually, what you are looking at is a flat two-
dimensional image that is but a projection of the three-dimensional physical car.
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Yet, numerous psychophysics experiments tell us that what you are seeing is not
the 2D image but the 3D object that it represents. For example, one classic
experiment demonstrates that people excel at “mental rotation” [2] — predicting
what a given object would look like after a known 3D rotation is applied. In this
paper, we study the computational equivalent of mental rotation called novel
view synthesis. Given one or more input images of an object or a scene plus the
desired viewpoint transformation, the goal is to synthesize a new image capturing
this novel view, as shown in Figure [f}

Besides purely academic interest (how well can this be done?), novel view
synthesis has a plethora of practical applications, mostly in computer graphics
and virtual reality. For example, it could enable photo editing programs like
Photoshop to manipulate objects in 3D instead of 2D. Or it could help create
full virtual reality environments based on historic images or video footage.

The ways that novel view synthesis has been approached in the past fall
into two broad categories: geometry-based approaches and learning-based ap-
proaches. Geometric approaches try to first estimate (or fake) the approximate
underlying 3D structure of the object, and then apply some transformation to
the pixels in the input image to produce the output [B4I5I67TI8I]. Besides the
requirement of somehow estimating the 3D structure, which is a difficult task by
itself, the other major downside of these methods is that they produce holes in
places where the source image does not have the appropriate visual content (e.g.
the back side of an object). In such cases, various types of texture hole-filling
are sometimes used but they are not always effective.

Learning-based approaches, on the other hand, argue that novel view synthe-
sis is fundamentally a learning problem, because otherwise it is woefully under-
constrained. Given a side of a car, there is no way to ever guess what the front of
this car looks like, unless the system has observed other fronts of cars so it can
make an educated guess. Such methods typically try, at training time, to build
a parametric model of the object class, and then use it at test time, together
with the input image, to generate a novel view. Unfortunately, parametric image
generation is an open research topic, and currently the results of such methods
are often too blurry (e.g. see [I] in Figure .

In this paper, we propose to combine the benefits of both types of approaches,
while also avoiding their pitfalls. Like geometric methods, we propose to use the
pixels of the input image as much as possible, instead of trying to synthesize new
ones from scratch. At the same time, we will use a learning-based approach to
implicitly capture the approximate geometry of the object, avoiding the explicit
estimation of the 3D structure. Our model also learns the appearance correlation
between different parts of the object that enables synthesizing the backside of
the object.

Conceptually, our approach is quite simple: we train a deep generative con-
volutional encoder-decoder model, similar to [1], but instead of generating RGB
values for each pixel in the target view, we generate an appearance flow vector
indicating the corresponding pixel in the input view to steal from. This way, the
model does not need to learn how to generate pixels from scratch — just where
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to copy from the input view. In addition to making the learning problem more
tractable, it also provides a natural way of preserving the identity and struc-
ture of the input instance — a task typically difficult for conventional learning
approaches. We demonstrate the applicability of our approach by synthesizing
views corresponding to rotation of objects and egomotion in scenes. We further
extend our framework to leverage multiple input views and empirically show the
quantitative as well as perceptual improvements obtained with our approach.

2 Related work

Feature learning by disentangling pose and identity. Synthesizing novel
views of objects can be thought of as decoupling pose and identity and has long
been studied as part of feature learning and view-invariant recognition. Hinton
et al. [I0] learned a hierarchy of “capsules”, computational units that locally
transform their input, for generating small rotations to an input stereo pair, and
argued for the use of similar units for recognition. More recently, Jaderberg et
al. [TT] demonstrated the use of computational layers that perform global spatial
transformation over their input features as useful modules for recognition tasks.
Jayaraman et al. [12] studied the task of synthesizing features transformed by
ego-motion and demonstrated its utility as an auxiliary task for learning seman-
tically useful feature space. Cheung et al. [I3] proposed an auto-encoder with
decoupled semantic units representing pose, identity etc. and latent units repre-
senting other factors of variation and showed that their approach was capable
of generating novel views of faces. Kulkarni et al. [I4] introduced a similarly
motivated variational approach for decoupling and manipulating the factors of
variation for images of faces. While the feature-learning approaches convincingly
demonstrated the ability to disentangle factors of variation, the view manipu-
lations demonstrated were typically restricted to small rotations or categories
with limited shape variance like digits and faces.

