Distractor-Supported Single Target Tracking
in Extremely Cluttered Scenes

Jingjing Xiao'®), Linbo Qiao?, Rustam Stolkin!, and Ales Leonardis’

! University of Birmingham, Birmingham B15 2TT, UK
shine636363@sina.com, {r.stolkin,a.leonardis}@cs.bham.ac.uk
2 College of Computer, National University of Defense Technology,
Changsha 410073, China
qiao.linbo@nudt.edu.cn

Abstract. This paper presents a novel method for single target track-
ing in RGB images under conditions of extreme clutter and camouflage,
including frequent occlusions by objects with similar appearance as the
target. In contrast to conventional single target trackers, which only main-
tain the estimated target status, we propose a multi-level clustering-based
robust estimation for online detection and learning of multiple target-
like regions, called distractors, when they appear near to the true tar-
get. To distinguish the target from these distractors, we exploit a global
dynamic constraint (derived from the target and the distractors) in a
feedback loop to improve single target tracking performance in situations
where the target is camouflaged in highly cluttered scenes. Our proposed
method successfully prevents the estimated target location from erro-
neously jumping to a distractor during occlusion or extreme camouflage
interactions. To gain an insightful understanding of the evaluated track-
ers, we have augmented publicly available benchmark videos, by propos-
ing a new set of clutter and camouflage sub-attributes, and annotating
these sub-attributes for all frames in all sequences. Using this dataset, we
first evaluate the effect of each key component of the tracker on the over-
all performance. Then, the proposed tracker is compared to other highly
ranked single target tracking algorithms in the literature. The experimen-
tal results show that applying the proposed global dynamic constraint in a
feedback loop can improve single target tracker performance, and demon-
strate that the overall algorithm significantly outperforms other state-of-
the-art single target trackers in highly cluttered scenes.

1 Introduction

Visual object tracking remains an open and active research area, despite publi-
cation of numerous tracking algorithms over the last three to four decades [1,2].
A particularly difficult problem is how to track a target which moves through
scenes featuring several other very similar objects, or which moves past extremely
cluttered or camouflaged image regions, Fig. 1A. In these situations, it is difficult
to distinguish the target using only its appearance information [3]. Additional
information, such as dynamic models of the target and nearby distracting image
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Fig.1. (A) Sequences with many distractor objects used in our experiments. The
cyan bounding boxes depict the single targets we want to track. (B) The proposed
tracking framework. The yellow arrows show the feedback loop between the single
target information and global dynamic information extracted from the tracker and the
distractors. The red bounding box/dot represents the single target we want to track
while the green dots denote the distractors. The proposed algorithm: (i) simultaneously
tracks the target and the distractors using the proposed robust estimation method; (ii)
extracts a global dynamic model from the relative target and distractor trajectories;
(iii) feeds the global dynamic information back to the single target tracker to help
identify the true target and infer occlusion situations. (Color figure online)

regions, may be useful to support robust tracking [4,5]. Therefore, in this paper,
we show how a single target tracker can be used to detect and exploit contex-
tual information. This contextual information is then fed back to the tracker to
improve its robustness in problems of tracking a single target which is camou-
flaged against scenes containing a large number of similar non-target entities,
which we call distractors.

Our proposed tracker is a single-target tracker, in the sense that it is ini-
tialised only with a bounding box of a single target in the first frame. However,
unlike most single target trackers, it encodes information about other objects or
image regions (distractors) with similar appearance to the target, and exploits
a global dynamics constraint in a feedback loop to help disambiguate the target
from these distractors, as illustrated in Fig. 1B. In scenes with clutter and cam-
ouflage, the proposed method detects multiple target-like regions and explicitly
models this global information to improve the performance of the single target
tracker, using methods which are somewhat analogous to the data association
approaches used in multi-target tracking. However, in contrast to multi-target
trackers, our proposed method (i) aims at using global information to improve a
single target tracker at each frame; (ii) does not assign individual IDs to multiple
other objects. The relationship of our tracker to single-target and multi-target
trackers is illustrated in Fig. 2.

