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Department of Computer Science, Technische Universität Darmstadt
E-mail: {bubel, haehnle}@cs.tu-darmstadt.de

F. Damiani
Department of Computer Science, University of Torino
E-mail: ferruccio.damiani@unito.it

E. B. Johnsen, O. Owe, I. Chieh Yu
Department of Informatics, University of Oslo
E-mail: {einarj,olaf,ingridcy}@ifi.uio.no

I. Schaefer
Institute for Software Engineering, Technische Universität Braunschweig
E-mail: i.schaefer@tu-braunschweig.de



2 Richard Bubel et al.

1 Introduction

Deductive software verification [3] made significant advances in recent years,
primarily through the development and improvement of verification tools [28]
such as Dafny [24], KeY [4], Why [18] or Verifast [21], and through novel tech-
niques and formalisms for verification-in-the-small, such as code contracts [17],
dynamic frames [22, 34], and separation logic [30]. However, similar advances
have not been achieved for verification-in-the-large. In particular, verification
systems typically rely on strong assumptions about how modules compose
and interact. These assumptions come in two flavors. Approaches based on a
closed-world assumption require that all code is developed before verification
can start, making software verification a post-hoc activity. Approaches based
on an open-world assumption require that the behavior of the modules com-
plies with a priori fixed contracts, typically up to behavioral subtyping [26].
In both cases, breaking with the chosen assumption has severe consequences:
the verification process for the “infected” part of the software needs to restart
from scratch, and may in the worst case cascade through the entire program!

Established software development methodologies interleave development
and testing activities and they do not enforce behavioral subtyping. Hence,
they go against both approaches discussed above and make formal verification
prohibitively expensive. Two very common aspects of software development
in particular break current formal verification approaches: program evolution
and product variability [32]. In the first, method implementations change fre-
quently; at each change, the code that relies on the modified implementations
must be re-verified. In the second, the sheer number of possible implementa-
tions for each method call leads to a correspondingly large number of proof
obligations for the code depending on these calls or to very weak contracts.

To better support verification-in-the-large and to increase the degree of
reuse during the software verification effort, we believe that proof systems used
in formal verification need to improve the separation of concerns between the
client and server side of behavioral contracts. Recent progress on this issue
was made in [9, 19] with the concept of abstract contracts that permits to
separate between when a contract is called and when it is instantiated. In
the current paper, we generalize abstract contracts using ideas from [11] to a
new and systematic framework for verification proof reuse. In the context of
object-oriented software development we address both program evolution and
product variability by

1. disentangling the verification of a given piece of code from the implemen-
tation of its called methods, and

2. systematically caching partial, abstract proofs that can be instantiated
with different method implementations.

Our framework is not restricted to a specific binding strategy for method calls
or a specific verification logic. Particular binding strategies can be superim-
posed to express different ways of composing modules (in the object-oriented
setting, classes) such as late binding, feature composition, preprocessing, etc.
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Paper organization. Sect. 2 introduces the programming and verification model
of this paper, and our running example. Sect. 3 presents abstract contracts
and Sect. 4 explains the use of proof repositories. Sect. 5 illustrates how differ-
ent structuring concepts are expressed in terms of binding strategies. Sect. 6
presents first evaluation results of our approach using an early prototype.
Sect. 7 discusses related work and Sect. 8 concludes the paper.

2 A Framework for Contract-Based Verification

2.1 The Programming Model

The pivotal idea of our approach is to carefully distinguish between a method
call in the code and an actual method invocation. More precisely, when we en-
counter a method call during the verification of a program, we do not want to
make a commitment as to which method implementation is actually invoked.
This is similar to the setting of programming languages that allow late binding
(such as Java), but we do not want to commit to a particular binding strategy:
this is deliberately left open to allow our approach to be usable for different
method binding strategies, including late binding, feature composition, pre-
processing, etc. In particular, we want to be able to revise a binding to the
invocation of a a different method implementation at any time. Consequently,
we use a programming model where the binding of method calls to method
implementations is recorded explicitly: a method may be bound to no, to one,
or to more than one implementation.

We work in a contract-based [27] verification setting (being the most com-
mon approach to deductive verification [3]): every method is specified by a
contract. That contract may be trivial, but it must always be present. Defs. 1
and 2 below define programs and contracts simultaneously.

Definition 1 (Program, Class, Signature, Method) A program consists
of a finite set C of classes and a finite set B of method call bindings.

A class definition C = (F , I) in C has a name C and finite sets F of fields
and I of method implementations. For simplicity, assume all fields are public,
there are only default constructors, and no static members. Each class defines
a type, but class types are unordered.

A method implementation consists of a method declaration, i.e., a method
signature and method body, plus a contract for this method declaration. The
method signature contains the method’s name and the types of the formal
argument and return parameters. Each method implementation has a unique
label, by which it can be referred to (prefixing it by the class name C). There
can be more than one method implementation for a given method signature.
These are distinguished by their labels. Method bodies contain standard state-
ments: local variable declarations, assignments, conditionals, loops, method
calls, and return statements.

The method call bindings B are a set of pairs, where the first element is
the code position of a method call within some method body and the second
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element is the label corresponding to a method implementation in some class
of C.

With this definition the binding of method calls need not be determinis-
tic, nor statically determined. This has the advantage that different method
selection schemas (e.g., by inheritance, by features, etc.) can be superimposed
on the idea of a proof repository. In a well-formed program, the body of each
method implementation typechecks w.r.t. all the bindings of the method calls
that occur in it—a method call that has no bindings typechecks if all its actual
parameters typecheck.

Remark 1 Our approach is agnostic of the target programming language, but
to be concrete, we write example programs in a Java-like syntax. These are
assumed to be well-formed, such that, e.g., used fields are properly defined.

The terminology for method contracts in this paper follows closely that
of KeY [4] and JML [23]. We use the following notation to access classes
C ∈ C, method implementations i, fields f, and method declarations m within
a program P = (C,B): P.C, P.C.f, P.C.i, P.C.i.m, etc. When P or C are clear
from the context, we can omit them.

Definition 2 (Location, Contract) A program location is an expression re-
ferring to an updatable heap location (variable, formal parameter, field access,
array access). A contract for a method declaration m consists of:

1. a first-order formula r over program locations called precondition or re-
quires clause;

2. a first-order formula e over program locations called postcondition or en-
sures clause;

3. a set of program locations a (called assignable clause) whose value can
potentially be changed during execution of m.

The notation for accessing class members is extended to contract con-
stituents: C.i.r is the requires clause of method implementation i in class C,
etc.

Contract elements appear in the code before the method declaration they
refer to and start with a @, followed by a keyword (requires, ensures,
assignable) identifying the element of the contract. A similar notation (label)
is used to introduce the label associated with the method declaration. The JML
keyword \old is used to access prestate values. We permit JML’s *-notation
in assignable clauses to describe unbounded sets of program locations.

Remark 2 There are several ways to implement access to prestate values. For
our purposes it is easiest to assume that for each location l that occurs in the
assignable clause of a contract, there is an implicitly declared variable \old(l)
that is set to the value that l had at the point when the contract was invoked.

