
Exception-Enriched Rule Learning
from Knowledge Graphs

Mohamed H. Gad-Elrab1(B), Daria Stepanova1, Jacopo Urbani2,
and Gerhard Weikum1

1 Max Planck Institute of Informatics, Saarbrücken, Germany
{gadelrab,dstepano,weikum}@mpi-inf.mpg.de

2 VU University Amsterdam, Amsterdam, The Netherlands
jacopo@cs.vu.nl

Abstract. Advances in information extraction have enabled the auto-
matic construction of large knowledge graphs (KGs) like DBpedia,
Freebase, YAGO and Wikidata. These KGs are inevitably bound to be
incomplete. To fill in the gaps, data correlations in the KG can be ana-
lyzed to infer Horn rules and to predict new facts. However, Horn rules
do not take into account possible exceptions, so that predicting facts
via such rules introduces errors. To overcome this problem, we present
a method for effective revision of learned Horn rules by adding excep-
tions (i.e., negated atoms) into their bodies. This way errors are largely
reduced. We apply our method to discover rules with exceptions from
real-world KGs. Our experimental results demonstrate the effectiveness
of the developed method and the improvements in accuracy for KG com-
pletion by rule-based fact prediction.

1 Introduction

Motivation and Problem. Recent advances in information extraction have
led to huge graph-structured knowledge bases (KBs) also known as knowledge
graphs (KGs) such as NELL [4], DBpedia [2], YAGO [22] and Wikidata [8].
These KGs contain millions or billions of relational facts in the form of subject-
predicate-object (SPO) triples.

As such KGs are automatically constructed, they are incomplete and contain
errors. To complete and curate a KG, inductive logic programming and data
mining techniques (e.g., [5,11,29]) have been used to identify prominent patterns,
such as “Married people live in the same place”, and cast them in the form of
Horn rules, such as: r1 : livesIn(Y ,Z) ← isMarriedTo(X ,Y), livesIn(X ,Z).

This has twofold benefits. First, since KGs operate under the Open World
Assumption (OWA) (i.e., absent facts are treated as unknown rather than false),
the rules can be used to derive additional facts. For example, applying the rule r1
mined from the graph in Fig. 1a, the missing living place of Dave can be deduced
based on the data about his wife Clara. Second, rules can be used to eliminate
erroneous facts in the KG. For example, assuming that livesIn is a functional

c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 234–251, 2016.
DOI: 10.1007/978-3-319-46523-4 15

Exception-Enriched Rule Learning from Knowledge Graphs 235

relation, Amsterdam as a living place of Alice could be questioned as it differs
from her husband’s.

State of the Art and its Limitations. Methods for learning rules
from KGs are typically based on inductive logic programming or associa-
tion rule mining (see [11] and references given there). However, these meth-
ods are limited to Horn rules where all predicates in the rule body are
positive. This is insufficient to capture rules that have exceptions, such
as “Married people live in the same place unless one is a researcher”:
r2:livesIn(Y ,Z)←isMarriedTo(X ,Y),livesIn(X ,Z),not researcher(Y). This
additional knowledge could be an explanation for Alice living in an unexpected
place. If r2 often holds, then one can no longer complete the missing living place
for Dave by assuming that he lives with his wife Clara. Thus, understanding
exceptions is crucial for KG completion and curation.

Our goal is to learn rules with exceptions, also known as nonmonotonic rules.
Learning nonmonotonic rules under the Closed World Assumption (CWA) is a
well-studied problem that lies at the intersection of inductive and abductive logic
programming (e.g., [26,27]). However, these methods cannot be applied to KGs
treated under the OWA.

Approach and Contribution. We present a novel method that takes a KG
and a set of Horn rules as input and yields a set of exception-enriched rules as
output. The output rules are no longer necessarily Horn clauses (e.g., rule r2
above could be in our output). So we essentially we tackle a variant of a theory
revision problem [30] under OWA.

Our method proceeds in four steps. First, we compute what we call “excep-
tion witnesses”: predicates that are potentially involved in explaining exceptions
(e.g., researcher in our example). Second, we generate nonmonotonic rule can-
didates that we could possibly add to our KG rules. Third, we devise quality
measures for nonmonotonic rules to quantify their strength w.r.t the KG. In
contrast to prior work, we do not merely give measures for individual rules in
isolation, but also consider their cross-talk through a new technique that we call
“partial materialization”. Fourth and last, we rank the nonmonotonic rules by
their strengths and choose a cut-off point such that the obtained rules describe
the KG’s content as well as possible with awareness of exceptions.

The salient contributions of our paper are:

– A framework for nonmonotonic rule mining as a knowledge revision task, to
capture exceptions from Horn rules and overcome the limitations of prior work
on KG rule mining.

– An algorithm for computing exception candidates, measuring their quality,
and ranking them based on a novel technique that considers partial material-
ization of judiciously selected rules.

– Experiments with the YAGO3 and IMDB KGs where we show the gains of
our method for rule quality as well as fact quality when performing KG com-
pletion.