CNNs for view synthesis. A recent interest in learning to synthesize views for
more challenging objects under diverse view variations has been driven by the
ability of Convolutional Neural Networks (CNNs) [I5/16] to function as image
decoders. Dosovitiskiy et al. [I7] learned a CNN capable of functioning as a
renderer: given an input graphics code containing identity, pose, lighting etc.
their model could render the corresponding image of a chair. Yang et al. [18]
and Tatarchenko et al. [I] built on this work using the insight that the graphics
code, instead of being presented explicitly, can be implicitly captured by an
example source image along with the desired transformation. Yang et al. [I§]
learned a decoder to obtain implicit pose and identity units from the input
source image, applied the desired transformation to the pose units, and used a
decoder CNN to render the desired view. Concurrently, Tatarchenko et al. [1]
followed a similar approach without the explicit decoupling of identity and pose
to obtain similar results. A common module in these approaches is the use of
a decoder CNN to generate the pixels corresponding to the transformed view
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from an implicit /explicit graphics code. Our work demonstrates that predicting
appearance flows instead of pixels leads to significant improvements.

Geometric view synthesis. An alternative paradigm for synthesizing novel
views of an object is to explicitly model the underlying 3D geometry. In cases
when more than one input view is available, modern multi-view stereo algorithms
(see Furukawa and Hernandez [19] for an excellent tutorial) have demonstrated
results of impressive visual quality. However, these methods fundamentally rely
on finding visual correspondences — pixels that is in common across the views — so
they break down when there are only a couple of views from very different view-
points. In cases when only a single view is available, user interaction had typically
been needed to help define a coarse geometry for the object or scene [3I45I7Ig].
More recently, large Internet collections of stock 3D shape models have been
leveraged to get 3D geometry for a wide range of common objects. For exam-
ple, Kholgade et al. [9] obtained realistic renderings of novel views of an object
by transferring texture from the corresponding 3D model, though they required
manual annotation of the exact 3D model and its placement in the image. Re-
matas et al. [20] employed a similar technique after automatically inferring the
closest 3D model from a shape collection as well as explicitly obtaining pose via
a learnt system to situate the 3d model in the image. Their approach, however,
is restricted to rendering the closest model in the shape collection instead of the
original object. Su et al. [2I] overcome this restriction by interpolating between
several similar models from the shape collections, though they only demonstrate
their technique for generating HOG [22] features for novel views. Unlike the
CNN based learning approaches, these geometry-based methods require access
to a shape collection during inference and are limited by the intermediate bot-
tlenecks of inferring pose and retrieving similar models.

Image-based Rendering. The idea of directly re-using the pixels from avail-
able images to generate new views has been popular in computer graphics. De-
bevec et al. [23] used the underlying geometry to composite multiple views for
rendering novel views. Lightfield /lumigraph [24]25] rendering presented an alter-
nate setup where a structured, dense set of views is available. Buehler et al. [26]
presented a unifying framework for these image-based rendering techniques. The
recent DeepStereo work by Flynn et al. [27] is a learning-based extension that
performs compositing through learned geometric reasoning using a CNN, and
can generate intermediate views of a scene by interpolating from a set of sur-
rounding views. While these methods yield high-quality novel views, they do so
by composting the corresponding input image rays for each output pixel and
can therefore only generate already seen content, (e.g. they cannot create the
rear-view of a car from available frontal and side-view images).