Example 1 Consider a simple class Bank through which customers can update
the balance on an array acc of accounts.
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1 class Bank {

2 Account[] acc;

3
4 /*@ label update0
5 @ requires interest >= 0;

6 @ ensures (\forall int i; 0 <= i < acc.length;

7 acc[i].balance >= \old(acc[i].balance));

8 @ assignable acc[*].balance;

9 @*/

10 void update(int interest) {

11 for (int i = 0; i < acc.length; i++) {

12 acc[i].deposit(interest)

13 }

14 }

15 }

Fig. 1: The Bank class

1. Fig. 1 shows the class Bank with one method implementation labeled with
update0. This is a well-formed program, even though the call to deposit()

is not bound: Programs are not necessarily executable, but always analyz-
able by a verifier.

2. Let us add a class Account and its method implementation deposit0 (see
Fig. 2). The call to deposit() in update() is still not bound. When to bind
and which binding to make depends on the program composition discipline
which is left open in our approach.

3. Now add an explicit binding from the method call deposit(interest) in
line 12 to deposit0. This makes update0.update() executable.

4. Next add a second implementation of deposit() labeled deposit1 (see
Fig. 3). The binding is not changed, so deposit1 is not called from any-
where.

5. Finally, add a second binding from the method call deposit(interest)
in line 12 to deposit1. The binding of the call became non-deterministic:
during execution of update() either deposit0 or deposit1 may be invoked.

Example 2 The method implementation Account.deposit0 in Fig. 2 is speci-
fied by a contract whose precondition in the @requires clause says that the
deposited amount should be non-negative. The postcondition in the @ensures

clause expresses that the balance after the method call is equal to the balance
before the method call plus the value of parameter x.

In our programming model, we never delete any method implementation or
any binding. Which of the existing implementations and bindings are actually
used in a concrete execution is outside the programming model. For example,
one could superimpose a class hierarchy and a corresponding dynamic binding
rule, or one could view a subset of the existing method implementations and
bindings as a particular program version evolving in a development process,
but this is deliberately left open to render our results general.
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1 class Account {

2 int balance = 0;

3
4 /*@ label deposit0
5 @ requires x >= 0;

6 @ ensures balance == \old(balance) + x;

7 @ assignable balance;

8 @*/

9 void deposit(int x) { balance += x }

10 }

Fig. 2: The Account class

1 class Account {

2 int balance = 0;

3 final int fee = 2;

4
5 ... implementation of deposit0 ...

6
7 /*@ label deposit1
8 @ requires x >= 0;

9 @ ensures balance >= \old(balance);

10 @ assignable balance;

11 @*/

12 void deposit(int x) {

13 if (x >= fee) {balance += x - fee} }

14 }

Fig. 3: The Account class with a second implementation of deposit()

Definition 3 (Subprogram, Complete program) A subprogram of a given
program (C,B) is a well-formed program (C′,B′) such that B′ ⊆ B and for each
class C′ = (F ′, I ′) ∈ C′ there is a class C = (F , I) ∈ C with the same name as
C′, such that F ′ ⊆ F and I ′ ⊆ I.

A subprogram (C′,B′) is complete if every method call occurring in a
method implementation in C′ appears on the left-hand side of at least one
binding in B′.

Each program is a subprogram of itself. A complete subprogram is executable,
even though the implementation of a method call need not to be uniquely
determined and not every method implementation needs to be reachable.

Example 3 The programs resulting from Steps 3, 4, and 5 in Example 1 are
complete.

2.2 Contract-Based Verification

Verification is about proving the correctness of programs. We use the notion of
contract-based specification of methods as introduced in the previous section.
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This approach was proposed by Meyer in the context of design-by-contract [27]
and subsequently adopted by a number of programming languages and verifica-
tion tools, including the Eiffel programming language,
SPEC# [2] or Microsoft’s Code Contracts for the .NET platform.

We define partial correctness in the setting of first-order dynamic logic [4];
we omit total correctness and class invariants as neither adds anything essential
to our discussion.

Definition 4 Let m(p) be a call to method m with parameters p. A partial
correctness expression has the form [m(p)]Φ and means that whenever m is
called and terminates, then Φ holds in its final state; the formula Φ is either
another correctness expression or it is a first-order formula.

In first-order dynamic logic, correctness expressions are just formulas with
modalities. One may also encode correctness expressions as weakest precondi-
tion predicates and use first-order logic as a meta language, which is typically
done in verification condition generators (VCGs). Either way, we assume that
we can build first-order formulas over correctness expressions, so we can state
the intended semantics of contracts: Validity of the formula i.r→ [i.m(p)] i.e
expresses the correctness of a method implementation i with respect to the
pre- and postcondition of its contract. In addition, we must capture the cor-
rectness of i.m with respect to its assignable clause: for the latter, one can
assume that there is a formula A(i.a, i.m) whose validity implies that i.m can
change at most the value of program locations in i.a (following [16]). Formally,
we define:

Definition 5 (Contract satisfaction) A method implementation i of class
C satisfies its contract if the following formula is valid :

C.i.r→ [m(x)] C.i.e ∧ A(C.i.a, C.i.m) (1)

Here, m(x) is a call to the method declared by i with formal parameters x,
which may be referenced in C.i.r.

The presence of contracts makes formal verification of complex programs
possible, because each method can be verified separately against its contract
and called methods can be approximated by their contracts, see the method
contract rule (2) below. The assignable clause of a method limits the program
locations on which a method call can have side effects.1 To keep the treatment
simple (and also in line with most implementations of verification systems),
we do not allow metavariables to occur in first-order formulas.

To verify a method implementation (such as update() in Fig. 1) against
its contract in a verification calculus, method calls that may occur in the
body (here, deposit()) are not inlined, but replaced by their contract using
a method contract rule to achieve scalability:

1 We are aware that this basic technique is insufficient to achieve modular verification. Ad-
vanced techniques for modular verification, e.g. [1,22,34], would obfuscate the fundamental
questions considered in this paper and can be superimposed.
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methodContract
Γ =⇒ i.r Γ =⇒ Ui.a(i.e→ Φ)

Γ =⇒ [m(p)]Φ
(2)

The rule is applied to the conclusion below the horizontal line: given a
proof context with a set of formulas Γ , we need to establish the correctness of
a program starting with a method call m(p) with respect to a postcondition Φ.
The latter could contain either the continuation of the program or, if m(p) is
the final statement, an ensures clause.

Note that we here assume that a binding of the method call to the method
implementation i has been added. We also assume that the underlying ver-
ification calculus has associated the formal parameters of m with the actual
parameters p. Rule (2) uses the contract of i to reduce verification of the
method call to two subgoals. The first of these (left premise) establishes that
the requires clause is fulfilled, i.e., the contract is honored by the callee. This
justifies that it is sufficient to prove the second goal (right premise), where
the ensures clause may be used to prove the desired postcondition Φ correct.
Here, one needs to account for the possible side effects of the call on the val-
ues of locations listed in the assignable clause of i’s contract. As we cannot
know these, the substitution Ui.a is used to set all locations occurring in i.a to
fresh Skolem symbols (see [4, Sect. 3.8] for details). Soundness of the method
contract rule is formally stated as follows:

Theorem 1 If the method implementation i satisfies its contract, then rule (2)
is sound.

