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Abstract. Discovering and segmenting objects in videos is a challenging
task due to large variations of objects in appearances, deformed shapes
and cluttered backgrounds. In this paper, we propose to segment objects
and understand their visual semantics from a collection of videos that link
to each other, which we refer to as semantic co-segmentation. Without
any prior knowledge on videos, we first extract semantic objects and uti-
lize a tracking-based approach to generate multiple object-like tracklets
across the video. Each tracklet maintains temporally connected segments
and is associated with a predicted category. To exploit rich information
from other videos, we collect tracklets that are assigned to the same cate-
gory from all videos, and co-select tracklets that belong to true objects by
solving a submodular function. This function accounts for object prop-
erties such as appearances, shapes and motions, and hence facilitates
the co-segmentation process. Experiments on three video object segmen-
tation datasets show that the proposed algorithm performs favorably
against the other state-of-the-art methods.

1 Introduction

Objects may appear at any location in various shapes and appearances with
different visual semantics across videos. Given a set of videos, localizing and
segmenting all the objects is a challenging task, especially when the visual cat-
egories are unknown. In this work, we propose an algorithm to segment objects
and understand visual semantics from a video collection, which we refer to as
semantic co-segmentation. Within the proposed co-segmentation framework, we
aim to find the common representation for each semantic category and exploit
relations between objects. For instance, dogs from different videos may share
more commonalities and have stronger relations between each other than objects
with other semantics (see Fig. 1).

Numerous algorithms have been proposed for video object co-segmentation
[3,6,26,34]. However, most existing methods [3,6,26] assume that at least one
common object appears all the time in two or more videos, which limits the
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applicability in real world scenarios. In this work, we propose an algorithm to
segment semantic objects from a collection of videos containing various categories
despite large variations in appearances, shapes, poses and sizes.

We exploit semantic information to facilitate co-segmentation to associate
objects of the same category from different videos. Visual semantics has been
used as prior information for object segmentation in weakly labeled videos
[28,31,35]. In semantic video object segmentation, an object detector or a seg-
mentation algorithm is first applied to localize objects according to the video
label. However, for videos without any semantic label, an object detector may
find noisy segments that do not belong to any semantic object (i.e., due to the
trade-off between recall and precision). In this work, we propose an algorithm to
associate semantic representations between objects in different videos and help
the object co-segmentation process, where non-object detections can be removed.

Toward this end, we first extract semantic objects in each video. Compared
with methods that use region proposals [34,35] to localize objects, we develop
a proposal-free tracking-based approach that generates multiple tracklets of
regions (segments) across the video. Each tracklet maintains temporal connec-
tions and contains a predicted category that is initialized by an image-based
semantic segmentation algorithm. After collecting tracklets from all videos, we
link the relations between tracklets for each object category by formulating a sub-
modular optimization problem, which maximizes the similarities between object
regions (segments). With this formulation, prominent objects in each video can
be discovered and segmented based on similarities of regions.

We first conduct experiments on the Youtube-Objects dataset [22] in a
weakly-supervised manner. Then we evaluate the proposed method in a more
generalized setting without knowing any semantic information as a prior. Both
results show that our algorithm performs favorably against the state-of-the-art
methods. In addition, we compare our method to the other video object co-
segmentation approaches on the MOViCS [3] and Safari [34] datasets. Exper-
imental results on three datasets show that the proposed algorithm performs
favorably in terms of visual quality and accuracy.

The contributions of this work are summarized as follows. First, we propose
a semantic co-segmentation method that considers relations between objects
from a collection of videos, where object categories can be unknown. Second, a
proposal-free tracking-based method is developed to segment object-like tracklets
while maintaining temporal consistency in videos. Third, a submodular function
is formulated to carry out semantic co-segmentation from tracklets in all videos.

2 Related Work

Video Object Segmentation/Co-segmentation. Object segmentation from
one single video has been studied extensively in the literature [10,14,15,21,29,
33]. In general, these approaches are developed to use spatial-temporal graphical
models based on object proposals [14,33], segments [15], motion cues [21] or
propagating foreground regions [10,19,29]. Recently, co-segmentation methods
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are developed to segment common objects in images [11,25,30] and videos [3,6,
8,26,34]. Most co-segmentation schemes assume that all the input videos contain
at least one common target object [3,6,8,26], which is rarely true in real world
scenarios. With a less strict assumption in [34], objects with unknown number of
categories can be segmented from a collection of videos by tracking and matching
object proposals. However, another assumption underlying the above-mentioned
methods is that usually common objects have almost identical appearances. In
contrast, the proposed algorithm is not constrained by these factors and is able
to segment objects with large variations in appearances without any assumption,
e.g., number of object instances and number of object categories.