236 M.H. Gad-Elrab et al.

(a) Rule mining for KG completion and KG cleaning

bo
rn

In
U
S

li
v
e
sI
n
U
S

st
a
te
le
ss

im
m
ig
ra

n
t

si
n
g
e
r

p
o
e
t

h
a
sU

S
P
a
ss

p1 � � � �
p2 � � �
p3 � � � � �
p4 � � �
p5 � � �
p6 � �
p7 � �
p8 � � �
p9 � � �
p10 � � � �
p11 � � � �

(b) US inhabitants KG

Fig. 1. Examples of knowledge graphs.

The rest of the paper is structured as follows. Section 2 introduces necessary
notation and definitions. Section 3 presents our approach to nonmonotonic rule
mining. Section 4 gives details on computing exceptions and revision candidates.
Section 5 describes how we measure the quality of rules. Section 6 presents an
experimental evaluation of how exception-enriched rules can improve the KG
quality. Section 7 discusses related work.

2 Preliminaries

Knowledge Graphs. On the Web, knowledge graphs (KG) are often encoded
using the RDF data model [16], which represents the content of the graph with a
set of triples of the form 〈subject predicate object〉. These triples encode positive
facts about the world, and they are naturally treated under the OWA.

In this work, we focus on KGs without blank nodes or schema (i.e. TBox).
For simplicity, we represent the triples using unary and binary predicates. The
unary predicates are the objects of the RDF isA predicate while the binary ones
correspond to all other RDF predicates. We call this the factual representation
AG (the subscript G is omitted when clear from context) of the KG G defined
over the signature ΣAG = 〈C,R, C〉, where C, R and C are resp. sets of unary
predicates, binary predicates and constants.

Example 1. The factual representation of the graph G from Fig. 1a among
others contains the following facts:ism(brad , ann);ism(bob, alice);li(brad , berlin);

r(alice);r(dave); hb(ann, john); li(alice, amsterdam); li(bob, berlin); li(clara, chicago),
where ism,li ,hb,r stand for isMarriedTo, livesIn, hasBrother , and researcher
respectively. The signature of AG is ΣAG =〈C,R, C〉, where C={r},
R={ism, li, hb} and C={john, ann, brad , dave, clara, alice, kate, bob, chicago,
berlin, amsterdam}. ��

Exception-Enriched Rule Learning from Knowledge Graphs 237

In this work, we focus primarily on mining rules over unary predicates.
Binary relations can be translated into multiple unary ones by concatenating
the binary predicate and one of its arguments, e.g. the binary predicate livesIn
of Fig. 1a can be translated into three unary ones livesInAmsterdam, livesInBer-
lin, livesInChicago. We apply this conversion to a KG in the input so that it
consists of a collection of unary facts.

Nonmonotonic Logic Programs. Nonmonotonic Logic Programs We define
a logic program in the usual way [21]. In short, a (nonmonotonic) logic program
P is a set of rules of the form

H ← B,not E (1)

where H is a standard first-order atom of the form a(X) known as the rule
head and denoted as Head(r), B is a conjunction of positive atoms of the form
b1(Y1), . . . , bk(Yk) to which we refer as Body+(r) and not E, with slight abuse
of notation, denotes the conjunction of atoms not bk+1(Yk+1), . . . ,not bn(Yn).
Here, not is the so-called negation as failure (NAF) or default negation. The
negated part of the body is denoted as Body−(r). The rule r is positive or Horn
if Body−(r) = ∅. X,Y1, . . . ,Yn are tuples of either constants or variables whose
length corresponds to the arity of the predicates a, b1, . . . , bn respectively. The
signature of P is given as ΣP = 〈P, C〉, where P and C are resp. sets of predicates
and constants occurring in P .

A logic program P is ground if it consists of only ground rules, i.e. rules with-
out variables. Ground instantiation Gr(P) of a nonground program P is obtained
by substituting variables with constants in all possible ways. The Herbrand uni-
verse HU (P) (resp. Herbrand base HB(P)) of P , is the set of all constants
occurring in P , i.e. HU (P) = C (resp. the set of all possible ground atoms that
can be formed with predicates in P and constants in C). We refer to any subset
of HB(P) as a Herbrand interpretation. By MM (P) we denote the set-inclusion
minimal Herbrand interpretation of a ground positive program P .

An interpretation I of P is an answer set (or stable model) of P iff I ∈
MM (P I), where P I is the Gelfond-Lifschitz (GL) reduct [12] of P , obtained
from Gr(P) by removing (i) each rule r such that Body−(r) ∩ I
= ∅, and (ii) all
the negative atoms from the remaining rules. The set of answer sets of a program
P is denoted by AS(P).

Example 2. Consider the program

P =
{

(1) bornInUS (alex); (2) bornInUS (mat); (3) immigrant(mat);
(4) livesInUS (X) ← bornInUS (X),not immigrant(X)

}

The ground instantiation Gr(P) of P is obtained by substituting X
with mat and alex. For I={bornInUS (alex),bornInUS (mat),immigrant(mat),
livesInUS (alex)}, the GL-reduct P I of P contains the rule livesInUS (alex) ←
bornInUS (alex) and the facts (1)-(3). As I is a minimal model of P I , it holds
that I is an answer set of P . ��

238 M.H. Gad-Elrab et al.

The answer set semantics for nonmonotonic logic programs is based on the CWA,
under which whatever can not be derived from a program is assumed to be false.
Nonmonotonic logic programs are widely applied for formalizing common sense
reasoning from incomplete information.