Texture Synthesis and Epitomes. Reusing pixels of the input image to syn-
thesize new visual context is also at the heart of non-parametric texture synthesis
approaches. In texture synthesis [2829], the synthesized image is pieced together
by combining samples of the input texture image in a visually consistent way,
whereas for texture transfer [30/31], an additional constraint aims to make the
overall result also mimic a secondary “source” image. A related line of work uses
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epitomes [32] as a generative model for a set of images. The key idea is to use
a condensed image as a palette for sampling patches to generate new images. In
a similar spirit, our approach can be thought of as generating novel views of an
object using the original image as an epitome.

3 Approach

Our approach to novel view synthesis is based on the observation that the ap-
pearance (texture, shape, color, etc.) of different views of the same object/scene
is highly correlated, and in many cases even a single input view contains rich
amount of information for inferring various novel views. For instance, given the
side view of a car, one could extract appearance properties such as the 3D shape,
body color, window layout and wheel types of the query instance that are suffi-
cient for reconstructing many other views.

In this work, we explicitly infer the appearance correlation between different
views of a given object/scene by training a convolutional neural network that
takes 1) an input view and 2) a desired viewpoint transformation, and predicts
a dense appearance flow field (AFF) that specifies how to reconstruct the target
view using pixels from the input view. Specifically, for each pixel i in the target
view, the appearance flow vector f(* € R? specifies the coordinate at the input
view where the pixel value is sampled to reconstruct pixel i. The notion of
appearance flow field is closely related to the nearest neighbor field (NNF) in
PatchMatch [29], except that NNF is explicitly defined on a distance function
between two patches, while our appearance flow field is the output of a CNN
after end-to-end training for cross-view reconstruction.

The benefits of predicting the appearance flow field over raw pixels of the
target view are three-fold: 1) It alleviates the perceptual blurriness in images
generated by CNN trained with L, loss. By constraining the CNN to only uti-
lize pixels available in the input view, we are able to avoid the undesirable
local minimum attained by predicting the mean (when p = 2) colors around
texture/edge boundaries that lead to blurriness in the resulting image (e.g. see
Section 4| for empirical comparison). 2) The color identity of the instance is pre-
served by construction since the synthesized view is reconstructed using only
pixels from the same instance; 3) The appearance flow field enables intuitive in-
terpretation of the network output since we can visualize exactly how the target
view is constructed with the input pixels (e.g. see Figure @

We first describe our training objective and the network architecture for the
setting of a single input view in Section [3.1} and then present a simple exten-
sion in Section that allows the network to learn how to combine individual
predictions when multiple input views are available.

3.1 Learning view synthesis via appearance flow

Recall that our goal is to train a CNN that, given an input view I, and a relative
viewpoint transformation T, synthesizes the target view I; by sampling pixels
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from I according to the predicted appearance flow field. This can be formalized
as minimizing the following objective:

minimize > =g, T)llp, subject to g™ (I, T) € {I.},¥i, (1)
<Is,I;,T>€D

where D is the set of training tuples, g(-) refers to the CNN whose weights
we wish to optimize, || - ||, denotes the L, normﬂ and ¢ indexes over pixels
of the synthesized view. Internally, the CNN computes a dense flow field f,
where each element f() £ (2() y(®)) specifies the pixel sampling location (in
the coordinate frame of the input view) for constructing the output g (I, T).
To allow end-to-end training via stochastic gradient descent when f*) falls into
a sub-pixel coordinate, we rewrite the constraint of Eq. [1/in the form of bilinear
interpolation:

§9(1,.7) = 5 100~ 9~ 21—y —y @), (2)
g€ {neighbors of (z(1),y(»)}

where ¢ denotes the 4-pixel neighbors (top-left, top-right, bottom-left, bottom-
right) of (¥, ). This is also known as differentiable image sampling with a
bilinear kernel, and its (sub)-gradient with respect to the CNN parameters could
be efficiently computed [11].