Object Segmentation in Weakly-Supervised Videos. Weakly-supervised
methods have attracted attention due to their effectiveness for facilitating the
segmentation process with known video-level object categories. Several learning-
based approaches are proposed to collect semantic samples for training segment
classifiers [9,28] or performing label transfer [16], and then identify the tar-
get object in videos. However, these methods rely on training instances and
may generate inaccurate segmentation results. Zhang et al. [35] propose to seg-
ment semantic objects via detection without the need of training process. In
this method, object detections and proposals are integrated within an optimiza-
tion framework to refine the final tracklets for segmentation. In contrast, the
proposed algorithm does not require object proposals or video-level annotations.
More importantly, we link objects between different videos and construct a graph
for submodular optimization, and hence help recognize each semantic object.

Object Discovery and Co-localization. Object discovery and co-localization
methods are developed in a way similar to object co-segmentation, and these
methods assume that input images or videos contain object instances from
the same category. Recent image-based approaches [2,4,24,27] are proposed to
overcome the problem of large amounts of intra-class variations and inter-
class diversity. Several video-based methods are extended to account for tem-
poral information. In [31], superpixel-level labels are propagated across frames
via a boosting algorithm. However, this approach requires supervision from a
few frame-level annotations. Kwak et al. [12] propose a video object discovery
method by matching correspondences across videos and tracking object regions
across frames. Different from the above-mentioned schemes, this work focuses on
video object co-segmentation without any assumption on objects appearing in
videos, in a way that we incorporate semantic information and analyze relations
between object-like tracklets.

3 Proposed Algorithm

3.1 Overview

Given a set of videos with unknown object categories, our goal is to discover
and segment prominent objects, as well as assign each object a semantic label.
To achieve this, we first utilize a fully convolutional network (FCN) [17] trained
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Fig. 1. Overview of the proposed algorithm. Given a collection of videos without pro-
viding category labels, we aim to segment semantic objects. First, a set of tracklets
is generated for each video, and each tracklet is associated with a predicted category
illustrated in different colors (e.g., blue represents the dog and red represents the cow).
Then a graph that connects tracklets as nodes from all videos is constructed for each
object category. We formulate it as the submodular optimization problem to co-select
tracklets that belong to true objects (depicted as glowing nodes), and produce final
semantic segmentation results. (Color figure online)

on the PASCAL VOC 2011 dataset [5] to segment objects in each frame, where
each segment has a predicted category. To reduce noisy segments in each video,
we cluster segments and eliminate clusters containing noisy segments through the
video. Among the selected clusters with object segments, we randomly choose a
few of them as initializations and apply a spatial-temporal graph-based tracking
algorithm to generate tracklets. Each tracklet maintains coherent appearances
of an object region (segment) in the spatial and temporal domains.

However, tracklets may still contain only object parts or noisy background
clutters, and the available visual information is limited within each video. We
construct a graph that connects tracklets within the same category from all
videos as nodes, and utilize a submodular function to define the corresponding
relations based on their appearances, shapes and motions. After maximizing this
submodular function, tracklets are ranked according to their mutual similarities,
and hence prominent objects can be discovered in each video. Figure 1 shows the
overview of the proposed algorithm.

3.2 Semantic Tracklet Generation

Video object segmentation methods usually utilize object proposals in each frame
to detect where instances may appear [6,14,15,34]. One challenge is to associate
thousands of proposals from different objects while maintaining temporal con-
nections for each of them across all sequences. Here, we propose to utilize a
semantic segmentation algorithm (e.g., FCN) to generate object segments as
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Fig. 2. Illustration of the proposed method for semantic tracklet generation. Given
an input video, we first utilize the FCN algorithm to produce semantic segments in
each frame. We then cluster all segments within each object category into different
groups, where each color denotes one category (e.g., two green groups for birds and
one blue group for dogs). Within each group, we randomly select a few segments as
multiple initializations (depicted as rectangular boxes with solid color lines) and utilize
a tracking-based approach to generate semantic tracklets Ti. Note that we only show the
forward tracklets in this figure (similar process when generating backward tracklets).
(Color figure online)

initializations, and then construct a spatial-temporal graphical model to track
each object segment and form tracklets. The procedure to generate tracklets is
illustrated in Fig. 2.