The main contributions of this paper are: (i) a novel coarse-to-fine multi-level
clustering based robust estimation method for online detection and localisation
of candidate image regions containing the true target and/or distractors; (ii) a
novel global dynamics constraint applied in a feedback loop, which enables the
motion of the target and an arbitrary number of distractors to be robustly dis-
ambiguated, while also making inferences about occlusion situations; (iii) for
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Fig. 2. Relationships between single target trackers, multi-target trackers and our pro-
posed tracker during tracking. Single target trackers do not explicitly model informa-
tion about distractor objects. Multi-target trackers model and identify multiple target
regions, exploiting additional initialised prior knowledge. In contrast, our tracker is ini-
tialised in the same way as single-target trackers, but automatically detects and learns
models for multiple distractor entities on the fly, to help improve the performance of
the single target tracker.

performance evaluation, we propose a new set of sub-attributes to describe dif-
ferent kinds of cluttered scenes, and we augment publicly available benchmark
data by per-frame annotations of all sequences with all sub-attributes. We per-
form two sets of experiments using publicly available ground-truthed datasets.
First, on highly cluttered scenes, we (i) compare our tracker against other state-
of-the-art single target trackers, demonstrating superior performance of the pro-
posed algorithm, and (ii) study our tracker by evaluating the effectiveness of
each designed component. Secondly, for an overall assessment of the tracker, we
also evaluate its tracking performance on non-cluttered scenes from OTB100 [1]
dataset, again with favourable results. The remainder of this paper is organised
as follows. We review related work in Sect. 2. Section 3 explains technical details
of our proposed tracker. Section4 presents and discusses experimental results.
Section 5 provides concluding remarks.

2 Related Work

We first review works on single-target tracking in highly cluttered scenes. Then,
we review some related data association methods used in multi-target tracking
literature to make a distinction between that work and our own (a single-target
tracker which additionally models the global dynamics of multiple distractors).

To track a single target robustly in the presence of clutter, the tracker should
learn and exploit contextual information. In [6,7] it was observed that non-target
objects, known as supporters, may sometimes be associated with a target and can
be used to help infer its position. However, in highly cluttered scenes, e.g. Fig. 1A,
it may not be possible to find supporters that persistently move around the target
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with strong motion correlation. In contrast, we notice that identifying distractors
in contextual clutter can also help robustify target identification. Other work [8—
10] detected distractor regions with similar appearance to the target. However,
tracking accuracy of such methods heavily depends on the pre-defined spatial den-
sity of samples, where sparse sampling cannot adequately distinguish adjacent
objects, and dense sampling is computationally expensive. Even with dense sam-
pling, such methods can still fail to distinguish adjacent or overlapping objects. In
contrast, we propose a robust estimation method which uses a multi-level cluster-
ing scheme to efficiently search for objects at progressively finer granularities, and
distinguishes inter-occluding objects using a novel method based on the dispar-
ity between mean and mode samples. Note that methods such as [8-10] maintain
multiple image regions as target candidates, but do not specifically decide which
region is the target at each frame. In contrast, our proposed method detects and
learns distractors on-the-fly, and then exploits global target-distractor dynam-
ics constraints to enable deterministic identification of the target at each frame.
Appearance matching scores were used to distinguish the target from distractors
n [11]. However, such algorithms are prone to failures when the target is camou-
flaged, occluded or undergoing deformation, when appearance matching methods
can cause the tracker to erroneously fixate on clutter. A unified model to select
the best matching metric (attribution selection) and most stable sub-region of
the target (spatial selection) for tracking was proposed in [12]. Hong et al. [13]
learned a discriminative (matching) metric that adaptively computed the impor-
tance of different features, and online adaptive attribute weighting was also pro-
posed in [14-16]. Posseger et al. [17] recently proposed a distractor-aware target
model to select salient colours in single target tracking. However, none of the meth-
ods [12-17] actively searches and memorises the trajectories of the distractors in
scenes, or exploits a global dynamic constraint to improve single target tracking.
In addition, our paper addresses video sequences that are so extreme that both tar-
get and distractors may have identical appearance, and cannot be disambiguated
by any appearance features.