Network architecture Our view synthesis network (Figure follows a
similar high-level design as [I8] and [I] with three major components:

1. Input view encoder — extracts relevant features (e.g. color, pose, texture,
shape, etc.) of the query instance (6 conv + 2 fc layers).

2. Viewpoint transformation encoder — maps the specified relative viewpoint
to a higher-dimensional hidden representation (2 fc layers).

3. Synthesis decoder — assembles features from the two feature encoders, and
outputs the appearance flow field that reconstructs the target view with
pixels from the input view (2 fc + 6 uconv layers).

All the convolution, fully-connected and fractionally-strided /up-sampling con-
volution (uconv) layers are followed by rectified linear units except for the last
flow decoder layer.

Foreground prediction For synthesizing object views, we also train another
network that predicts the foreground segmentation mask of the target view. The
architecture is the same as the synthesis network in Figure [2] except that in this
case the last layer predicts a per-pixel binary classification mask (0 is background
and 1 is foreground), and the network is trained with cross-entropy loss. At test
time, we further apply the predicted foreground mask to the synthesized view.

1 We use p = 1 in all our experiments, but similar results can be obtained with Lo
norm as well.
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Fig. 2. Overview of our single-view network architecture. We follow an encoder-decoder
framework where the input view and the desired viewpoint transformation are first en-
coded via several convolution and fully-connected layers, and then a decoder consisting
of two fully-connected and six up-sampling convolution layers outputs an appearance
flow field, which in conjunction with the input view yields the synthesized view through
a bilinear sampling layer. All the layer weights are learned end-to-end through back-
propagation.

3.2 Learning to leverage multiple input views

A single view of the object sometimes might not contain sufficient information
for inferring an arbitrary target view. For instance, it would be very challenging
to infer the texture details of the wheel spoke given only the frontal view of
a car, and similarly, the side view of a car contains little to none information
about the appearance of the head lights. Thus, it would be ideal to develop a
mechanism that could leverage the individual strength of different input views
to synthesize target views that might not be feasible with any input view alone.

To achieve this, we modify our view synthesis network to also output a soft
confidence mask C; that indicates per-pixel prediction quality using input view
55, which could be implemented by adding an extra output channel to the last
decoder layer. The confidence masks for all input views are further normalized
to sum to one at each pixel location: C_'J(-Z) = CJ(-Z)/ szv:1 C,il), where N denotes

the number of input views. Intuitively, C'](Z) is an estimator of relative prediction
quality using input view j at pixel ¢, and by using C'j as a hypothesis selection
mask, the final joint prediction is simply a weighted combination of hypotheses
predicted by different input views: Zévzl C; * g(I5,,r;). Figure [3|illustrates the
architecture of our multi-view network that is also end-to-end learnable.

Comparison with DeepStereo [27] While the general idea of learning
hypothesis selection for view synthesis has been recently explored in [27], there
are a few key differences between our framework and [27]: 1) We do not require
projecting the input image stack onto a planesweep volume that prohibits their
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Fig. 3. Overview of our multi-view network architecture (®: per-pixel product, &: per-
pixel normalized sum). For each input view, we use a single-view CNN (same as Figure
but with an extra output channel) with shared weights to independently predict the
target view as well as a per-pixel selection/confidence mask. The final target view
prediction is obtained by linearly combining the predictions from each view weighted
by the selection masks.

Input Tuples

»D

method from synthesizing pixels that are invisible in the input views (i.e. view
extrapolation); 2) Unlike [27], who have a fixed number of input views, our multi-
view network is more flexible at both training and test time as it could take in
an arbitrary number of input views for joint prediction, which is particularly
beneficial when the number of input views varies at test time.