Proof The method contract rule is fairly standard except for the use of the
substitution Ui.a which encodes the assignable clause of the contract. In [6], a
theorem is shown from which the correctness of (2) follows as a special case.
ut

3 Abstract Method Calls

In the method body of Bank.update0 in Ex. 1, there are two possible im-
plementations for the call to deposit(). Clearly, it is inefficient to redo the
correctness proof for Bank.update0 for each of these implementations. For
example, the proof of Bank.update0 might have involved expensive user in-
teraction. In addition, deposit() might be called from many other methods.

Intuitively, the information contained in the proof where Account.deposit0
is used should be sufficient to justify the proof even when Account.deposit1
is used. After all, the difference between the proofs occurs only at the first-
order level and it should be easy to close the gap with the help of automated
first-order reasoning, such as SMT solving.

However, the method contract rule (2) does not permit to detect the sim-
ilarity between both proof obligations easily, because it works with a fixed
binding of method call to method implementation. The proof of Bank.update0
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1 /*@

2 @ requires R;

3 @ ensures (∀ l ∈ LS; l == \def(l)) && E;

4 @ assignable LS;

5 @ def R == r;

6 @ def LS == {l1,...,ln};

7 @ def \def(l1) == e1, ..., \def(ln) == en;

8 @ def E == e;

9 @*/

Fig. 4: Shape of an abstract method contract

1 /*@ label deposit0
2 @ requires R;

3 @ ensures (∀ l ∈ LS; l == \def(l)) && E;

4 @ assignable LS;

5 @ def R == x > 0;

6 @ def LS == {balance};

7 @ def \def(balance) == \old(balance) + x;

8 @ def E == true;

9 @*/

10 void deposit(int x) { balance += x }

Fig. 5: Abstract method specification for deposit from Fig. 2

uses the ensures clause Account.deposit0.e. When deposit0 is changed to
deposit1, it is impossible to disentangle the new ensures clause from the steps
used to prove Bank.update0.

We want to achieve a separation of method call and actual contract ap-
plication, as suggested by the programming model in Sect. 2.1. This can be
achieved technically by means of abstract contracts, as proposed in [9, 19].

The main technical idea is to introduce a level of indirection into a method
contract that permits the substitution of the concrete requires, assignable, and
ensures clauses to be delayed. We call this an abstract method contract. It has
the shape shown in Fig. 4 and comprises an abstract section and a definition
section. Its abstract section (lines 2–4) consists of the standard requires, en-
sures, and assignable clauses. But these clauses are now mere placeholders,
where R and E are abstract predicates, LS is an abstract function that returns a
set of assignable locations, and the \def’s are abstract functions that specify
the precise post value of these locations.2 The definition section of the contract
(lines 5–8) provides concrete expressions for each placeholder in the abstract
section. Fig. 4 merely suggests a convenient notation. The formal definition of
an abstract method contract is given in Def. 6 below.

The equational form of the ensures clause is a minor restriction, which
enforces that the post value for any assignable location is well-defined after
contract application. Field accesses occurring in definitions are expressed us-
ing getter methods, e.g., getBalance() is used to access the balance field.

2 Not all locations in LS need to appear in the def s. About the ones who do not, nothing
is known except what is stated in E.
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This ensures that their correct value is used at the time when definitions are
unfolded.

Example 4 Fig. 5 reformulates the contract of Account.deposit0 in Fig. 2 as
an abstract method contract.

The abstract section of an abstract method contract is completely generic
and indeed the same for each method. Therefore, an abstract contract is com-
pletely specified by its definition section and the signature of the method it
relates to. This is reflected in the following definition.

Definition 6 (Abstract method contract) An abstract method contract
for a method declaration m is a quadruple (r, e, ls, defs) where

– r, e are logic formulas representing the contract’s pre- and postcondition,3

– ls is a set of heap locations representing the assignable locations,
– defs is a list of pairs (defSym, ξdefSym) where defSym are non-rigid (i.e.,

state dependent) function or predicate symbols used as placeholders in r, e,
and definitions ξ. For r, e, and ls, as well as for the defined subset of the
\def(li) with li ∈ ls, there is a unique function symbol in defSym. For
simplicity, we use \def(li) as well to refer to that function symbol, as long
as no ambiguity arises.

Placeholders must be non-rigid signature symbols to prevent the program
logic calculus to perform simplifications over them that are invalid in certain
program states.

expandDef
ξdefSym

defSym
(3)

To ensure completeness of the abstract setup, we add the definitions of
the placeholders (i.e., the contents of the definition section of each abstract
contract) as a theory to the logic, just like other theories, such as arithmetic,
arrays, etc. This means that the notion of contract satisfaction (Def. 5) includes
symbols with definitions in abstract contracts. Additionally, Rule (3) above
substitutes placeholders by their definitions (by a slight abuse of notation, but
with obvious meaning for function symbols), is obviously sound. The advantage
of this setup is that we can use the standard method contract rule as follows:
Applying the method contract for a method invocation at position pc, we
instantiate the method contract rule as follows. As precondition i.r we use the
placeholder predicate Ri pc for the method implementation i using the program
counter pc as a unique marker for the specific method call. This placeholder
predicate may depend on the heap, method parameters and depending on
the programming language other program locations (e.g., a parameter used
to pass the this-reference in Java). The postcondition i.e is of the shape l

.
=

\def(l)pc ∧ Ei pc where Ei pc is a placeholder predicate which depends on the

3 This implies the limitation that no (not even pure) method calls can occur in pre- and
postconditions. This could be lifted or worked around in various ways.
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same program locations as the precondition placeholder as well as the method
result and the prestate of the method.

The anonymization of changed variables uses a placeholder function LSi pc

representing a set of program location (those which may be changed by the
method). The update Ui.a becomes the update ULSi pc

which is a generic substi-
tution that sets exactly the heap locations in LSi pc to fresh Skolem symbols.
This is expressible provided that quantification over heap locations is permit-
ted in the underlying program logic. Apart from that, the abstract rule is
exactly like the old method contract rule, but it ignores the definition section
at the time when it is applied.

abstractMethodContract
Γ =⇒ i.r Γ =⇒ ULSi pc

(i.e→ Φ)

Γ =⇒ [m(p)]Φ
(4)

As we neither changed the satisfaction of contracts nor the method contract
rule, Thm. 1 still holds.