Selecting Objects Segments via Clustering. We first apply the FCN algo-
rithm to extract object segments in each frame of one video. To reduce noisy
segments that are not likely to be any object, a simple yet effective cluster-
ing method is utilized to select object-like segments through each video. Since
the number of object instances is unknown, we apply the mean shift clustering
method on all the segments within each object category based on color his-
tograms in the RGB space. Then we select the N largest clusters (i.e., top 80%
of the largest ones) while removing the others.

The object segments in selected clusters are considered as initializations for
tracking. We randomly choose a few segments from each cluster, while ensuring
the selected segments are within a certain time frame (e.g., at least 20 frames
apart between two selected segments) to increase the diversity. However, these
initializations may not contain the entire object region or include background
clutters. To refine each initialized segment, we learn an online SVM model based
on color histograms (as used in the clustering stage), and re-estimate the fore-
ground region using an iterative scheme (e.g., one iteration is sufficient in this
work) as in the GrabCut method [23].

Tracking Object Segments. Based on multiple initializations from the pre-
vious step, we aim to track segments and generate consistent tracklets (as illus-



Semantic Co-segmentation in Videos 765

Initial: frame 98 Frame 103 Frame 115 Initial: frame 119Frame 107

Fig. 3. An example to track the object under heavy occlusions based on the proposed
bi-directional approach with multiple initializations, where initialized segments are
denoted as colored rectangular boxes.

trated in Fig. 2). The tracking scheme can better localize objects that may be
missed by detection algorithms in a single frame, while maintaining temporal
connections between object segments. Since selected segments within the same
cluster share similar appearances, we track multiple segments in both forward
and backward directions, and group them into two tracklets. Hence, we obtain
2N tracklets for each cluster. We note that the bi-directional approach facilitates
tracking segments under heavy occlusions (see Fig. 3 for an example). Further
note that each initialized segment only tracks a small number of frames until
reaching the next initialization, as most tracking methods perform well within
a number of frames.

Considering the case of forward tracking from frame t − 1 to t, the goal is
to assign each pixel xt

i ∈ X with a foreground or background label ∈ {0, 1}. We
define an energy function in a Conditional Random Field (CRF):

E(X) = Ut(X) + γs
∑

(i,j,t)∈Nt

Vt(xt
i, x

t
j) + γt

∑

(i,j,t)∈Nt

Wt(xt−1
i , xt

j), (1)

where Ut is the unary potential to be foreground or background, and Vt and Wt

are pairwise potentials for spatial and temporal smoothnesses with weights γs

and γt, respectively. The pairwise terms are defined in a way similar to those in
[21]. To reduce the computational load and the effect of background noise, we
only segment the object within an estimated object location Rt, obtained as in
[29]. Note that we also define Nt as the neighboring set within this region. For
the unary term in (1), we compute appearance and location energies defined by:

Ut(X) = α
∑

(i,t)∈Rt

Φa(xt
i) + β

∑

(i,t)∈Rt

Φl(xt
i), (2)

where Φa is the appearance term, and Φl is the location term. For the appearance
term, we learn a SVM model based on color histograms (as used in the clustering
stage) from the first frame, and an online SVM model with CNN features [18]
updated every frame. The weight α consists of αcol and αcnn for the color and
CNN features, respectively. By minimizing (1) using the graph cut method [1],
we obtain labels and thus the object mask within Rt, and continue to track
segments in the next frame.
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3.3 Semantic Tracklet Co-selection via Submodular Function

For each video, we generate a set of tracklets where each one is assigned to
an object category from the FCN method. However, these tracklets are usually
noisy (false negatives) and may not belong to any true object (false positives).
In addition, objects within the same category usually share more similarities. To
better select object-like tracklets, we collect all those within the same category
from all videos to help each other. That is achieved by constructing a graph
where the tracklets are nodes, and formulating it as a submodular optimization
problem which aims to find a subset that shares more similarities. Once track-
lets are selected in each video, we rank different semantic objects based on the
submodular energies and find prominent objects.