4 Experiments

To evaluate the performance of our view synthesis approach, we conduct ex-
periments on both objects (car, chair and aeroplane) and urban city scenes
(KITTI [33]). Our main baseline is the recent work of Tatarchenko et al [1] that
synthesizes novel views by training a CNN to directly generate pixels. For fair
comparison, we use the same number of network layers for their method and
ours, and for experiments on multiple input views we extend their method to
output hypothesis selection masks as described in Section [3.2}

Network training details We train the networks using a modified version of
Caffe [34] to support the bilinear sampling layer. We use the ADAM solver [35]
with 81 = 0.9, 82 = 0.999, initial learning rate of 0.0001, step size of 50,000 and
a step multiplier v = 0.5.

4.1 Novel view synthesis for objects

Data setup We train and evaluate our view synthesis CNN for objects using
the ShapeNet database [36]. In particular, we split the available shapes (7,497
cars and 700 chairsED of each category into 80% for training and 20% for testing.

2 The original ShapeNet core release contains a total of 6,778 chair models. However,
a majority of the models are of low visual quality (e.g. texture-less), and we only
keep a subset of 700 high-quality ones for our experiments.
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Fig. 4. Comparison of our single-view synthesis results with the baseline method [I]
on cars (left) and chairs (right). Our prediction tends to be consistently better at
preserving high-frequency details (e.g. texture and edge boundaries) than the baseline.

For each shape, we render a total of 504 viewing angles (azimuth ranges from
0° to 355°, and elevation ranges from 0° to 30°, both at steps of 5°) with fixed
camera distance. For simplicity, we limit the viewpoint transformation for CNN
to a discrete set of 19 azimuth variations ranging from —180° to +180° at steps
of 20°, and encode the transformation as a 19-D one-hot vector.

At each training iteration, we randomly sample a batch of < I, I;,T > tu-
ples from the training split for the single-view setting, and < I, , I,, Iy, 71,15 >
tuples for the multi-view setting, where T; denotes the relative viewpoint trans-
formation between I, and I;, and T} is randomly sampled from the set of valid
transformations. For each category, we construct a test set of 20,000 tuples by
following the same sampling procedure above, except that the shapes are now
sampled from the test split.

Appearance flows versus direct pixel generation Our first experiment
compares the view synthesis performance of our appearance flow approach with
the direct pixel generation method by [I] under the single input view setting.

Figure [4] compares the view synthesis results using different methods on ex-
amples from the test set of two categories (car and chair). Overall, our prediction
tends to be much sharper and matches the ground-truth better than the baseline.
In particular, our synthesized views using appearance flows are able to maintain
detailed textures and edge boundaries that are lost in direct pixel generation
despite both networks are trained with the same loss function.

For quantitative evaluation we measure the mean pixel L, error between the
predicted views and the ground-truth on the foreground regions. As shown in Ta-
ble |1}, our method outperforms the baseline in both categories (car and chair).
We further analyze the error statistics by computing the pairwise cross-view
confusion matrix for both methods, which measures how predictive/informative
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Input Method Car Chair KITTI
Sineleview Tatarchenko et al. [1] 0.404 0.345 0.492
& Ours 0.368  0.323 0471
Multi-vie Tatarchenko et al. [1] 0.385 0.334 0.471
whview Ours 0.285  0.248 0.409

Table 1. Mean pixel L; error between the ground-truth and predictions by different
methods. Lower is better.
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Fig. 5. Visualization of error statistics for generating novel views from a single input
view on the car category. The heatmaps (blue-low, red—high) depict the mean pixel
error for obtaining the target view (columns) from the input view (rows) for the base-
line [I] (left) and our approach(middle). Some common failure modes of our method
are visualized on the right.

a given view is for synthesizing another view (see the visualization in Figure [5)).
The error statistics suggest that our method is especially strong in synthesiz-
ing views that share significant number of common pixels with the input view
(within £45° azimuth variation from the input view — the diagonals in the plot)
or along the corresponding symmetry planes (off-diagonals) that typically exhibit
high appearance correlation with the input view (e.g. synthesizing the right view
from the left view of a car), and slightly weaker than direct pixel generation in
views that do not share much in common (e.g. from frontal to the side or rear
views).