Example 5 We illustrate the application of rule (4) with the call to deposit()

at line 12 of Fig. 1 (pc : l12) during verification of update0 in Fig. 1: Apply-
ing the contract to the sequent Γ =⇒ {U}[acc[i].deposit(interest);]φ,∆
splits the proof in two branches:

1.Γ =⇒{U}Rdeposit0 l12, ∆ and
2.Γ =⇒{U}{ULSdeposit0 l12

}(balance .=\def(balance)l12∧Edeposit0 l12)→ []φ,∆

Successive applications of Rule (3) (expandDef) first replace the placeholder by
the respective counterpart of the abstract method contract specifications and
successively the therein used placeholders such that for instance Rdeposit0 l12

is finally expanded to the concrete precondition interest > 0.

4 A Proof Repository

The idea of a proof repository is that it faithfully records which method imple-
mentations have been proven correct for which possible method call bindings
of a given program in the sense of Def. 1. Each program change and each
new binding gives rise to new proof obligations, which are then added to the
proof repository so that it reflects the changed program. Like for our notion
of program, we never delete any information in the proof repository.

For simplicity, with each method implementation we associate a single
proof obligation of the form (1) of Def. 5. Assume that we have a program
logic that reduces such proof obligations to first-order subgoals. This is pos-
sible even for incomplete programs (in the sense of Def. 3) using the abstract
contracts introduced in the previous section. Of course, there will in general
be unprovable first-order subgoals that contain abstract symbols from the ab-
stract contracts. Constructing such partial proofs might involve considerable
work; for example, it is generally necessary to supply loop invariants manually.
Therefore, it makes sense to store these partial, abstract proofs in a repository
for later reuse.
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Definition 7 (Proof repository) A proof repository for a well-formed pro-
gram (C,B) is a finite set of triples (i, σ, φ), where:

– i is the label of a method implementation in a class of C (to simplify the
notation, in the following we use the same metavariable i also to refer to
the associated method implementation);

– σ ⊆ B is a set of bindings such that only method call locations inside i
occur in its domain (σ can be empty, which is denoted by ε);

– φ is a first-order formula representing a verification condition; it may con-
tain symbols from abstract contracts that originate from applications of
rule (2) to method calls in i.

Intuitively, an element (i, σ, φ) of a proof repository S expresses that φ is a
proof obligation that needs to be established for the correctness of i provided
that methods called inside i are not bound to any other implementations than
those given in σ. Querying a proof repository is done by means of obvious
projection functions:

Definition 8 (Repository projection functions) Let S be a proof reposi-
tory for a well-formed program (C,B), i a method implementation in a class of
C and σ ⊆ B. Let sj be the j’th component of a triple s ∈ S. Then we define:

– S ↓ i = {s ∈ S | s1 = i}
– S ⇓ i, σ = {s ∈ S ↓ i | s2 ⊇ σ and 6|= σ(s3)}, and |= is first-order validity.

Let b @ σ denote that the left-hand side of the binding b is in the domain of
the set of bindings σ.

The set S ⇓ i, σ characterizes those proof obligations that are not valid (and
thereby not first-order provable) for a method implementation i with local calls
bound by the given set of bindings σ. In the next definition we connect proof
repositories with the notion of contract satisfaction in our framework.

Definition 9 (Sound proof repository) Soundness of a proof repository
S for a well-formed program P is defined inductively:

– The empty proof repository S = ∅ is sound for the empty program P =
(∅, ∅).

– Assume S is sound for program P = (C,B). We distinguish three cases:
Case 0: Extend P to a well-formed program P ′ by adding a new empty

class definition to C or a new field to a class definition C ∈ C. Then S
is sound for P ′.

Case 1: Extend P to a well-formed program P ′ by adding a new method
implementation i to a class in C.
Then we use the underlying program logic to reduce the satisfaction
of i’s contract (Def. 5) to a (possibly empty) set Φ of first-order proof
obligations. Each of these may or may not be provable. In general they
contain abstract symbols originating from abstract contracts. Let S′ =
S ∪ {(i, ε, φ) | φ ∈ Φ}, then S′ is sound for P ′.



Proof Repositories for Software Verification In-the-Large 13

Case 2: Create a new well-formed program P ′ by adding a new method
binding b = (pos, ib) to B.
As P ′ is well-formed, the method call at pos on the left hand-side of b
occurs in some method implementation i in a class of P . As S is sound
for P and we never remove anything from S, the elements in S ↓ i must
contain all first-order proof obligations for i. We choose those not yet
containing a binding for the left-hand side of b and extend them. Thus,
let S′ = S ∪ S′′, where

S′′ = {(i, {b} ∪ B, b(φ)) | (F , I) ∈ C, i ∈ I, (i,B, φ) ∈ S ↓ i, b 6@ B}

and with b(φ) we denote replacement of all abstract symbols in φ cre-
ated by the method call at pos with the concrete expressions given by
the contract of ib. Then S′ is sound for P ′.

The extension of S in Step 2 is a copy-and-substitute operation which
does not involve any reproving. Only the addition of new contracts makes it
necessary to prove new facts about programs.

Given a sound proof repository for a program, it is possible to query in a
simple manner whether a method implementation satisfies its contract:

Theorem 2 Let S be a sound proof repository for a program P = (C,B), i
a method implementation in a class of C, and σ ⊆ B a set of bindings whose
domain are method calls inside i. If S ⇓ i, σ = ∅ then i satisfies its contract
for any possible implementation of its called methods given by σ.4

The correctness of a complete subprogram can be checked by querying the
status of each method implementation and bindings of its method calls.

Example 6 We build a sound proof repository S for the program developed in
Ex. 2 step by step. S and P are initially empty.

1. Following Case 0 of Def. 9, we add class Account with field balance and
without any method implementation so far.

2. Following Case 1 of Def. 9, we extend Account with method implemen-
tation deposit0. Then we create a proof that deposit0 satisfies its con-
tract and insert the resulting proof obligations into S. A typical entry
is (deposit0, ε, φ), where φ is a provable first-order formula without ab-
stract contract symbols (because deposit() calls no other methods and
the contract is obviously satisfied). This will entail query results such as
S ⇓deposit0, ε = ∅.

3. Following Case 0 of Def. 9, we add class Bank with field acc.
4. Again, following Case 1 of Def. 9, we create a partial proof that update0

satisfies its contract and insert the resulting subgoals into S. A typical
entry is: (update0, ε, φ). Now several of the φ’s will be unprovable and
contain abstract symbols from the method call to deposit(). The query

4 replaced B by σ here.



14 Richard Bubel et al.

S ⇓update0, ε will return these entries, so we know that the contract of
update0 is not satisfied.5

5. Now we follow Case 2 of Def. 9 and b = (line 12 in update0, deposit0) to
B. Looking for entries in S with the method implementation update0 in
the first component, we find entries of the form (update0, ε, φ). For each
of these entries, we add a new entry of the form (update0, {b}, b(φ)). The
resulting first-order subgoals turn out to be provable, because the contract
of deposit0 is sufficient to prove that the contract of update0 is satisfied.
Hence, S ⇓update0, {b} = ∅.

6. We add field fee to class Account and then method implementation deposit1.
Similar as in Step 2, new proof obligations are added to S.