We now discuss the conceptual differences between our proposed global
dynamic constraint and data association methods used in multi-target trackers,
as illustrated in Fig. 2. Berclaz et al. [18] reformulated the data association prob-
lem as a constrained flow optimization convex problem, solved using a k-shortest
paths algorithm. However, the computational cost of generating k& paths is quite
high, especially for our problem of finding a single target at each frame. More-
over, this method first obtains detections for every frame throughout an entire
video sequence, and then mutually optimises the target IDs over all frames.
Such post-processing methods cannot be used for online target tracking. Shitrit
et al. [19] also relaxed the data association problem as a convex optimization
problem which explicitly exploited image appearance cues to prevent erroneous
identity switch. However, appearance cues are not sufficiently discriminating
to distinguish between the target and the distractors in extremely challenging
videos which we tackle in this paper, as shown in Fig.1. Dicle et al. [3] uti-
lized motion dynamics to distinguish targets with similar appearance, in order
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to reduce instances of target mislabelling and recover missing (occluded) data.
However, their algorithm requires the number of targets to be known a-priori.
In contrast, our method handles situations where the number of distractors is
unknown and has to be learned on the fly during tracking. Chen et al. [20]
proposed a constrained sequential labelling to solve the multi-target data associ-
ation problem, which utilized learned cost functions and constraint propagation
from captured complex dependencies. However, their approach is only designed
to handle the case of piece-wise linear motion. The single target tracker of [21]
was extended to online multi-target tracking [22] by using global data associa-
tion. However, candidate target regions must be densely sampled which can be
extremely computationally expensive. Moreover, the global identity-aware net-
work flow graph of [22] depends heavily on target appearance models, which
have difficulty in handling highly cluttered scenes, especially when both target
and distractors share identical appearance. In [23], we learned and exploited the
global movement of sports players to inform strong motion priors for key indi-
vidual players. Information from the global team-level context dynamics enabled
the tracker to overcome severe situations such as inter-player occlusions. How-
ever, the proposed context-conditioned latent behavior models do not readily
generalise to non-sports tracking situations.

In contrast to the above-mentioned works, our proposed tracker explicitly
exploits contextual information to detect and learn nearby distractors on-the-fly.
It then simultaneously builds a tracking memory of both the target and the dis-
tractors, which is used to compute an online-learned global dynamic constraint
which is finally fed back to help robustify the single-target tracker.

3 Proposed Distractor-Supported Single-Target Tracking
Method

The proposed method consists of two steps. The first step uses the proposed
robust estimation with coarse-to-fine multi-level clustering to find candidate
image regions for the target and any distractors. The second step distinguishes
the target from the distractors, and infers occlusion situations, by feeding back
the extracted global dynamic constraint (based on the motion history of both
the tracker and the distractors) to the single target tracker.

3.1 Robust Estimation with Coarse-to-fine Multi-level Clustering

Our proposed tracking algorithm first propagates a set of samples drawn from
the region around the target position estimated at the preceding frame. We then
propose a multi-level clustering-based robust estimation method to find regions
that are similar to the target in the new frame. Multiple feature modalities and
spatial information are used, level by level, in a coarse-to-fine sampling manner
to incrementally achieve better results, shown in Fig. 3. This approach resolves
the tradeoff between robustness and tracking speed, by first performing sparse
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Fig. 3. Coarse-to-fine multi-level clustering-based robust estimation is used to find
image regions containing the target or distractors. The algorithm: (i) sparsely prop-
agates samples around the target position from the previous frame; (ii) clusters the
propagated samples into two groups (foreground/background samples) according to
their associated matching scores; (iii) clusters the foreground samples according to
their spatial distribution; (iv) densely samples each clustered foreground region to per-
form robust estimations.

sampling to find initial candidates, and later applying dense sampling to a small
subset of image regions where needed.

The algorithm begins by propagating only a sparse set of samples, with colour
features initially used to compute matching scores for each sample. First, clus-
tering is carried out according to colour matching scores to classify samples into
foreground and background sets (level 1 clustering), defined as those with high
and low matching scores respectively. Next, the spatial distribution of level 1
foreground samples is used to sub-cluster neighbouring samples (level 2 sub-
clustering). For each level 2 cluster, we then apply a dense sampling, using an
additional feature (HOG) for robust estimation (level 3 cluster subdividing).
Note that we use the term foreground in a special sense, to denote both the
target and the distractors. Everything else is called background.