Graph Construction on Tracklets. We first collect tracklets from all videos
where each one is associated with an object category from a set of M categories
L = {1, 2, · · · ,M}. For each category l ∈ L, we can find a tracklet set O, and
construct a graph G = (V, E) containing tracklets from all videos (with the same
category l), where each node v ∈ V is a tracklet and the edges e ∈ E model the
pairwise relations. For each G, we aim to discover an object-like tracklet set A
of O by iteratively selecting elements of O into A.

Submodular Function. Our submodular objective function is designed to find
tracklets that meet two criteria: (1) sharing more similarities, (2) maintaining
high quality object-like segments. To achieve this, we model the submodular
function with a facility location term [13,36] to compute similarities, and a unary
term that measures how likely the tracklet belongs to the true object. We first
introduce the facility location term defined as:

F(A) =
∑

i∈A

∑

j∈V
wij −

∑

i∈A
φi, (3)

where wij is the pairwise relation between a potential facility vi and a node vj ,
and φi is the cost to open a facility fixed to a constant ε. In (3), we define wij

as the similarity S(vi, vj) to encourage the model to find a similar facility vi to
vj such that the final selected tracklets share more similarities.

To compute the similarity between two tracklets, we represent each tracklet
by a feature vector Fi, and compute their inner product, S(vi, vj) = 〈Fi, Fj〉, as
the similarity. For each tracklet, we extract CNN features (same as mentioned
in (2)) in each frame and utilize an average pooling method to compute a feature
vector that represents each object. Then Fi is computed by averaging feature
vectors from all the frames to represent each tracklet. Note that Fi represents
appearance of the tracklet in semantics that is learned from CNN, and hence
tracklets within the same category are likely to have higher mutual similarities.

However, with only the facility location term, it is not effective in removing
all the noisy tracklets in the selected subset A. Hence we propose to include a
unary term in the submodular function that can measure the quality of tracklets
while preserving the submodularity. The proposed unary term is defined as:
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Fig. 4. Illustration of the proposed submodular function for tracklet co-selection. We
show three tracklets within the dog category, where the left two tracklets are selected as
true objects (denoted as glowing nodes). For each tracklet, we show energy gain, unary
term and summed pairwise energy (similarity) in the facility location term. While all
three tracklets have high similarity scores, the right tracklet (false positive) has lower
energy gain due to low unary term resulting from inconsistent motions and shapes, and
hence it is not selected as the object.

U(A) = λo

∑

i∈A
Φo(i) + λm

∑

i∈A
Φm(i) + λs

∑

i∈A
Φs(i), (4)

where Φo(i) measures how likely vi belongs to the true object (objectness score),
and Φm(i) and Φs(i) evaluate the quality of vi based on the consistency of
motions and shapes.

First, we compute Φo(i) = po(i) by utilizing probabilities from the FCN
output layer according to its category, where po(i) is the average probability on
all the pixels in vi. For motion consistency, we use a method similar to [33] and
compute motion scores around segment boundaries based on the average gradient
magnitude of optical flow estimations [32]. Then we compute Φm(i) by averaging
all the motion scores obtained for every two frames. The shape consistency is also
considered by computing the intersection-over-union (overlap) ratio between two
object segments in adjacent frames. We then compute the variance νs(i) of these
overlap ratios, and define Φs(i) = 1 − νs(i), which reflects that larger variance
has lower consistency.

Optimization for Tracklet Co-selection. We aim to formulate a submodular
function such that tracklets in the selected set A share more similarities and
maintain object-like as well as consistent segments. We combine the facility
location term (3) and the unary term (4) with a weight δ into an objective
function, and the submodularity is preserved by linearly combining two non-
negative terms:

max
A

C(A) = max
A

F(A) + δ U(A),

s.t. A ⊆ O ⊆ V, NA ≤ N ,

H(Ai) ≥ 0,

H(Ai) ≥ ρ · H(Ai−1), (5)
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Algorithm 1. Tracklet Co-selection for Each Category
Input: G = (V, E), N , ρ
Initialization: A0 ← ∅, O0 ← V, i ← 1
loop