7. We add b′ = (line 12 in update0, deposit1) to B. Similar as in Step 5, new
entries of the form (update0, {b′}, b′(φ)) are created. As b′ @ {b}, only the
entries containing ε in the second component are copied. Even these new
entries are automatically first-order provable and no new verification effort
is necessary.

Remark 3 It would be sound to delete all entries with first-order provable
subgoals from the repository, because contract satisfaction queries ask for un-
provable subgoals. In this case, the proof repository would be unchanged for
Steps 2, 5, and 7 of Ex. 6. This could lead to substantially smaller reposi-
tories, but also preclude optimizations based on caching previous results. An
obvious compromise would be to replace an entry (i, σ, φ) with a first-order
provable constraint φ with (i, σ, true) to enable caching of first-order provable
subgoals. To determine such trade-offs requires further implementation and
experimentation, which is planned for future work.

In the evolution of programs, it is typically desirable to work towards
correct and complete repositories. However, there could be (older or newer)
method implementations that cause problems due to faults in code, contract,
or usage. To cope with this in our framework we may remove problematic
implementations and bindings, forming a subprogram of the given program.
This will not destroy well-formedness nor soundness, and we may regain cor-
rectness of the subprogram. In order to obtain completeness, we may then
add new implementations (of removed methods and additional ones) and add
corresponding bindings, taking care to maintain correctness. This means that
our framework supports replacement of methods in this way; allowing a quite
flexible program evolution process. Since repositories record information for
each implementation and each binding it is easy to form repositories of sub-
programs, as well as of extended programs.

5 If i is the label of a method implementation that contains at least one method call, then
S ⇓ i, ε will always return a non-empty set. More generally, if i is the label of a method
implementation and the domain of B does not contain all the method calls in i, then S ⇓ i,B
will always return a non-empty set.
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5 Examples: Integration with Structuring Concepts

5.1 Class Inheritance and Behavioral Subtyping

We show how class inheritance and late binding can be integrated into the
programming model presented in Sect. 2.1. With single inheritance one may
build tree-like class hierarchies, where a class may have several (direct or in-
direct) subclasses and several (direct and indirect) superclasses, but at most
one direct superclass, called the parent class. In general a subclass C ′ will
extend an existing parent class C by introducing new fields and new method
implementations, possibly including re-implementation of methods (i.e., im-
plementation of methods with a name found in C or a superclass of C). The
class inherits all fields and method implementation of its parent class. Inside
the subclass C ′ a method name m refers to the method implementation of
C ′ if any, otherwise that inherited from C. The syntax super.m refers to the
method m of C (possibly inherited in C).

Objects of the new class C ′ will contain an instance of all fields declared
or inherited. An object variable o declared of class C may at run-time refer
to an object of class C or C ′ or any other subclass of C. Late binding means
that the binding of a method call o.m depends on the class of the object that
o refers to at run-time. Similarly, a local call m is bound to that of the class
of the executing object. For example the call acc[i].deposit(interest) in
class Bank may bind to the deposit of class Account or a subclass FeeAccount.
At verification time the actual binding of method calls cannot in general be
decided, and the binding of a call o.m is treated as non-deterministic, poten-
tially binding to type-correct implementations of any m of the declared class
of o (possibly inherited) or any type-correct re-implementation in a subclass.
A call is classified as static if it contains super, otherwise late-bound.

In order to extend the framework of proof repositories, we let (the label
of) each call o.m be indexed by the declared class of o, and let each local
call m be indexed by the name of the enclosing class, i.e., treating a local
call m as this.m where this refers to the current object. As above we may
allow a class to define alternative implementations of the same method m,
even though such alternatives are typically controlled by inheritance in object-
oriented programs. In this case we must restrict bindings to those that result
in type-correct calls considering the type of the actual parameters and that
of the result value: A binding of a call v = o.m(e1, e2, ..., en) to a method
implemented in a class C is type-correct if C is the declared class of o, or a
subclass, and the assignments xi = ei (for each i) and v = w are type-correct
when xi has the type of the ith formal parameter and variable w has the type
of the declared method result.

The proof repository for a subclass C ′ with C as parent class is built accord-
ing to definition 9, using case 1 for methods implemented or re-implemented
in C’, resulting in new partial proofs, and case 2 for re-implemented meth-
ods, such that for each late-bound call of m occurring in C ′ or a superclass
of C ′ (i.e., indexed by C ′ or a superclass of C ′), we add a binding associat-
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1 class Account {

2 int balance = 0;

3
4 /*@ label deposit0
5 @ def R == x >= 0;

6 @ def LS == {balance};

7 @ def \def(balance) == \old(balance) + x;

8 @ def E == true;

9 @*/

10 void deposit(int x) { · · · }
11
12 /*@ label transfer0
13 @ def R == x >= 0 ∧ x <= balance;

14 @ def LS == {balance};

15 @ def \def(balance) == \old(balance) - x;

16 @ def E == true;

17 @*/

18 void transfer(Account a, int x) { · · · }
19 }

Fig. 6: The Account superclass

ing each (type-correct) re-implemented m with the label of the call. A static
call super.mC′ is bound to the (possibly inherited) implementation of m in C
(which gives deterministic binding if C has only one type-correct method m).

Thus the framework for proof repositories is well suited for object-oriented
inheritance and late binding. Also static binding by means of super can be ac-
commodated. Since subclassing implies a kind of subtyping, the notion of type-
correct program is specialized to cover (a version of) the standard contra/co-
variance for methods signatures, allowing also multiple definitions of methods
in a class without any type restrictions. The binding is type-safe since it ex-
ploits the type of the actual parameters and return value to select a subset of
method definitions yielding well-formed and type-correct programs.

As mentioned it might happen in our framework that a program gives rise
to unprovable proof obligations. Even if each class has provable proof obliga-
tions when seen in isolation, an unsatisfiable proof obligations may arise for
instance when a method defined and used in a class is redefined in a subclass
with a conflicting contract specification, and the usage of the method in the
superclass depends on the original specification. To resolve the situation one
can avoid the call in the superclass or modify the redefined method and its
contract, and re-verify the resulting program. But this could give substantial
re-verification. In our setting, a resolution can be found by means of a subpro-
gram obtained by removing method definitions, and corresponding bindings,
such that the subprogram has a subset of the original bindings and results in
provable proof obligations. In this case one can reuse the (corresponding subset
of) proof obligations, and re-verification is avoided (apart from applying the
verification logic). The subprogram can then be augmented by new versions
of problematic methods, and re-verification is limited to these additions.