Definition 1 (Rule-based KG completion). Let G be a KG and A its factual
representation over the signature ΣA = 〈C,R, C〉. Let, moreover, R be a set
of rules mined from G, i.e. rules over the signature ΣR = 〈C ∪ R, C〉. Then
completion of G (resp. A) w.r.t. R is a graph GR constructed from any answer
set AR ∈ AS(R ∪ A).

Example 3. Consider a factual representation A of a KG G given in a tabular
form in Fig. 1b, where a tick appears in an intersection of a row s and a column
o, if o(s) ∈ A (resp. 〈s isA o〉 ∈ G). Suppose we are given a set of rules
R = {r1, r2}, where

r1 : livesInUS (X) ← bornInUS (X),not immigrant(X);
r2 : livesInUS (X) ← hasUSPass(X).

The program A ∪ R has a single answer set AR=A ∪ {livesInUS (pi) |
i=6, 7, 11}, from which the completion GR of G can be reconstructed. ��

3 Learning Exception-Enriched Rules

Horn Rule Revision. Before we formally define our problem, we introduce
the notion of an incomplete data source following [7].

Definition 2 (Incomplete data source). An incomplete data source is a pair
G = (Ga,Gi) of two KGs, where Ga ⊆ Gi and ΣAGa = ΣAGi . We call Ga the
available graph and Gi the ideal graph.

The graph Ga is the graph that we have available as input. The ideal graph
Gi is the perfect completion of Ga, which is supposed to contain all correct facts
with entities and relations from ΣAGa that hold in the current state of the world.

Given a potentially incomplete graph Ga and a set of Horn rules RH mined
from Ga, our goal is to add default negated atoms (exceptions) to the rules in RH

and obtain a revised ruleset RNM such that the set difference between Ga
RNM

and
Gi is smaller than between Ga

RH
and Gi. If in addition the set difference between

Ga
RNM

and Gi is the smallest among the ones produced by other revisions R′
NM

of RH , then we call RNM an ideal nonmonotonic revision. For single rules such
revision is defined as follows:

Definition 3 (Ideal nonmonotonic revision). Let G = (Ga,Gi) be an incom-
plete data source. Moreover, let r : a ← b1, . . . , bk be a Horn rule mined from
Ga. An ideal nonmonotonic revision of r w.r.t. G is any rule

r′ : a ← b1, . . . , bk,not bk+1,not bn, (2)

Exception-Enriched Rule Learning from Knowledge Graphs 239

Fig. 2. Exception-enriched rule learning: general overview

such that Gi
Ga
r′ ⊂ Gi
Ga

r
1, i.e. the completion of Ga based on r′ is closer to

Gi than the completion of Ga based on r, and Ga
r′′
Gi ⊂ Ga

r′
Gi for no other
nonmonotonic revision r′′
= r′ of r. If k=n, then the revision coincides with the
original rule.

In our work, we assume that the ideal graph Gi is not available (otherwise
nothing would need to be learnt). Therefore, we cannot verify whether a revision
is ideal for RH . What we can do, however, is to estimate using some quality
functions whether a given revision produces an approximation of Gi that is better
than the approximation produced by the original Horn ruleset. For this purpose,
we introduce a generic quality function q which receives as input a revision RNM

of the ruleset RH and a graph G, and returns a real value that reflects the quality
of the revised set RNM . We can now formally define our problem:

Problem: quality-based Horn rule revision

Given: KG G, set of nonground Horn rules RH mined from G, quality function q

Find: set of rules RNM obtained by adding default negated atoms to Body−(r)
for some r ∈ RH , such that q(RNM ,G) is maximal.

Note that so far we did not specify the details of the quality function q. In
our approach, we estimate the quality of a ruleset by exploiting well-established
measures proposed in the field of data mining [3]. Even though none of these
measures can offer any sort of guarantee, our hypothesis is that they still indicate
to some extent the percentage of correctly predicted facts obtained as a result of
completing a KG based on a given ruleset. We discuss in Sect. 5 in more details
how q can be defined.

Approach Overview. Figure 2 illustrates the main phases of our approach. In
Step 1, we launch an off-the-shelf algorithm to mine Horn rules from the input
KG. We use FPGrowth [13], but any other, e.g., [5,11] can be likewise applied,
i.e., our overall revision approach is independent of the concrete technique used

1 G1�G2 = (G1\G2) ∪ (G2\G1).

240 M.H. Gad-Elrab et al.

Algorithm 1: ComputeEWS : compute EWS(r,A)
Input: KB A, rule r : a(X) ← b1(X), . . . , bk(X)
Output: EWS (r,A)

(a) N ← NS(r,A); A ← ABS(r,A)
(b) E+ ← {not a(c) | c ∈ A}; E− ← {not a(c) | c ∈ N}
(c) Re ← Learn(E+, E−,A)
(d) EWS ← {predicate p in Body+(r′) | r′ ∈ Re, s.t. , p is not in Body+(r)}
(e) return EWS

for Horn rule mining. Then, for each rule we compute normal and abnormal
instance sets, defined as:

Definition 4 (r-(ab)normal instance set). Let A be the factual representa-
tion of a KG G and r : a(X) ← b1(X), . . . , bk(X) a Horn rule mined from G.
Then,

– NS (r,A)={c | b1(c), . . . , bk(c), a(c)∈A} is an r-normal instance set;
– ABS (r,A)={c | b1(c), . . . , bk(c)∈A, a(c)
∈ A} is an r-abnormal instance set.