a∗ = arg max
{Ai∈V}

H(Ai), where Ai = Ai−1 ∪ a

if NA > N or H(Ai) < 0 or H(Ai) < ρ · H(Ai−1) when i ≥ 2 then
break

end if
Ai ← Ai−1 ∪ a∗, Oi ← Oi−1 − a∗, i = i + 1

end loop
Output: A ← Ai, O ← Oi

where NA is the number of open facilities, and H(Ai) is the energy gain at
iterations i during iterative optimization, which is defined as: C(Ai) − C(Ai−1).
We adopt a greedy algorithm to optimize (5) in a way similar to [36]. We start
from an empty set of A and iteratively add an element a ∈ V\A to A that
provides the largest energy gain. The iterative process stops when one of the
following conditions is satisfied. First, the number of selected nodes is reached,
i.e., NA > N . Second, the energy gain is negative, i.e., H(Ai) < 0. Third, the
ratio of increased energy gain is below a threshold, i.e., H(Ai) < ρ · H(Ai−1),
when i ≥ 2. We show the main steps of the tracklet co-selection algorithm for
each category l in Algorithm 1 and Fig. 4 illustrates the effectiveness of the
proposed submodular function.

After optimizing (5) for each graph G within one category, we select a set
of tracklets Tl for each category l. Considering each video, we can obtain a few
tracklets from different sets of Tl, where l can be any category among L. In each
video, we then compute the normalized energy gain for each obtained tracklet
and re-rank all of them. This is, a normalized gain for a tracklet with category l

added at iteration i during optimization is computed as Gi
l = H(Ai)

C(A1) , where C(A1)
is the energy as the normalization term after adding the first tracklet. Based on
the re-ranked results, a threshold (i.e., 0.85 in this work) is applied to all Gi

l for
selecting a set of semantic tracklets that represent prominent objects. To obtain
final semantic segmentation results, since object segments from different tracklets
may overlap to each other, we choose the one with larger Gi

l in overlapped regions.

4 Experimental Results

We evaluate the proposed co-segmentation algorithm against the state-of-the-art
methods on numerous benchmark datasets. The MATLAB code will be made
available at https://sites.google.com/site/yihsuantsai/.

4.1 Experimental Settings

For tracklet generation, we learn an online SVM model with CNN features com-
bining the first three convolutional layers [17] (i.e., 448 dimensional vectors).

https://sites.google.com/site/yihsuantsai/
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For parameters in the graphical model (1) and (2), we use αcol = 1, αcnn =
1, β = 0.5, γs = 3.5 and γt = 1. In the submodular function, we set ε as 3 in
the facility location term of (3), and use λo = λm = λs = 1 in the unary term
of (4). During submodular optimization, we use δ = 20 in (5), and set N = 10
and ρ = 0.8 to determine stopping conditions. All these parameters are fixed in
the experiments for fair evaluations.

4.2 Youtube-Objects Dataset

The Youtube-Objects dataset [22] contains 10 object categories, and the length
of each sequence is up to 400 frames. We evaluate the proposed algorithm in a
subset of 126 videos with more than 20000 frames, where the pixel-wise annota-
tions in every 10 frames are provided by [10]. Note that, different from previous
video co-segmentation datasets [3,34], appearances and shapes of objects from
the same category in this dataset are significantly different.

We first conduct experiments in a weakly supervised manner, where a seman-
tic label is given for each video. Next, we evaluate our algorithm in a way that
object categories are unknown in videos. Table 1 shows segmentation results
of the proposed method and other state-of-the-art approaches. We use the
intersection-over-union (overlap) ratio to evaluate all the methods.

Weakly Labeled Videos. For the video labeled with a semantic category, we
use FCN segments belonging to its video-level category as initializations, such
that tracklets generated in each video (as described in Sect. 3.2) are all associ-
ated with the same category. We compare our approach with other supervised
tracking-based [7,20] or weakly supervised [35]1 methods. Table 1 shows that the
proposed method with weak supervision performs favorably in terms of overlap
ratio, especially in 7 out of 10 categories.