Consider our example, where class Account in Fig. 6 has one deposit

method and one transfer method. We here ignore the standard requires, en-
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1 class FeeAccount extends Account {

2 final int fee = 2;

3
4 /*@ label deposit0
5 @ def R == x >= 0;

6 @ def LS == {balance};

7 @ def E == balance >= \old(balance);

8 @*/

9 void deposit(int x) { if (x >= fee) {balance += x - fee } }

10
11 /*@ label transfer0}

12 . . . contract of transfer0 . . . */
13 void transfer(Account a, int x) { · · · }
14
15 /*@ label transfer1
16 @ def R == x >= 0;

17 @ def LS == {balance}; // or super.assignable
18 @ def E == balance <= \old(balance);

19 @*/

20 void transfer(FeeAccount a, int x) { · · · }
21 }

Fig. 7: The FeeAccount class extending the Account class

sures, and assignable clauses. In Fig. 7 we add a subclass FeeAccount which
implements the extension of the bank account deposit with a fee (as in Fig. 3).
The subclass adds a new implementation of deposit, which we label with
FeeAccount.deposit0. Given the proof repository S for classes Bank and
Account of Ex. 6, adding the subclass is realized by two steps. First the new
implementation gives a partial proof that is added. Second, the implemen-
tation FeeAccount.deposit of the subclass results in a new binding for the
deposit call in the update method of the Bank class. Thus, a call to deposit

in a Bank object may non-deterministically bind to deposit0 in Account or
deposit0 in FeeAccount. Consider multiple definitions of methods where the
subclass FeeAccount implements the extension of the bank account money
transfer with a fee. FeeAccount has two implementations of transfer, one
labeled transfer0 with input parameter a of type Account and the other la-
beled transfer1 with a of type FeeAccount. In this case a call o.transfer(a)
in Bank gives the following possible bindings depending on the typing infor-
mation: (i) If o evaluates to type Account, we have a deterministic binding to
transfer0 in class Account, (ii) if o evaluates to type FeeAccount and a eval-
uates to type FeeAccount, the call binds to transfer1 in FeeAccount using
the narrowest type, otherwise (iii) the call binds to transfer1 in FeeAccount.

At the level of the proof system, the generation of proof obligations corre-
sponds to lazy behavioral subtyping [12, 13], since bindings are added to the
repository of an implementation only for method calls that occur in the imple-
mentation. In particular we do not insist that a redefined method satisfies the
original contract of the superclass as in behavioral subtyping [26]. For instance
in the example, the contract of deposit0 in Account is not satisfied by the
re-implemented deposit in FeeAccount.
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1 /*@

2 @ delta def R == dr;

3 @ delta def LS == [\original(LS) - {l′1,...,l
′
p} +] {l′′1,...,l

′′
q };

4 @ delta def \def(l′′′1 ) == de1, ..., \def(l′′′m) == dem;

5 @ delta def E == de;

6 @*/

Fig. 8: Shape of a delta abstract method contract (in line 3, the part enclosed in
square brackets is optional, and the symbols “-” and “+” denote set-theoretic
difference and union, respectively)

5.2 Delta-oriented Programming

Delta-oriented programming (DOP) [7, 31] is a transformational approach for
Software Product Line (SPL) development [32]. It supports developing an
SPL by starting from at least one complete product, called the core product.
To this core product one applies program transformations (the delta mod-
ules) that specify changes to implement other products. The alterations inside
a delta module act both at the class level, by adding or removing classes,
and at the class structure level by modifying the internal structure of exist-
ing classes (i.e., changing the super class and adding, removing, or modifying
fields, and methods). Modifying a method means either replacing the method
body or wrapping the existing body using the original construct. The call
original(...) calls a method with the same name as before the modifica-
tions, and is bound when the product is generated. This call may only occur in
the body of the method provided by a method-modify operation. A method-
modify operation that uses the original construct adds a new method with
a fresh name that is used (instead of original) in the body of the modified
method in the generated product—the name of the new method is denoted
by m$δ, where m is the name of the modified method and δ is the name of the
delta module that contains the method-modify operation.

A delta module may not only change the code of a program, but also
its specification. In the setting of this paper, a delta on a method contract
may replace the requires or ensures clause or modify it by referring to the
previous version of the respective clause using the original construct. These
modifications can be expressed by chaining the definition section of an abstract
method contract. A delta abstract method contract describes how to modify
the definition section of an abstract method contract following the delta (the
abstract section, which is the same for each method, cannot be modified). It
has the shape shown in Fig. 8, where:

– any of the delta def clauses can be omitted (meaning that the corre-
sponding def clause in the contract to be modified is unchanged),

– dr, de may contain occurrences of \original(R), \original(E), resp.
– if \original(LS)=={l1,. . . ,ln}, then

– {l′1,. . . ,l′p} ⊆ {l1,. . . ,ln} and {l′′1 ,. . . ,l′′q} ∩ {l1,. . . ,ln} = ∅,
– {l′′′1 ,. . . ,l′′′m} ⊆ ({l1,. . . ,ln} − {l′1,. . . ,l′p}) ∪ {l′′1 ,. . . ,l′′q},
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– for all l′′′i ∈ {l1,. . . ,ln} − {l′1,. . . ,l′p}, the term dei may contain occur-
rences of \original(\def(li)).

We consider the DOP scenario of SPLs of Java programs described in [7],
where method overloading is not used.6 Therefore each delta module contains
at most one class addition/modification/removal clause for each class name
and, inside a class clause, at most one method addition/modification/removal
clause for each method name. Whenever a delta module is applied to a (pos-
sibly incomplete) program a possibly incomplete program is generated by up-
dating the bindings according to the Java binding strategy. We adopt the
following convention for the labels of the methods:

– The label of each method added or modified by a delta module contains
the name of the delta module.

– The label of each method occurring in a product (or intermediate program)
contains the ordered sequence of the names of the delta modules that have
been applied to generate the product and that effectively contributed to
the generation of the code of the method. In particular, if a method m has
been added to a product (or intermediate program) P by a delta module δ
and has not been affected by subsequent delta modules used for generating
P, then the label of m in P is the same as in δ.

Example 7 Consider a simple product line, that we call the Bank PL. The
Bank PL has two features, Base (mandatory) and Fee (optional), and two
products:

– A core product p1 corresponding to the feature configuration {Base}, which
provides the basic functionalities described in steps 1–3 of Ex. 1.

– Another product p2, corresponding to the feature configuration {Base,Fee},
which additionally charges each deposit with a fee.

The code base contains:

– The core product, consisting of the class Bank in Fig. 1, the class Account
in Fig. 2, and the binding from the method call deposit(interest) in
line 12 of Fig. 1 to deposit0.

– The delta module DFee, in Fig. 9, which modifies the class Account to
implement the feature Fee and illustrates the concept of a delta abstract
method contract.

The program for product p2 consists of the classes illustrated in Fig. 10 and
of the bindings

– from the method call deposit(interest) in line 12 of Fig. 1 to depositDFee,
and

– from the method call deposit\$DFee(x-fee) in line 27 of Fig. 10 to
deposit0.

It is obtained by applying the delta module DFee to the core product.
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1 delta DFee {

2 modifies class Account {

3 adds final int fee = 2;

4
5 /*@ label depositDFee
6 @ delta def \def(balance) ==

7 @ (x >= fee) ? \original(\def(\balance)) - fee : \old(balance);

8 @*/

9 modifies void deposit(int x) {

10 if (x >= fee) { original(x - fee) }

11 } } }

Fig. 9: The DFee delta module providing the functionality for the Fee feature
(line 7 uses the Java syntax for conditional expressions, “... ? ... : ...”)