Interestingly though, when we conduct perceptual studies comparing the
visual similarity between predicted views and the ground-truth, our method is
far ahead of the baseline across the entire spectrum of the cross-view predictions.
More specifically, we randomly sampled 1,000 test tuples, and asked users on
Amazon Mechanical Turk to select the prediction that looks more similar to
the ground-truth. We average the responses over 5 unique turkers for each test
tuple, and find that 95% of the time our prediction is chosen over the baseline
for cars and 93% for chairs, suggesting that the L; metric might not fully reflect
the strength of our method.

One additional benefit of predicting appearance flows is that it allows in-
tuitive visualization and understanding of exactly how the synthesized view is
constructed. For instance, Figure [6] shows sample appearance flow vectors pre-
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Fig. 6. Sample appearance flow vectors predicted by our method. For randomly sam-
pled points in the generated target image (left), the lines depict the corresponding
appearance flow to the source image (right).

dicted by our method. It is interesting to note that the appearance flows do not
necessarily correspond to anatomically/symmetrically corresponding parts. For
example, while the top-right pixels of the first car in Figure [6] transfer appear-
ance from their corresponding location in the source image, the pixels in the
back wheel are generated using the front wheel of the source image.
Multi-view versus single-view In this experiment, we evaluate the synthe-
sis performance of using multiple input views (two in this case). It turns out that
having multiple input views is much more beneficial for our approach than for the
baseline, as our synthesis error drops significantly compared to the single-view
setting while less so for the baseline (see Table. This indicates that predicting
appearance flows allows more effective utilization of different prediction hypothe-
ses. Figure[7]shows sample visualization of how our multi-view synthesis network
automatically combines high-quality predictions from individual input views to
construct the final prediction.

Results on PASCAL VOC [37] images Although our synthesis network is
trained on rendered synthetic images, it also exhibits potentials in generalizing to
real images. In order to use our learnt models for synthesizing views for objects in
PASCAL VOC, we require some pre-processing to ensure input statistics similar
to the rendered training set. We therefore re-scale the input image to have similar
number of foreground pixels as objects in the training set with the same aspect

ratio. We visualize and compare a few example synthesis results on segmented
PASCAL VOC images in Figure

4.2 Novel view synthesis for scenes

Data setup We evaluate our view synthesis CNN for scenes using the KITTI
dataset [33], which provides odometry and image sequences taken during 11 short
trips of a car travelling through urban city scenes. We split the 11 sequences into
9 for training and 2 for testing. The viewpoint transformation is computed using
the odometry data by taking the difference between the 3 x 4 transformation
matrices (Z-axis pointing forward) of the input and target frames, resulting in a
12-D vector of continuous values.

To sample a tuple for the single-view setting, we first randomly sample a
sequence ID and then a input frame and a target frame within the sequence that
are separated by at most +10 frames. For the multi-view setting, we sample an
additional input view that is also at most +10 frames away from the target view.
We randomly sample 10 tuples for training at each iteration and 20,000 tuples



12 T. Zhou, S. Tulsiani, W. Sun, J. Malik, A. A. Efros

Single-view Selection Final Ground-truth
prediction mask prediction view

B - S
_’\} ® QMQ—T

- BB S

Fig. 7. View synthesis examples using our multi-view network. Each input view makes
independent prediction of a candidate target view as well as a selection/confidence mask
(blue-low, red—high). The final prediction is obtained by linearly combining the single-
view predictions with weights normalized across the selection masks. Typically, the
final prediction is more similar to the ground-truth than any independent prediction.
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Fig. 8. View synthesis results for segmented objects in the PASCAL VOC dataset.
Our method generalizes better and yields more realistic results than the baseline [1].
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Fig. 9. View synthesis results on the KITTI dataset [33]. Our method typically pre-
serves the scene structure and details of the objects in the synthesized view better than
the baseline (a failure case is shown in the last row).

for testing following the above procedure.