In general, our method performs well on non-rigid objects (bird, cat, dog,
horse) and fast moving objects (car, train). As the appearances and shapes of
these objects vary significantly, it is challenging to segment these objects from all
videos accurately. Although the recent method [35] utilizes object detectors and
generates proposals to localize objects in each frame, it is less effective for videos
with large appearance and shape variations as the generated proposals are usu-
ally noisy and less consistent across videos. In contrast, the proposed tracking-
based algorithm is able to capture detailed appearance and shape changes, and
hence generate tracklets consistently for segmentation.

Semantic Co-segmentation. In addition to weakly supervised settings, the
proposed algorithm can segment objects and discover the corresponding object
categories without any supervision. Table 1 shows our segmentation results com-
pared with the state-of-the-art unsupervised method [21]. The proposed algo-
rithm generates more accurate segmentation results in most categories with
significant improvement (e.g., more than 10% gain in boat, cat and train).

1 [35] evaluates the method on their annotated images, and we obtain their results on
the same annotation set [10] directly from the authors.
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Table 1. Segmentation results on the Youtube-Objects dataset with the overlap ratio.

Category [7] [35] Ours [20] [21] Baseline (FCN) Ours

Supervised? Y weakly weakly N N N N

Aeroplane 73.6 72.4 69.3 13.7 70.9 60.8 69.3

Bird 56.1 66.6 76.1 12.2 70.6 69.7 76.0

Boat 57.8 43.0 57.2 10.8 42.5 44.7 53.5

Car 33.9 58.9 70.4 23.7 65.2 60.3 70.4

Cat 30.5 36.4 67.7 18.6 52.1 53.9 66.8

Cow 41.8 58.2 59.7 16.3 44.5 52.8 49.0

Dog 36.8 48.7 64.2 18.0 65.3 52.8 47.5

Horse 44.3 49.6 57.1 11.5 53.5 42.4 55.7

Motorbike 48.9 41.4 44.1 10.6 44.2 47.3 39.5

Train 39.2 49.3 57.9 19.6 29.6 54.7 53.4

Mean 46.3 52.4 62.3 15.5 53.8 53.9 58.1

It demonstrates the effectiveness of our co-segmentation scheme that links rela-
tions between semantic objects from all videos, which is not addressed in [21].

To evaluate the effectiveness of the proposed tracking-based algorithm for
tracklet generation, we establish a baseline method which directly groups FCN
segments from every frame into a tracklet for each category (i.e., without using
tracking). We then use the same submodular function for tracklet co-selection
(Sect. 3.3). Compared to this baseline method, the proposed algorithm performs
well on most categories, especially for deformable objects such as bird, cat and
horse, as consistent tracklets can be extracted. However, the proposed algorithm
does not perform well in some videos (cow, motorbike) as some segments are not
initialized well, which causes inaccurate tracking results in these videos.

Compared to the proposed algorithm with weakly supervised setting, the
results on categories such as aeroplane, bird and car have identical and high
overlap ratios. It shows that without providing video-level labels, our co-
segmentation approach can reduce noisy segments that are generated from other
false categories, and hence retain high accuracies as with weakly supervised
setting. Moreover, it is worth noticing that the proposed algorithm without
supervision, already performs favorably against the state-of-the-art method that
requires weak supervision [35].

Different from other methods [21,35], the proposed algorithm can segment
objects as well as discover object categories (labels). We evaluate the classifica-
tion accuracy for predicting object categories based on ranked tracklets, and the
average precision (AP) is 85.3 on average over all categories. The results show
that with the proposed submodular function and re-ranking in each video, false
positives can be reduced, and hence prominent objects are discovered. We show
qualitative results in Fig. 5, and more results are presented in the supplementary
material.
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Fig. 5. Example results for semantic co-segmentation on the Youtube-Objects dataset
(without knowing object categories). The colors overlapping on the objects indicate
different semantic labels. The results show that our method is able to track and seg-
ment (multiple) objects under challenges such as occlusions, fast movements, deformed
shapes, scale changes and cluttered backgrounds. Best viewed in color with enlarged
images. (Color figure online)

4.3 MOViCS Dataset

The MOViCS dataset [3], which contains 4 sets with 11 sequences, is used
for evaluation on multi-class video co-segmentation. For each set, at least one
common object appears in all videos, while the number of object categories
is unknown. The proposed algorithm is evaluated against three state-of-the-
art methods including image co-segmentation (ICS) [11], video co-segmentation
(VCS) [3] and RMWC [34]. We use the unsupervised method [21] as a baseline
and produce segments in each frame as initializations for tracklet generation
(Sect. 3.2). In addition, since categories are not known for different segments
at this stage, one graph including tracklets from all videos is constructed for
co-selecting tracklets in each video.