1 class Bank {

2 // body of class Bank is the same as in the core product

3 }

4
5 class Account {

6 int balance = 0;

7 final int fee = 2;

8
9 /*@ label deposit0

10 @ def R == x > 0;

11 @ def LS == {balance};

12 @ def \def(balance) == \old(getBalance()) + x;

13 @ def E == true;

14 @*/

15 void deposit$DBase(int x) { balance += x }

16 }

17
18 /*@ label depositDFee
19 @ def R == x > 0;

20 @ def LS == {balance};

21 @ delta def \def(balance) == (x >= \old(getFee())) ?

22 @ (\old(getBalance()) + x) - fee : \old(getBalance());

23 @ def E == true;

24 @*/

25
26 void deposit(int x) {

27 if (x >= fee) { deposit$DBase(x-fee) }

28 }

29 }

Fig. 10: The product with features Base and Fee

In order to verify an SPL by exploiting our proof repositories we identify
each method name of the form m$δ with the name m and we do not replace the
occurrences of m in the body of the methods introduced by the method modify
operations in the delta modules (i.e., the method renaming introduced, during
product generation, for dealing with the original construct is ignored). So,

6 This is not a restriction since, in Java, method overloading is resolved statically.
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the explicit binding management mechanism can be exploited to maximize
verification proof reuse across the products of the SPL.

The declaration of deltas will add implementations of methods with poten-
tially changed contracts with partial proofs. In addition to abstract symbols
the resulting proof obligations also contain unresolved original references.
The application of deltas to a program and its proof repository in order to
generate a program variant results in new bindings, whereby abstract sym-
bols are replaced and original calls are bound. This also includes the original
constructs used in the definition part of the abstract method contracts. Those
are bound to the parts of the contracts belonging to the respectively bound
methods.

To summarize, for a core product and a set of delta modules changing code
and contracts, we construct the following:

– a program (C,B), that we call the family program, such that
– each class in C contains all the method implementations that occur

in at least one product—there are the method implementations and
corresponding contracts of the core product or the method implemen-
tations and corresponding contracts that are added or modified by a
delta module;

– the set of method call bindings in C contains all the bindings in at least
one product; and

– a sound proof repository for (C,B).

Note that, if all the products of the SPL are well-formed programs then the
family program (C,B) is well-formed.

The family program and the associated proof repository can be built incre-
mentally, by iterating over the set of valid feature configurations, as follows.

1. The program (classes and bindings) representing the core product (product
p1, for the Bank PL example) are added.

2. For each other valid feature configuration (product p2, for the Bank PL
example): the methods introduced (either by an add or by a modify op-
eration) by each delta module associated to the configuration are added
(if they are not already present)7 and the associated bindings are added
together with the (partial) proofs.

Example 8 The family program for the Bank PL of Ex. 7 consists of the classes
illustrated in Fig. 11 and of the bindings

– from the method call deposit(interest) in line 12 of Fig. 1 to deposit0
(as in product p1),

– from the method call deposit(interest) in line 12 of Fig. 1 to depositDFee

(as in product p2), and
– from the method call original(x-fee) in line 27 of Fig. 11 to deposit0

(as in product p2).

7 This can be checked straightforwardly by comparing the labels.
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1 class Bank {

2 // body of class Bank is the same as in the core product

3 }

4
5 class Account {

6 int balance = 0;

7 final int fee = 2;

8
9 /*@ label deposit0

10 @ def R == x > 0;

11 @ def LS == {balance};

12 @ def \def(balance) == \old(getBalance()) + x;

13 @ def E == true;

14 @*/

15 void deposit(int x) { balance += x }

16 }

17
18 /*@ label deposit0DFee
19 @ def R == x > 0;

20 @ def LS == {balance};

21 @ delta def \def(balance) == (x >= \old(getFee())) ?

22 @ (\old(getBalance()) + x) - fee : \old(getBalance());

23 @ def E == true;

24 @*/

25
26 void deposit(int x) {

27 if (x >= fee) { original(x-fee) }

28 }

29 }

Fig. 11: The family program for the Bank PL

6 Initial Experiments

We used a modified version of the KeY verification system for Java with sup-
port for abstract contracts to emulate our proof repository approach. We did
the experiment along the lines of the running example and report here our
preliminary findings. The proof effort for the experiment outlined below is
summarized in Table 1.

We started to populate the proof repository S by adding class Account

including its field balance and added then method deposit(int) (without
fees). This first step created a proof repository with proof obligations that
required to verify the correctness of deposit(int) w.r.t. its own contract.
This resulted in six first-order proof obligations with placeholders from its own
abstract contract only. In other words, the resulting proof repository contained
only entries with empty binding sets, because no method is called from within
deposit(int). Two of the six proof obligations are immediately closeable
without expanding the placeholder definitions of the abstract contracts. The
remaining four first-order proof obligations are provable by expanding the
placeholders, hence, the proof repository did not contain any unprovable proof
obligations for method deposit(int) (i.e., S ⇓deposit0, ε = ∅).
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Account deposit w/o fee (deposit0) with fee (deposit1)
po po po po po

(abstract) (own) (bindings) (own) (bindings)

po open 4 (of 6) 0 — 0 —
size 92 9 — 37 — Σ : 138

Bank update

po po po po
(abstract) (own) (deposit0) (deposit1)

po open 21 (of 29) 8 0 0
size 679 930 1195 998 Σ : 2965

(size is measured in length of proof derivation and an indicator of the required proof effort)

Table 1: Proof Effort

The program was then extended by adding class Bank and its method
update(). Method update() invokes deposit(int) (inside the loop) and
causes for the first time in our scenario the addition of method bindings into
our proof repository. Using abstract contracts 29 proof obligations were gen-
erated of which 21 were not first-order provable. Expanding the definitions of
the abstract contract of method update only eight unprovable first-order proof
obligations (PO1) were left containing the abstract symbols for the method
contract of deposit(int). Interestingly the open proof obligations were all
concerned with the verification that the loop invariant is preserved. They were
not necessary for proving the initially valid case or use case (loop invariant is
used to prove the actual method contract) part of the loop invariant calculus
rule.

Adding entries for method binding deposit(int) and instantiating the
eight open proof obligations for the specific contracts, all first-order obligations
could be closed (i.e., S ⇓update0, {call to deposit0} = ∅).

Two variants for the introduction of an account with fees were simulated:
The first version was added as a solution where both kinds of accounts could
be present in a system at the same time. This solution uses subclassing and
makes use of the flexibility of our approach, where behavioral subtyping is not
a prerequisite. This version requires only the verification of the method con-
tract for deposit(int) of the new subclass of Account and the re-verification
of the eight proof obligations PO1 where the abstract symbols are instantiated
with the new method contract (deposit1). The second variant simulated soft-
ware evolution, where the method implementation of the original class changes
and is extended to support fees. In this scenario it turns out that the verifi-
cation task is identical with the first one and both give rise to the same proof
obligations that need to be re-verified.