A. Level 1 Clustering. The algorithm samples a sparse set of IV, locations sur-
rounding the target location in a uniform way. The positions of the samples at the
kth frame are denoted by {p}c}lzl N,- As colour histograms are acknowledged
for their simplicity, computational efficiency, invariance to scale and resolution
change [24], we first extract a colour histogram from each sample and compare it
to the target appearance model to get matching scores {wlc e ri=1,..., Np» where C
indicates the colour feature. Within the information of the sample distributions
and their associated matching scores, we use X}; = {p}c,w};k} as the feature
vector for a Gaussian Mixture Model in order to cluster the samples into two
groups: foreground samples and background samples, according to Eq. 1:

pxkv ZOé(CN ka;U'Cvz ) (1)

where a¢ is the weight of the cluster C, 0 < a¢ < 1 for all components, and
Z<2c21 ac = 1, where o and > are the mean and variance of the corresponding
cluster. The parameter list:

0 = {0‘17”172170‘2’“2’22} (2)
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defines a Gaussian mixture model, which is estimated by maximising the like-
lihood [25]. The mean matching score of samples in each cluster is denoted by
wg’ .- Then, all samples in the cluster with the highest mean score are regarded
as foreground samples, Eq. 3:

Ry(i) =1, if i=argmax wgf,? (3)

where Ry denotes whether sample 7 is regarded as foreground. The selected fore-
ground samples p}g will next be used for level 2 sub-clustering using additional
features, while all samples in the cluster with lower mean score are regarded as
background and are discarded.

B. Level 2 Sub-clustering. In a highly cluttered environment, there may be
many false positives among those samples labeled as foreground, caused by dis-
tractors (non-target image regions with target-like appearance). To distinguish
individual objects in the scene (the target and the distractors) we therefore
sub-cluster the samples within all level 1 clusters according to their spatial dis-
tribution:

(Csub(ivj) =1, if N(Zaj) =1, i,j¢€ Rf (4)

where N(i,j) denotes whether samples ¢ and j are neighbours. Cgp(3,7) = 1
labels samples 7 and j as belonging to the same sub-cluster. Ry represents the
foreground sample cluster (level 1 cluster). Noticeably, the performance of this
spatial distribution-based clustering method depends on the spatial density of
propagated samples. If the samples are sparsely distributed, it is likely that a
level 2 sub-cluster may contain more than one object (a similar problem was
identified in [9,10]).

Figure4 illustrates the results after level 1 and level 2 clustering, using a
frame from the Juggling sequence. Even if there is a gap between two adjacent
objects (Fig.4A), it can be difficult to distinguish them using a sparse sampling
density, Fig.4B. Therefore, we next proceed to another level (level 3 cluster

Ty

») ®)

Fig. 4. Failure mode of levels 1 and 2 clustering, due to sparse sampling. (A) red grid
denotes the sparsely distributed samples. Blue rectangle is the estimated object; (B)
red dots denote background samples while blue dots denote foreground samples which
have been erroneously merged into a single foreground cluster. Clearly levels 1 and 2
clustering can fail to disambiguate two adjacent objects. (Color figure online)
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subdividing), where the foreground regions identified by levels 1 and 2 are more
densely sampled and an additional appearance feature is added to achieve finer
scale disambiguation.

C. Level 3 Robust Estimation with Cluster Subdividing. After we obtain
the set of foreground samples from levels 1 and 2 clustering, we densely sample
the region inside each level 2 sub-cluster to further improve the localisation of
target and distractor regions. Each level 2 sub-cluster was obtained using colour
features for matching, and all level 2 foreground samples therefore already have
a high colour matching score. Therefore an additional feature modality is needed
to achieve further disambiguation of target and distractor regions. At level 3 the
algorithm therefore applies HOG features to compute the matching scores of the
new samples, using a kernelised correlation filter [26].