Example 4. For A from Fig. 1b and the rule r : livesInUS (X)←bornInUS (X),
r-normal and r-abnormal instance sets are given as NS(r,A) = {p1, . . . , p5} and
ABS (r,A) = {p6, . . . , p11} respectively. ��

Intuitively, if the given data was complete, then the r-normal and r-abnormal
instance sets would exactly correspond to instances for which the rule r holds
(resp. does not hold) in the real world. Since the KG is potentially incomplete,
this is no longer the case and some r-abnormal instances might in fact be clas-
sified as such due to data incompleteness. In order to distinguish between the
“wrongly” and “correctly” classified instances in the r-abnormal set, in Step 2
we construct exception witness sets (EWS), which are defined as follows:

Definition 5 (Exception witness set (EWS)). Let A be the factual repre-
sentation of a KG G and let r be a Horn rule mined from G. An r-exception
witness set EWS (r ,A) = {e1, . . . , el} is a maximal set of predicates, such that

(i) ei(c′) ∈ A for some c′ ∈ ABS (r,A), 1 ≤ i ≤ m and
(ii) e1(c), . . . , em(c)
∈ A for all c ∈ NS(r,A).

Example 5. For A and r from Example 4 EWS (r ,A)={immigrant} is an
r-exception witness set. For A′=A\{p5} it holds that EWS (r ,A′)=
{immigrant , stateless}. ��

After EWSs are computed for all rules in RH , we use them to create potential
revisions in Step 3. Then, we rank the newly created revisions and select the best
ones using different criteria (Step 4). These selected rules will constitute the new
RNM .

Exception-Enriched Rule Learning from Knowledge Graphs 241

4 Computing Exception Witnesses and Potential Rule
Revisions

In this section we describe how we calculate the exception witness sets for Horn
rules (Fig. 2, Step 2) and how we create potential rule revisions (Fig. 2, Step 3).

Computing Exception Witness Sets. For constructing exception witness
sets we use the algorithm ComputeEWS (Algorithm 1), which given a factual
representation A of a KG and a rule r ∈ RH as input, outputs the set EWS (r ,A).

The algorithm works as follows: First in (a) r-normal NS (r ,A) and r-
abnormal ABS (r ,A) instance sets are found and stored resp. in N and A. Then
in (b) the fresh predicate not a the facts not a(c) are added to E+ for all
c ∈ ABS (r ,A). In the same step the facts not a(c) for c ∈ N are stored in E−.
In (c), a variant of a classical inductive learning procedure Learn(E+, E−,A),
e.g., [23] is employed to induce a set of hypothesis Re in the form of Horn
rules with unary atoms, s.t. A ∪ Re |= e for as many as possible e ∈ E+, and
A ∪ Re
|= e′ for all e′ ∈ E−. Finally, in (d) the bodies of rules in Re not
containing predicates from Body+(r) are put in EWS , which is output in (e).

The correctness of ComputeEWS follows from the correctness of the proce-
dure Learn. Indeed, by (d) for p ∈ EWS, a rule r′ with p occurring in Body(r′)
exists in Re. Since r′ ∪ A
|= not a(c) for not a(c) ∈ E−, we have that p(c)
∈ A
for r-normal c due to (a) and (b). Moreover, p(c′) ∈ A for some r-abnormal c′,
as otherwise r′
∈ Re. Hence, (i) and (ii) of Definition 5 hold, i.e. EWS is an
exception witness set for r w.r.t. A.

Constructing Candidate Rule Revisions. After all EWSs are calculated for
Horn rules in RH , we construct a search space of potential revisions by adding to
rule bodies exceptions in the form of default negated atoms. More specifically, for
every ri : a(X) ← b1(X), . . . , bk(X) in RH we create m = |EWS (ri,A)| revision
candidates, i.e. rules r

ej
i , s.t. Head(reji) = Head(ri), Body+(reji) = Body(ri),

Body−(ri) = ej(X), where ej ∈ EWS (ri,A). We denote with Ri the set of
all r

ej
i .