Based on the evaluation metric in [3], Table 2 shows that the proposed algo-
rithm performs well in all the video sets, especially in the tiger set. As the
variations of objects in some videos are large, other approaches are less effec-
tive in segmenting objects in these videos. In contrast, our method works for
objects with various appearances in different videos by utilizing the submodular
optimization that accounts for appearances, shapes and motions together to co-
select tracklets containing common objects. We show qualitative comparisons to
other methods in Fig. 6.

4.4 Safari Dataset

In addition to co-segmentation in videos where each set contains at least one com-
mon object, our method is able to segment objects given a collection of sequences
without any prior knowledge. The Safari dataset [34] contains 9 videos with 5
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Input RMWC [34] Baseline [21] Our results

Fig. 6. Example results for object co-segmentation on the MOViCS dataset. Segmenta-
tion outputs are indicated as colored contours, where each color represents an instance.
Compared to the state-of-the-art approach [34] and the baseline method [21] that often
produce noisy segments or missing objects, our method obtains better segmentation
results. Best viewed in color. (Color figure online)

Table 2. Segmentation results on the MOViCS dataset with the overlap ratio.

Video Set ICS [11] RMWC [34] VCS [3] Baseline [21] Ours

Chicken & Turtle 8.0 86.0 65.0 73.6 87.7

Zebra & Lion 23.0 58.8 48.0 45.9 71.3

Giraffe & Elephant 7.0 52.8 52.0 36.5 59.0

Tiger 30.0 33.6 30.0 44.1 70.9

Mean 17.0 57.8 48.8 50.0 72.2

object categories, where each video may contain one or two object categories. To
evaluate the proposed algorithm, we input these 9 videos together and segment
common objects. Note that, we use [21] as the baseline method for single video
object segmentation. Then we initialize these segments to generate tracklets and
construct a graph for tracklet co-selection.

Table 3 shows the results by the proposed algorithm and two state-of-the-art
methods. In 4 out of 5 categories, our method achieves better results over the
other methods. The VCS [3] method is not effective for the general setting when
videos contain unknown types of object categories, and hence generates less
accurate results. The RMWC method [34] relies on object proposals and does
not generate consistent tracklets across videos when more than one object cate-
gory is involved. In our proposed algorithm, we utilize tracking-based method to
generate consistent tracklets, and segment objects via submodular optimization
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Fig. 7. Example results for object co-segmentation on the Safari dataset. Segmentation
outputs are indicated as colored contours, where each color represents an instance.
Compared to the state-of-the-art approach [34] (second row) and the baseline method
[21] (first row) that often produce noisy segments, false positives or missing objects,
our method obtains better segmentation results. Best viewed in color.

Table 3. Segmentation results on the Safari dataset with the overlap ratio.

Object RMWC [34] VCS [3] Baseline [21] Ours

Buffalo 86.9 68.6 90.0 91.3

Elephant 35.3 26.6 73.8 74.9

Giraffe 2.4 2.4 9.8 15.8

Lion 31.7 30.2 19.0 21.9

Sheep 36.3 4.8 32.3 65.8

Mean 38.5 26.5 45.0 54.0

in multiple videos without any assumption on the commonality of objects in the
videos. We show some example results in Fig. 7.

5 Concluding Remarks

In this paper, we present a novel algorithm to segment objects and understand
their visual semantics from a collection of videos. To exploit semantic informa-
tion, we first assign a category for each discovered segment in videos via the FCN
method. A tracking-based approach is presented to generate consistent tracklets
across videos. We then link the relations between videos by constructing graphs
which contain tracklets from different videos. Without any assumption of objects
appearing in videos, we formulate a submodular optimization problem and co-
select tracklets, which accounts for their appearances, shapes and motions. This
step considers other sequences and reduces noisy tracklets that can not be fil-
tered out within a single video. As a result, prominent objects are discovered and
segmented in videos. Extensive experimental results on the Youtube-Objects,
MOViCS and Safari datasets show that our method performs favorably against
the state-of-the-art approaches in terms of visual quality and accuracy.
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