Within each densely re-sampled level 2 sub-cluster, the most straightforward
way to identify the object region is to search for the sample with the highest HOG
feature matching score. However, as shown in Fig. 4, sometimes a coarse level 2
cluster may contain more than one object. If the target undergoes deformation,
then a distractor within the same cluster often triggers a high matching score.
In [24,27] they tried to detect the target by applying the expectation operator
over the distributed samples with associated weights (i.e. taking the likelihood-
weighted mean of all samples). However, the expectation estimation might be
highly erroneous when multiple similar objects are present in the scene [28]. For
example, taking the mean location of two similar objects will give an estimated
location which lies on a background region, midway between both samples. To
overcome this problem, we observe that the spatial ambiguity between the sam-
ple with the highest matching score (the mode) and the location of the mean
sample (derived from the expectation operator) can indicate potential distrac-
tions within a cluster, and enable robust estimation.

Within the dense level 3 samples, the initial estimate of the object inside each
cluster is taken to be the sample with the highest HOG matching score (i.e., the

sub

mode sample), denoted by pg (n) We also use the expectation operator over
all samples in the cluster to compute the mean sample:

Nc

= Cqu i (Csu i

P = D wi e (5)
i=1

where w%’,;’”(i) is the associated HOG feature matching score of the dense sample

i inside level 2 sub-cluster Cy,, and Ng is the number of samples inside each
cluster. If the overlap between p%“b(i") and f)%“" is small, it suggests there
is another distractor inside the cluster, which is on the opposite side of pfj
compared to pg, see Fig. 5.

If we denote foreground samples in the other half of the cluster as Ry c_ . /2,
then a second object’s location is estimated by:

s Coub ()
i = argmaxwg}

y 4L *Csu
s.t. 1€ Rf7csub/2’ p;; N py b <(

(6)
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Fig. 5. Sub-image of Fig. 4B with level 3 clustering. Green dot denotes mode sample
p%“b(”‘). Black dot is the mean sample [3%3“17. Yellow dots denote foreground samples
in the other half of the same cluster. (Color figure online)

where ( is the overlap threshold. This method will iteratively estimate the poten-
tial distractors inside each cluster until p?@" and p;, have significant overlap. Note
that the difference between mode sample and mean sample is utilised in a novel
way to indicate the search direction, which helps find the objects quickly, even
when partly occluded, as illustrated in Fig. 7.

The final estimations from all clusters indicate “foreground” regions that
might contain either the target or distractors, denoted by {Pi,k}z:l...No,k where
N, i is the number of observed foreground regions (note we use foreground to
refer to both the target and target-like distractors).

So far, we have presented a multi-level clustering-based robust estimation
method with coarse-to-fine sampling to detect target-like regions. The method
reduces the computational cost compared to dense sampling over the entire
image, while improving tracking accuracy compared to methods using a fixed
spatial sampling density. The algorithm will next combine the motion history
information of both the target and the distractors to build a global dynamic
constraint, described in Sect. 3.2. This global information will be fed back to the
single-target tracker, deterministically associating a single foreground region to
the target and also detecting occlusion situations.

3.2 Global Dynamic Constraint in a Feedback Loop

In highly cluttered scenes, motion cues are important for overcoming the ambigu-
ity caused by appearance similarities between the target and the distractors [3].
Therefore, we use motion history of the target and the distractors to build a
global dynamics constraint and feed it back to the individual tracker, which
deterministically associates a single foreground region to the true target and
prevents the estimated target location from erroneously jumping to a distractor
during occlusion or extreme camouflage interactions.

A. Global Motion Regression Model of the Target and the Distrac-
tors. During rapid camera motion, the image coordinates of the objects (i.e.,
of the target and/or distractors) can jump abruptly. However, the relative posi-
tions between the objects remain relatively stable. Therefore, our global motion
model is generated from the relative positions between the tracked target and
the surrounding distractors. The multi-level clustering-based robust estimation
(described in the previous section) outputs multiple detected foreground objects
{Pf),k}izl...Nmk at the kth frame. We now re-write the coordinates of these
objects as:
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Pk = Pok + AP, (7)
where Apio,  represents the relative displacement between the ith object location

and the spatial distribution centre p,, = ﬁvaz”lk p; i of all object position
estimates.