Example 6. For EWS (r,A′) = {immigrant , stateless} from Example 5 in Step 3
revision candidates rim : livesInUS (X)←bornInUS (X),not immigrant(X) and
rst : livesInUS (X)←bornInUS (X),not stateless(X) are created. ��

5 Rules Quality Assessment

Given a potential RNM , the function q should approximate the closeness between
the completion Ga

RNM
of the input KG Ga and the ideal KG Gi. In this work,

we follow usual practice in data mining and adapt standard association rule
measures to our needs. Let rm be a generic rule measure, e.g. one defined in
Table 12. Then, naively generalizing rm for rulesets by taking the average of rm
2 Table 1 reports the definition of confidence, lift and Jaccard coefficient – three

commonly-used rule measures [1]. Here, n(B) (resp. n(H)) denotes the number of

242 M.H. Gad-Elrab et al.

Table 1. Rule evaluation measures for a rule r w.r.t. A

Rule measure Formula for r : H ← B

Confidence conf (r,A) =
n(HB)

n(B)

Lift lift(r,A) =
n(HB)

n(H) ∗ n(B)

Jaccard coef jc(r,A) =
n(HB)

n(H) + n(B) − n(HB)

values for all rules in a given set we obtain

qrm(RNM ,A) =

∑
r∈RNM

rm(r,A)
|RNM | (3)

In our case, qrm alone is not sufficiently representative for being the target
quality function q for two reasons: (1) it does not penalize rules with noisy
exceptions3; (2) it does not measure how many contradicting beliefs our revisions
reflect.

Example 7.

(1) For r : livesInUS (X)←hasUSPass(X),not poet(X) and A (from Fig. 1b) we
have conf (r,A)=1, as all 3 non-poets with US passports live in the US, i.e.,
r gets the highest individual score based on confidence. However, poet is a
noisy exception due to p3, who is a poet possessing a US passport and living
in the US.

(2) Let RNM = {r1 : lu(X)←hu(X), st(X), r2 : lu(X)←bu(X),not im(X), r3 :
im(X) ← st(X)}, where lu, hu, bu, st , im stand for livesInUS , hasUSPass,
bornInUS , stateless and immigrant . Although im in r2 may perfectly fit
as exception w.r.t. some (unspecified here) original KG; once the KG is
completed based on r1 and r3, im might become noisy for r2. Indeed, r1
can easily bring new instances c in lu, while r3 can predict facts im(c). If
this is the case, i.e., r2 ∈ RNM becomes noisy after other rules in RNM are
applied, then intuitively rules in RNM do not agree on the beliefs about Gi

they express.

��
To resolve the above issues we introduce an additional quality function

qconflict , next to qrm , whose purpose is to evaluate the ruleset w.r.t (1) and (2).
To measure qconflict for RNM , we create an extended set of rules Raux, which
contains every revised rule r : a(X) ← b(X),not e(X) in RNM and its aux-
iliary version raux : not a(X) ← b(X), e(X), where not a is a fresh predicate
collecting instances that are not in a. Notice that raux is meaningless, and thus

instances for which the body (resp. head) of a rule H ← B is satisfied in A or in data
mining terminology the number of transactions in A with items from B (resp. H).

3 e is a noisy exception for r if e(c) ∈ A for some r-normal c.

Exception-Enriched Rule Learning from Knowledge Graphs 243

void in Raux , for rules r with positive bodies. Formally, we define qconflict as
follows

qconflict (RNM ,A) =
∑

p∈pred(Raux)

|{c | p(c), not p(c) ∈ ARaux }|
|{c |not p(c) ∈ ARaux }| (4)

where pred(Raux) is the set of predicates appearing in Raux .
Intuitively, ARaux contains both positive predictions of the form p(c) and

negative ones not p(c) produced by the rules in Raux . The function qconflict
computes the ratio of “contradicting” pairs {p(c),not p(c)} over the number
of not p(c)4 in ARaux , which reflects how much the rules in RNM disagree with
each other on beliefs about the ideal KG Gi they express. The smaller qconflict ,
the better is the ruleset RNM .

Revision Based on Partial Materialization. Our goal in Step 4 is to find a
set of revisions RNM , for which qrm(RNM ,A) is maximal and qconflict (RNM ,A)
is minimal.

To determine such globally best set RNM many candidate rule combinations
have to be checked, which is unfortunately not feasible because of the large size
of our A and EWS. Therefore, we propose an approach where we incrementally
build RNM by considering every ri ∈ RH and choose the best revision rji ∈
Ri for it. In order to select the best rji , we use a special ranking function,
which estimates how well a rule r at hand describes the data and how noisy its
exceptions are. In the remaining of this section, we will propose four different
ranking functions, starting from the simplest to the most sophisticated one.

Naive-ranker. The first implementation, which we call rank naive, calculates
the average value of the rm scores of r and raux and uses it to rank the rules.
Formally, the average is computed by the following function:

estrm(r,A) =
rm(

r︷ ︸︸ ︷
H ← B,not E,A) + rm(

raux︷ ︸︸ ︷
not H ← B,E,A)

2
(5)

where rm is one of the measures in Table 1. E.g., plugging in conf instead of rm,
gives

estconf (r,A) =
1
2

(n(BH) − n(BHE)
n(B) − n(BE)

+
n(BE) − n(BHE)

n(BE)

)
(6)

where n(X) is the number of transactions with items from X.

Example 8. For r and A from Example 7 (1) estconf (r,A) = 0.75, i.e., due to
noisiness of poet the value of estconf decreased. ��
PM -ranker. The main problem of rank naive is that it does not exploit any
knowledge about the properties that a final revision RNM might have. In other
4 Ratio over the number of p(c) instead of not p(c) is possible, but then qconflict is

smaller and less representative.