Comparison with direct pixel generation Similar to the evaluation on
objects, we measure the mean pixel L, error between the predicted views and
the ground-truth. As shown in Table[I] our method significantly outperforms the
baseline [I] on both single-view and multi-view settings. The advantage is also
visualized in Figure [0} where we compare the predictions made by both methods
on the single-view setting. Overall, our prediction tends to preserve the texture
details and edge boundaries of objects depicted in the scene (Row 1-3), but
sometimes might lead to severe distortions on failure cases (e.g. the last row).

5 Discussion

We have presented a framework that re-parametrizes image synthesis as pre-
dicting the appearance flow field between the input image(s) and the output,
and demonstrated its successful application to novel view synthesis. But despite
good performance on various benchmark evaluations, our method is by no means
close to solving the problem in the general case. A number of major challenges
are yet to be addressed:
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— Our current method is incapable of hallucinating pixel values not present in
the input view. While this is not as bad is it sounds (since the color palette of
a typical image is quite rich), it would be beneficial to develop a mechanism
that combines the hallucination capability of pixel generation CNN and the
detail-preserving property of our flow-based synthesis.

— Empirically we observe that our network sometimes struggles in learning
long-range appearance correlations, since the gradients derived from the
flows are quite local. We conducted preliminary experiments with multi-
scale reconstruction loss, and found it to alleviate the gradient locality to
some extent.

— While the academic community around view synthesis is growing rapidly, we
are still missing large-scale datasets of diverse real-world objects/scenes and
a proper metric (L; pixel error is certainly not ideal) for measuring research
progress.

— All the existing learning-based view synthesis approaches assume knowing
the category of the object. An interesting direction is to develop a method
that is category-agnostic, and once learned, can be applied to any real-world
image.

Finally, we believe that our technique of leveraging appearance flows is also
applicable to tasks beyond novel view synthesis, including image inpainting,
video frame prediction, modeling effect of actions, super-resolution, etc.

Acknowledgements

We thank Philipp Kréhenbiihl and Abhishek Kar for helpful discussions. This
work was supported in part by NSF award IIS-1212798, Intel /NSF Visual and
Experiential Computing award I1S-1539099 and a Berkeley Fellowship. We grate-
fully acknowledge NVIDIA corporation for the donation of GPUs used for this
research.

References

1. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Single-view to multi-view: Reconstruct-
ing unseen views with a convolutional network. arXiv preprint arXiv:1511.06702
(2015)

2. Shepard, R.N., Metzler, J.: Mental rotation of three-dimensional objects. Science
(1971)

3. Horry, Y., Anjyo, K.I., Arai, K.: Tour into the picture: using a spidery mesh
interface to make animation from a single image. In: Proceedings of the 24th
annual conference on Computer graphics and interactive techniques. (1997)

4. Oh, B.M., Chen, M., Dorsey, J., Durand, F.: Image-based modeling and photo
editing. In: Proceedings of the 28th annual conference on Computer graphics and
interactive techniques. (2001)

5. Zhang, L., Dugas-Phocion, G., Samson, J.S., Seitz, S.M.: Single-view modelling of
free-form scenes. The Journal of Visualization and Computer Animation (2002)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

View Synthesis by Appearance Flow 15

Hoiem, D., Efros, A.A., Hebert, M.: Automatic photo pop-up. ACM transactions
on graphics (TOG) (2005)

Zheng, Y., Chen, X., Cheng, M.M., Zhou, K., Hu, S.M., Mitra, N.J.: Interac-
tive images: cuboid proxies for smart image manipulation. ACM Transactions on
Graphics (TOG) (2012)