Over a short time interval, the underlying dynamics of the target can rea-
sonably be approximated as a linear regression model [3]. The global (relative)
motion of the target in frame k is then predicted by a linear regression model:
Apy , = o+ B1k+¢€,, where By, 81 are the coefficients and e, is a noise term. To
estimate the parameters, the algorithm minimises the sum of squared residuals
Zf:_ll 2, where 307 31 is obtained from the historic information of the relative
position of the target, by least squares estimates. The predicted relative position
of the target at frame k is:

APk = fo + ik (8)

Note that the relative positions of the target and the distractors implicitly
encode global information about the scene dynamics. The relative position of
foreground object i at the kth frame can be denoted by Apfj’ > Which is computed
from Eq. 7. Note that our tracking algorithm is only concerned with solving the
single target tracking problem, and does not assign or maintain individual IDs for
all foreground objects in the scene. Using the relative target position predicted
by the global motion model, we can calculate likelihood of a foreground object
being the true target as:

wh,, = ¢ AP BPu (9)

where wiD7k denotes the dynamic similarity score between the predicted target
relative position Ap;; and the relative position Apiy,c of the ith foreground
object.

Intuitively, the robustness of this dynamic similarity score, in Eq.9, cor-
responds to the complexity and stability of the spatial distribution of the
the detected foreground objects. If the number of detected foreground objects
changes dramatically, this indicates either potential occlusion or newly emerged
distractors.

B. Handling Dynamic Numbers of Distractors. While modelling the global
dynamics, it is crucial to be able to handle situations where the number of
detected foreground objects is changing. In such situations, the relative posi-
tions can be highly noisy or even invalid because of newly emerged/disappeared
objects.

Newly emerged or disappeared foreground objects might either be the target
or the distractors. Therefore, we use the image coordinates to associate each
detected object ¢ with a target-like dynamic matching score w; . and distractor-

like dynamic matching scores wfi’;?, computed by:

i o—IPL =Pt k1]
w; = e o,k 5
{ : (10)

im _ _—|p} e~ Pdk—1l
Wy =€ 7
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where pt 1, Py, are the positions of the target and the m-th distractor in the
k — 1th frame. p}, , is the ith detected object at frame k. Here, the exponential
function is applied to normalise the likelihood value to occupy the range (0,1).
The detected object corresponding to the target should have a high target-like
dynamic matching score and also a low distractor-like dynamic matching score,
giving a global dynamic score wbk for the ith object as:

i Na,k—1  i,m
i , )
,wi _ Nd7k—1wt,k/2’m:1 wdjc ; Nd,k:—l 7& 0
Dk = ,
wy , others

(11)

where Ng 1 is the number of distractors in the £ — 1th frame.

C. Global Dynamic Constraint Fed Back to the Single-target Tracker.
Our proposed algorithm feeds the generated global dynamic information back to
the single-target tracker to constrain the estimated target trajectory and detect
occlusion situations. Next, the newly estimated target state is used to update
the global dynamic information for successive frames, as shown in Fig. 1B. With
modelled global information, the final target region is optimally assigned to the
candidate region with the highest dynamic similarity score wiD7 . by Eq.12:

i = arg max wh (12)
s.t. w;k > \gmax {w;’f:}mzlym,m’kil
where wf:,’k is computed from Eq.9 when the number of detected foreground
objects is stable, and from Eq. 11 when the number of detected objects is chang-
ing. Ngr—1 represents the number of the distractors in the £ — 1th frame while
Aq is a scaling factor in the range between 0 and 1. After confirming the target,
the appearance model is updated using a linear combination of the reference
model and the observation [24,29]. The global dynamic constraint is updated
accordingly (Egs. 9, 11).

4 Experimental Results

We first evaluate our proposed tracker by analysing the contributions of each
of the key components (robust estimation with cluster subdividing, and the
global dynamic constraint) on overall performance. Next we compare our tracker
against the other state-of-the-art trackers which were ranked highest in recent
benchmark studies [1,2,30]. Section4.1 analyses performance specifically on
highly cluttered scenes. Section 4.2 tests on all other scenes from OTB100 [1],
confirming that our method also performs competitively on uncluttered scenes.