244 M.H. Gad-Elrab et al.

words, ranking of revisions of a rule at hand is completely independent from
ranking of revisions for other rules. To address this issue, we propose a sec-
ond implementation called revision based on partial materialization (denoted as
rank pm). Here, the idea is to apply estrm for a rule r not on A but on com-
pletion of A based on other rules, which according to our estimates constitute
some approximation of RNM .

Example 9. Consider a rule r1:lu(X)←bu(X),not im(X), and suppose there
is only a single other rule r2:lu(X)←hu(X) given, for which EWS (r2,A) = ∅
for A from Fig. 1b. This knowledge can be exploited when ranking r1. We have
estconf (r1,A) = 0.8, while estconf (r1,Ar2) = 0.875 due to the materialized fact
livesInUS (p11). This increase gives us an indication that r1 agrees with r2 on
predictions it makes.

On the contrary, for r3 : lu(X) ← hu(X),not pt(X)}, where pt
stands for poet and r4 : lu(X)←bu(X) we have estconf (r3,A)=0.75, but
estconf (r3,Ar4)=0.5, which witnesses that beliefs of r3 and r4 contradict. ��

The function rank pm first constructs the temporary rule set Rt , which con-
tains, for every rule ri ∈ RH , a rule rti with all exceptions from EWS (ri,A)
incorporated, i.e., Rt predicts the smallest number of facts, which are also pre-
dicted by any possible revision RNM . Then, for each ri ∈ RH , we compute the
estrm value for all revision candidates rji based on ARt\rti . Formally,

rank pm(rji ,A) = estrm(rji ,ARt\rti) (7)

Once the scores for all revision candidates rji for ri are computed, we pick the
revision with the highest score, add it to the current snapshot of RNM and move
to ri+1.

OPM -ranker. With rank pm, facts inferred by rules of low quality might have
a significant impact on more promising rules. To handle this issue, we propose a
variation of rank pm called revision with ordered partial materialization (abbr.
rank opm), which proceeds as follows. First we rank Horn rules based on some
rm ′ (possibly same as rm) and obtain an ordered list osRH

. Then we go through
osRH

and for every rule ri we compute a snapshot Ai of A by materializing only
those rules rtk ∈ Rt , for which rk is ordered higher in the list osRH

than ri. More
formally,

rank opmrm(ri,A) = estrm(ri,Ai) (8)

where Ai = ARt\{rtk | osRH
[k]=rk; i≥k}.

OWPM -ranker. With rank opm as we have defined it, the facts inferred by
rules count the same as the true facts in A. Since the predicted facts are inferred
based on statistically-supported assumptions, it is natural to distinguish them
from the facts that are explicitly present in A. To achieve this, we propose one
last ranking function that exploits weights assigned to facts. Here, there is a clear
distinction between facts from A (which get maximal weight) and the predicted
facts (which inherit weights from rules that inferred them). We call this method
revision with ordered weighted partial materialization (abbr. rank owpm).

Exception-Enriched Rule Learning from Knowledge Graphs 245

The method rank owpm differs from rank opm in that weights are used
to estimate the revisions’ scores. It is convenient (and a common practice) to
assign weights of probabilistic nature between 0 and 1 (e.g., confidence can be
exploited). There are several ways to produce weighted partial materialization;
for example, using probabilistic logic programming systems, e.g., Problog [9] or
PrASP [25].

However, normally, in such systems facts predicted by some rules in a ruleset
at hand are used as input to other rules, i.e., uncertainty is propagated through
rule chains, which might be undesired in our setting. To avoid such propagation,
when computing weighted partial materialization of A we keep predicted facts
(i.e., derived using rules) separately from the explicit facts (i.e., those in A), and
infer new facts using only A.

The method rank owpm works as follows. Initially, we sort the rules in RH

and create the Ais with the same procedure as described for rank opm. The
only difference is that here every inferred fact in ARt receives a specific weight
that corresponds to rm(r′,A), where r′ is the positive version of the rule that
inferred the fact5. If the same fact is derived by multiple rules, we keep the
highest weight.

The weights play a role when we evaluate a rule w.r.t. the partially materi-
alized KG. To this end, we slightly change the rm function so that it considers
weighted facts (we denote such function as rmw). E.g., conf w(r,A) calculates a
weighted sum of the instances for which the head (resp. body) of r is satisfied
w.r.t. A (instead of a normal sum used in conf). Formally, rank owpm computes
a score for a revision rji as follows:

rank owpmrmw(rji ,A) = estrmw(rji ,Aw
i) (9)

where Aw
i is the weighted version of Ai from Eq. 8. In the following section, we

will analyze the performance of these four functions on some realistic KGs.

6 Evaluation

Experimental Setup. We considered two knowledge graphs: a slice of almost
10M facts from YAGO3 [22], a general purpose KG, and an RDF version of
IMDB6 data with 2M facts, a well known domain-specific KG of movies and
artists. We chose these two KGs in order to evaluate our method’s performance
on both general-purpose and domain-specific KGs. Our experiments were per-
formed on a machine with 40 cores and 400GB RAM. The used datasets and
the experimental code are publicly available7.

Outline. First we evaluate different configurations of our method using the qual-
ity functions qrm and qconflict , defined in Sect. 5. Then, we report the results of a

5 We cannot consider the entire rule (i.e. with all exceptions attached), since standard
measures like confidence will return values very close to 1 for such rules.