Chen, T., Zhu, Z., Shamir, A., Hu, S.M., Cohen-Or, D.: 3-sweep: Extracting ed-
itable objects from a single photo. ACM Transactions on Graphics (TOG) (2013)
Kholgade, N., Simon, T., Efros, A.A., Sheikh, Y.: 3d object manipulation in a
single photograph using stock 3d models. ACM Transactions on Graphics (TOG)
(2014)

Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In: Arti-
ficial Neural Networks and Machine Learning-ICANN. (2011)

Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks.
In: Advances in Neural Information Processing Systems. (2015)

Jayaraman, D.; Grauman, K.: Learning image representations tied to egomotion.
In: IEEE International Conference on Computer Vision. (2015)

Cheung, B., Livezey, J.A., Bansal, A.K., Olshausen, B.A.: Discovering hidden
factors of variation in deep networks. arXiv preprint arXiv:1412.6583 (2014)
Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.: Deep convolutional
inverse graphics network. In: Advances in Neural Information Processing Systems.
(2015)

Fukushima, K.: Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position. Biological Cybernetics
(1980)

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to hand-written zip code recognition. In:
Neural Computation. (1989)

A .Dosovitskiy, J.T.Springenberg, T.Brox: Learning to generate chairs with convo-
lutional neural networks. In: IEEE International Conference on Computer Vision
and Pattern Recognition. (2015)

Yang, J., Reed, S.E., Yang, M.H., Lee, H.: Weakly-supervised disentangling with
recurrent transformations for 3d view synthesis. In: Advances in Neural Informa-
tion Processing Systems. (2015)

Furukawa, Y., Herndndez, C.: Multi-view stereo: A tutorial. Foundations and
Trends® in Computer Graphics and Vision 9 (2015)

Rematas, K., Nguyen, C., Ritschel, T., Fritz, M., Tuytelaars, T.: Novel views of
objects from a single image. arXiv preprint arXiv:1602.00328 (2015)

Su, H., Wang, F., Yi, L., Guibas, L.: 3d-assisted image feature synthesis for novel
views of an object. In: International Conference on Computer Vision. (2015)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
IEEE Conference on Computer Vision and Pattern Recognition. (2005)

Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from
photographs: A hybrid geometry-and image-based approach. In: Proceedings of the
23rd annual conference on Computer graphics and interactive techniques. (1996)
Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques, ACM (1996) 31-42
Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Pro-
ceedings of the 23rd annual conference on Computer graphics and interactive tech-
niques, ACM (1996) 43-54



16

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

T. Zhou, S. Tulsiani, W. Sun, J. Malik, A. A. Efros

Buehler, C., Bosse, M., McMillan, L., Gortler, S., Cohen, M.: Unstructured lu-
migraph rendering. In: Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, ACM (2001) 425-432

Flynn, J., Neulander, 1., Philbin, J., Snavely, N.: Deepstereo: Learning to predict
new views from the world’s imagery. In: IEEE Conference on Computer Vision
and Pattern Recognition. (2016)

Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Com-
puter Vision, 1999. The Proceedings of the Seventh IEEE International Conference
on. Volume 2., IEEE (1999) 1033-1038

Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.: Patchmatch: A random-
ized correspondence algorithm for structural image editing. ACM Transactions on
Graphics (TOG) (2009)

Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analo-
gies. In: Proceedings of the 28th annual conference on Computer graphics and
interactive techniques, ACM (2001) 327-340

Efros, A.A., Freeman, W.T.: ITmage quilting for texture synthesis and transfer. In:
Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, ACM (2001) 341-346

Jojic, N., Frey, B.J., Kannan, A.: Epitomic analysis of appearance and shape. In:
IEEE International Conference on Computer Vision. (2003)

Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern
Recognition. (2012)

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093 (2014)

Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: ShapeNet:
An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012
[cs.GR], Stanford University — Princeton University — Toyota Technological In-
stitute at Chicago (2015)

Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.:
The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.
http://www.pascal-network.org/challenges/VOC /voc2012/workshop/index.html



	 View Synthesis by Appearance Flow 