Evaluation Metrics. In this paper, we compare trackers in terms of the area
under the curve (AUC) of the overlap rate curve [1]. Implementation. The
proposed algorithm was implemented in Matlab2014a (linked to some C com-
ponents) using an Intel Core i5-3570 CPU, giving average speed of 20.23 fps
on non-cluttered scenes, and 4.01 fps on highly cluttered scenes with overhead
computation cost from global dynamic model. All sequences and the code are
publicly available.
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4.1 Experiment on Highly Cluttered Dataset

Datasets. We have selected 28 highly cluttered sequences from publicly available
data-sets [1-3,22]. Note that we do not use the full datasets in these first tests
because: (i) these large datasets only contain a few sequences featuring extreme
clutter and camouflage, which this paper specifically addresses; (ii) testing on
all sequences introduces confounding factors (non-clutter conditions) making it
hard to disambiguate the true capabilities of each algorithm to tackle clutter
and camouflage. To gain a deeper understanding of the tracker performance on
cluttered scenes, we propose a new set of sub-attributes for clutter and camou-
flage: shape clutter, colour clutter, camera motion-caused camouflage motion,
self-moving camouflage. We have per-frame annotated all sequences with all
these sub-attributes.

A. Evaluation of the Tracker Sub-components. In this section, we decom-
pose the method and evaluate the contribution of each of the key components to
the overall performance. In the experiment, the baseline algorithm applies the
colour feature used in Sect.3.1A to estimate the target position from the sam-
ple with the highest matching score. Next, we add HOG feature as described
in Sect.3.1C to identify the target region. Since the data association method
SMOT [3] is explicitly designed for simultaneously tracking multiple targets
which share similar appearance, we use this multi-target tracker to evaluate the
effectiveness of the global dynamic constraint. Note that the original SMOT [3] is
initialised with ground-truth positions for all objects (potential regions that con-
tain the target or distractors). To conduct a meaningful comparison, we input
the same detections from our proposed robust estimation to SMOT for data
association and output the optimized path for the target. We provide the AUC
results [1] of the decomposed algorithm for single target tracking, tested (i)
over the entire dataset and (ii) for the frames corresponding to particular sub-
attributes, Table 1.

Table1 shows that our proposed multi-level clustering-based robust esti-
mation improves tracking performance. The performance of our method ver-
sus SMOT [3] demonstrates the effectiveness of our proposed global dynamic

Table 1. AUC for the decomposed single target tracking algorithm tested in extremely
cluttered scenes. B: baseline algorithm (only colour feature); H: HOG feature used in
Sect. 3.1C; GDC: global dynamic constraint in Sect. 3.2. (red: best performance; blue:
second best performance).

Tracker Overall | Clutter type | Camouflage motion

Colour | Shape | Camera-caused motion | Self-motion

B 6.204 | 5.6072 | 6.0677|5.7518 6.1285
B+H 7.8030 | 7.2776 | 7.6666 | 6.4885 7.6789
B+H+SMOT [3] | 7.3545 | 6.7536 | 7.2065 | 6.5659 7.2558

B+H+GDC 8.7108 | 8.4086 | 8.5921 | 7.0662 8.6388
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Fig. 6. Performance of our proposed single target tracker in extremely cluttered and
camouflaged scenes. First row: bolt 1; second row: marching. Red bounding box: the
target; yellow bounding box: adjacent distractors. (Color figure online)

Table 2. AUC for single target tracking performance in extremely cluttered scenes. Our
proposed method significantly outperforms all compared methods on all sub-attributes.
(red: best performance; blue: second best performance)

Tracker Overall | Clutter type | Camouflage motion
Colour | Shape | Camera-caused motion | Self-motion

CT [11] 2.7215 |2.5956 | 2.7984 | 1.9619 2.7641
CPF [24] |5.0872 |4.1938 |4.9113 |4.9852 4.9120
Struck [21] | 5.8647 |5.2944 | 6.0627 | 3.6934 6.0705
SCM [31] |6.4292 |5.6997 | 6.6102 |4.1297 6.5985
KCF [29] |7.5602 |6.9372 |7.5118 |5.5188 7.5591
HCF [32] |7.6767 |7.0615 | 7.9109 | 6.5943 7.9219
Ours 8.7108 |8.4086 | 8.5921 | 7.0662 8.6388

constraint. Since SMOT algorithm has difficulty handling scenes with highly
dynamic number of distractors, it associates the wrong object to the target,
impeding tracking performance. Of note, our proposed tracking method runs at
4.01 fps, while SMOT has a speed of 1.86 fps.