6 http://imdb.com.
7 http://people.mpi-inf.mpg.de/∼gadelrab/rules iswc.

http://imdb.com
http://people.mpi-inf.mpg.de/~gadelrab/rules_iswc

246 M.H. Gad-Elrab et al.

(a) Confidence for top-k YAGO revised rules (b) Confidence for top-k IMDB revised rules

Fig. 3. Average rules’ confidence on YAGO and IMDB (higher is better).

manual assessment that we performed to evaluate the quality of the predictions,
reporting good and bad examples produced by our method.

6.1 Evaluation of the Revision Steps

Step 1. Initially, we considered the Horn rules produced by AMIE [11]. However,
they mainly focus on unsupported binary predicates and the only unary rules
are restricted to the isA predicate, which was too limiting for us. Therefore, we
first propositionalized the original KG, and then mined the Horn rules using the
association rule mining implementation based on standard FPGrowth [13] offered
by SPMF Library8. In order to avoid over-fitting rules as well as to reduce the
computation, we limited the extraction to rules with maximum four body atoms,
a single head atom, a minimum support of 0.0001 × # entities and a minimum
confidence of 0.25 for YAGO. Since IMDB is smaller and more connected, we
set a higher minimum support of 0.005 × # entities and confidence of 0.6. On
our machine, this process took approx. 10 seconds on YAGO and 2.5 second on
IMDB, and it generated about 10 K and 25K rules respectively.

Steps 2 and 3. We implemented a simple inductive learning procedure, which
performs manipulations on the set of facts instantiating the rule and its body
to get the EWS. The generation of EWSs with minimum support of 0.05 took
about 50 seconds for YAGO and 30 seconds for IMDB. The execution time is
significantly affected by the size and distribution of the predicates in the KG.
We could find EWSs for about 6 K rules mined from YAGO, and 22 K rules
mined from IMDB. On average, the EWSs for the YAGO’s rules contained 3
exceptions, and 28 exceptions on IMDB.

Step 4. We evaluated the quality of our rule selection procedure w.r.t. two
dimensions, which reflect the two q proposed in Sect. 5: average of the rules’
confidence (qconf), and the number of conflicts (qconflict). The average confi-
dence shows how well the revised rules adhere to the input. The number of con-
flicts indicates how consistent the revised rules set is w.r.t the final predictions

8 http://www.philippe-fournier-viger.com/spmf/.

http://www.philippe-fournier-viger.com/spmf/

Exception-Enriched Rule Learning from Knowledge Graphs 247

Fig. 4. Ratio of conflicts on YAGO and IMDB (lower is better).

it makes. Due to space constraints, we report the results using only confidence
as rule evaluation function (Eq. 6) and lift as rule ordering criterion, as we found
this combination to be a good representative.

6.2 Exception-Enriched Rules vs. Horn Rules

Figure 3 reports the obtained average rules’ confidence using the four ranking
functions to select the best revisions. Horn reports the average confidence of
the original Horn rules; while Naive, PM, OPM and OWPM are our ranking
methods described in Sect. 5. For both inputs, we show the results on the top
10, . . . , 100% rules ranked by lift.

We make three observations. (i) In general enriching Horn rules with excep-
tions increases the average confidence (approx. 11 % for YAGO, 3.5% for IMDB).
This indicates that our method is useful to mine rules that reflect the data more
precisely. It is also worth mentioning that along with the increase in confidence,
the average coverage of the revised rules dropped only by 13 % for YAGO and
4 % for IMDB (i.e. the rules do not become too specific). (ii) The comparison
between the four ranking methods shows that the highest confidence is achieved
by the non-materialized (Naive) function followed by the weighted one (OWPM).
(iii) Since we used lift for ordering the rules, and it is not neccessarily correlated
with confidence, one can see that the confidence drops for around top 60 % of the
YAGO rules, and then slightly increases again. For IMDB a smooth confidence
decrease is observed with the addition of lower-ranked rules.

The higher value of Naive was expected, since this procedure is designed to
maximize the confidence. However, confidence alone is not a good indicator to
determine the overall rule’s quality, as we explained in Sect. 5. Figure 4 shows
the number of conflicts (for YAGO and IMDB) that were obtained by executing
the revised rules and their corresponding auxiliary versions (raux) using the DLV
system [19]. Unfortunately, DLV was unable to scale to the entire ruleset; hence,
we used up to 1000 rules. In our experiment, a conflict occurs when we derive
both p(c) and not p(c). The graphs report the ratio between the number of
conflicts and negated derived facts. From them, we observe that both OPM and

248 M.H. Gad-Elrab et al.

Y1 : isMountain(X) ← isLocatedInAustria(X), isLocatedInItaly(X),
not[isRiver(X)|isLocatedInRussia(X)]

Y2 : bornInUSA(X) ← actedInMovie(X), createdMovie(X), isPerson(X),
not[wonFilmfareAwards(X)|bornInNewYork(X)]

Y3 : isPoliticianOfUSA(X) ← bornInUSA(X), isGovernor(X),
not[isPoliticianOfPuertoRico(X)|isPoliticianOfHawaii(X)]

I1 : hasLanguageEnglish(X) ← hasGenreDrama(X), hasGenreTriller(X), hasGenreCrime(X),
not[producedInIndia(X)|createdByNovelist(X)]

I2 : hasGenreAnimation(X) ← directedByActor(X), hasLanguageEnglish(X), producedInUSA(X),
hasGenreFamily(X), not[hasGenreDrama(X)|producedIn1984(X)]

Fig. 5. Anecdotal example rules (Y= YAGO, I= IMDB) with good and bad exceptions

OWPM produce less conflicts than the Naive function in most of the cases. By
comparing the OPM and OWPM functions, we find that the weighted version
is better, especially on the IMDB dataset when we can reduce the conflicts from
775 to 685 on a base of about 2000 negated facts.