Table 1 measures the proof effort in terms of length of the derivation (more
precise: number of rule applications). The total effort is the sum of all proof
sizes. How does our proposed approach compare with a traditional approach
based on behavioral subtyping? In our scenario the traditional approach re-
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quires a total proof effort of 4846 for the subclassing scenario (sum of derivation
length of the correctness proofs for all methods including those required to en-
sure that subclasses satisfy the contract of their superclass) and 9292 for the
evolution scenario (basically no reuse possible, all proofs had to be redone). In
summary, our approach (total effort: 3103 = 138 + 2965) saves us 36% resp.
66% of verification work. In the current stage, our prototype does not yet in-
clude optimizations like identification of identical first-order proof obligations.
For instance, in case of the Bank class, the proof effort could be reduced fur-
ther by ca. 200 by identifying that the addition of a new binding to deposit1
does not require to reprove that (i) the precondition of deposit is established
(identical first-order proof obligations to the present proof for the precondition
of deposit0), (ii) the loop terminates and that (iii) the assignable clause of
update is correct.

Please note also that in case of the subclassing scenario, the numbers do not
reflect the refactoring effort that is necessary to achieve a code base compatible
with Liskov’s substitution principle. This means, the introduction of a suitable
abstract class and an abstract deposit(int) method with a contract strong
enough to verify method update() of class Bank.

A more thorough and general comparison of our approach is future work.
It will require more profound changes to the used verification system, which
on the specification level is based on JML, and hence, behavioral subtyping
by specification inheritance. In addition, a fair comparison should also mea-
sure the flexibility of different approaches and their applicability to a variety
of structuring paradigms—an area where our proposed solution seems to be
promising.

7 Related Work

Proof reuse was studied in [5, 29] where proof replay is proposed to reduce
the verification effort. The old proof is replayed and when this is no longer
possible, a new proof rule is chosen heuristically. The proof reuse focuses only
on the proof structure and does not take the specification into account like our
work. In [8], it is assumed that one program variant has been fully verified.
By analyzing the differences to another program variant, one obtains those
proof obligations that remain valid in the new product variant and that need
not be reestablished. In [20], evolving formal specifications are maintained by
representing the dependencies between formal specifications and proofs in a
development graph. The effect of each modification is computed so that only
invalidated proofs have to be re-done. In [33], proofs are evolved together with
formal specifications. The main limitation is that the composition of proofs is
not aligned to the composition of programs as in our framework. The paper [25]
studies fine-grained caching of verification conditions that arise during a proof.
It is optimized for a highly interactive scenario where each keystroke of the
user in an IDE potentially leads to new verification tasks. The labels that
identify method implementations in our framework are called “checksums”
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there. Their approach is specific to call structures of the Boogie language. It
uses a simple abstraction mechanism called “assumption variables” that can
be seen as conditional requires clauses.

Previous work by the authors explored proof systems with an explicit proof
environment (similar to a typing environment) to improve flexibility and reuse
for the open world assumption in the context of class inheritance [12, 13],
traits [10], and (dynamic) software updates [14, 15]. One exploits the binding
mechanism of a particular code structuring concept to define the proof en-
vironment and formalizes the proof environment as a cache for the software
verification process. In the context of the proof repositories presented in the
current paper, such approaches can still be made use of by mapping them into
partial proofs and bindings (details are the subject of future work). This line of
work, however, assumes that at least a part of the program beyond the module
under analysis is known in order to perform the analysis; e.g., the superclasses,
the subtraits, etc. However, even this assumption does not hold in the gen-
eral case of program evolution and variability, such as DOP. To address this
challenge, the authors proposed a proof system which transforms placeholders
for assertions for software product lines [11], and explored abstract contracts
as a mechanism for verification reuse [9,19]. Our proof repositories generalize
and make use of this work while being compatible with such refinements as
mentioned above.

8 Conclusion

To increase the applicability of deductive software verification, ongoing ef-
forts on improving verification-in-the-small need to be complemented by bet-
ter integration in software development processes. The underlying assumptions
about module composition and development in our verification systems must
be aligned with those of the development processes. For this reason, it is im-
portant to investigate more flexible approaches to compositionality in software
verification.

This paper has proposed a novel, systematic framework for verification
reuse which makes use of abstract method contracts to realize an incremen-
tal proof repository aimed for verification-in-the-large. Abstract method con-
tracts provide a separation of concerns between the usage of a method and its
(changing) implementations. The proof repository keeps track of the verifica-
tion effort in terms of abstract proofs which can be reused and completed later.
The approach is meaningful for partial programs, so it allows the developer to
start the verification effort while the program is being developed. We believe
the approach can be combined with many software structuring concepts. To
support this claim, we showed how to realize behavioral subtyping for class
inheritance as well as delta-oriented variability for software product lines.
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9. Bubel, R., Hähnle, R., Pelevina, M.: Fully abstract operation contracts. In: T. Mar-
garia, B. Steffen (eds.) Leveraging Applications of Formal Methods, Verification and
Validation, 6th International Symposium, ISoLA 2014, Corfu, Greece, Lecture Notes in
Computer Science, vol. 8803, pp. 120–134. Springer-Verlag (2014)

10. Damiani, F., Dovland, J., Johnsen, E.B., Schaefer, I.: Verifying traits: an incremental
proof system for fine-grained reuse. Formal Aspects of Computing 26(4), 761–793 (2014)

11. Damiani, F., Owe, O., Dovland, J., Schaefer, I., Johnsen, E.B., Yu, I.C.: A transfor-
mational proof system for delta-oriented programming. In: Proc. 16th Intl. Software
Product Line Conference (SPLC), Volume 2, pp. 53–60. ACM (2012)

12. Dovland, J., Johnsen, E.B., Owe, O., Steffen, M.: Lazy behavioral subtyping. Journal
of Logic and Algebraic Programming 79(7), 578–607 (2010)

13. Dovland, J., Johnsen, E.B., Owe, O., Steffen, M.: Incremental reasoning with lazy be-
havioral subtyping for multiple inheritance. Science of Computer Programming 76(10),
915–941 (2011)

14. Dovland, J., Johnsen, E.B., Owe, O., Yu, I.C.: A proof system for adaptable class
hierarchies. Journal of Logical and Algebraic Methods in Programming 84(1), 37–53
(2015)

15. Dovland, J., Johnsen, E.B., Yu, I.C.: Tracking behavioral constraints during object-
oriented software evolution. In: T. Margaria, B. Steffen (eds.) 5th International Sym-
posium on Leveraging Applications of Formal Methods, Verification and Validation.
Technologies for Mastering Change (ISoLA 2012), Lecture Notes in Computer Science,
vol. 7609, pp. 253–268. Springer-Verlag (2012)

16. Engel, C., Roth, A., Schmitt, P.H., Weiß, B.: Verification of Modifies Clauses in Dynamic
Logic with Non-rigid Functions. Tech. Rep. 2009-9, Department of Computer Science,
University of Karlsruhe (2009)

17. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation. In:
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