Figure 6 illustrates the strong performance of our proposed tracker in extreme
clutter and camouflage. Distractors, detected and learned online by our tracker,
are indicated by yellow bounding boxes, while the true target is shown with a red
bounding box. In frame 139 of sequence marching, one distractor shares a major
overlap with the target, however our proposed multi-level clustering process can
still very accurately disambiguate and localise these two objects.

B. Overall Performance Comparison. To evaluate tracking performance
under highly cluttered conditions, our proposed algorithm is compared against
several state-of-the-art single target trackers including KCF [29], Struck [21],
SCM [31], CPF [24] and the latest CNN-based tracker HCF [32], which were
highly ranked in recent benchmark studies [1,2,30]. The CT algorithm [11] is
considered as the most closely related work to ours, thus it also takes part in
the comparison. We provide the AUC results [1] of each tracker in Table 2. The
trade-off overlap rate curve is shown in Fig.7.



134 J. Xiao et al.

Trade-off curve of all sequences
— T

———
—%— Ours

success ratio

b
0 0.050.10.150.20.250.30.350.40.450.50.550.60.650.70.750.80.850.90.95 1
overlap threshold

Fig. 7. The trade-off overlap rate curve of single target trackers, tested on 28 videos
featuring highly cluttered scenes.

Our proposed tracker outperforms all compared trackers, both overall and
also in all sub-attribute categories. KCF [29] and HCF [32] are both based on cor-
relation filters but using different features. Since HCF applies the latest CNN fea-
tures, it slightly outperforms KCF (using HOG). Note that our proposed method,
even without our proposed global dynamic constraint (shown in Table 1), outper-
forms HCF (Table2). This is because HCF densely samples the regions around
the target, while our coarse-to-fine searching mechanism searches over an initially
larger area to progressively finer granularities. CT [11] does exploit contextual
information, but the algorithm is still based primarily on appearance matching.
Since CT exploits more distracting information which is not properly eliminated,
it performs the worst out of the compared methods.

4.2 Experiment on Non-cluttered Dataset

To check how the proposed algorithm performs on non-cluttered scenes, we
also tested our algorithm on non-cluttered sequences (94 seq) from OTB100 [1],
excluding the already used highly cluttered sequences. The ranks on the non-
cluttered scenes are: HCF (11.04, AUC score), ours (9.78), KCF (9.44), Struck
(9.34), SCM (9.00), CPF (6.82). HCF with CNN-based rich features achieves
the best results on the non-cluttered sequences when handling other confound-
ing factors, followed by our tracker with comparably good results.

5 Conclusions

In this paper we presented a novel method for tracking a single target in scenes of
extreme clutter and camouflage. In contrast to conventional tracking algorithms
which only maintain information about the target, the proposed algorithm incor-
porates a novel multi-level clustering method for online detection and learning
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of target-like contextual image regions, called distractors. To disambiguate the
target’s path among the distractors, a global dynamic constraint is proposed in
a feedback loop to improve the single target tracker, and occlusion situations
are also detected when no likely target path is found. The proposed method
successfully prevents the estimated target location from erroneously jumping to
distractors during occlusions or camouflage interactions. To evaluate our tracker,
we have introduced a new set of sub-attributes, and have per-frame annotated a
number of public benchmark test sequences with these sub-attributes. Using this
dataset featuring extreme clutter and camouflage, we have first demonstrated
the contribution of each key component of the tracker to the overall tracking per-
formance, and then compared our tracker against highly ranked target tracking
algorithms from the literature, demonstrating that our proposed method signif-
icantly outperforms other state-of-the-art trackers. In addition, we tested the
tracker on non-cluttered scenes, where it also achieves competitive performance.
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