We executed the top-1000 revised rules using DLV and counted the number
of derivations that our exceptions prevented. For YAGO with the original Horn
rules, the reasoner inferred 924591 new triples. Our exception-enriched ruleset
decreased the number of inferred triples to 888215 (Naive), 892707 (PM), 892399
(OPM), and 891007 (OWPM). For IMDB we observed a smaller reduction. With
the Horn rules the reasoner derived 38609 triples, while with the revised rules
the inference set decreased to 36069 (Naive), 36355 (PM), 36021 (OPM), and
36028 (OWPM) triples.

Unfortunately, there is no automatic way available to assess whether the
removed inference consists of genuine errors. Therefore, we selected the revised
ruleset produced by the OWPM function and sampled 259 random facts from
YAGO (we selected three facts for each binary predicate to avoid skewness).
Then, we manually consulted online resources like Wikipedia to determine
whether these triples were indeed incorrect. We found that 74.3 % of these triples
consisted of factual mistakes. This number provides a first empirical evidence
that our method is indeed capable of detecting good exceptions and hence can
improve the general quality of the Horn rules.

We conclude reporting some anecdotal examples of rules on YAGO and IMDB
in Fig. 5. Between the brackets we show examples of both good (underlined) and
bad exceptions. In some cases, the rules have high quality exceptions such as
rule Y 1. In others, we found that the highest ranked exceptions mainly refer
to disjoint classes of the head. The complete list of mined rules with the scores
given to the determined exceptions is available in our repository.

7 Related Work

The problem of automatically learning patterns from KGs and exploiting them
for predicting new facts has gained a lot of attention in the recent years.
Approaches for predicting unseen data in KGs can be roughly divided into

Exception-Enriched Rule Learning from Knowledge Graphs 249

two groups: statistics-based, and logic-based. The firsts apply well-known tech-
niques like tensor factorization, or neural-embedding-based models (see [24] for
overview). The second group focuses more on logical rule learning (e.g., [11,29]).
The most relevant works for us are in the last group. These, however, typically
focus on learning Horn rules, rather than nonmonotonic (i.e., exception-enriched)
as we do.

In the association rule mining community, some works concenrated on finding
(interesting) exception rules (e.g. [28]), which are defined as rules with low
support (rare) and high confidence. Our work differs from this line of research
because we do not necessarily look for rare interesting rules, but care about the
quality of their predictions. Another relevant stream of research is concerned
with learning Description Logic TBoxes or schema (e.g., [18]). However, these
techniques focus on learning concept definitions rather than nonmonotonic rules.

In the context of inductive and abductive logic, learning nonmonotonic rules
from complete datasets [10] was studied in several works ([6,15,17,26,26,27].
These methods rely on CWA and focus on describing a dataset at hand exploiting
negative example, which are explicitly given unlike in our setting.

Learning Horn rules in presence of incompleteness was studied in hybrid
settings in [14,20]. There a background theory or a hypothesis can be represented
as a combination of a DL ontology and Horn rules. While the focus of this work
is on the complex interaction between reasoning components and the learned
rules are positive, we are concerned with techniques for deriving nonmonotonic
rules with high predictive quality from huge KGs.

8 Conclusions and Future Work

We have presented a method for mining nonmonotonic rules from KGs: first
learning a set of Horn rules, and then revising them by adding negated atoms
into their bodies with the goal of improving the quality of a rule set for data
prediction. To select the best revision from potential candidates we devised rule-
set ranking measures, based on data mining measures and the novel concept of
partial materialization. We evaluated our method with various configurations on
both general-purpose and domain-specific KGs and observed significant improve-
ments over a baseline Horn rule mining.

There are various directions for future work. First, we look into extract-
ing evidence for or against exceptions from text and web corpora. Second, our
framework can be enhanced by partial completeness assumptions for certain
predicates (e.g., all countries are available in KG) or constants (e.g., knowledge
about Barack Obama is complete). Finally, an overriding future direction is to
extend our work to more complex nonmonotonic rules with higher-arity predi-
cates, aggregates and disjunctions in rule heads.

Acknowledgments. We thank Thomas Eiter, Francesca A. Lisi and the anonymous
reviewers for their constructive feedback about this work. The research was partially
funded by the NWO VENI project 639.021.335.

250 M.H. Gad-Elrab et al.

References

1. Agrawal, R., Carey, M.J., Livny, M.: Concurrency control performance modeling:
alternatives and implications. In: Performance of Concurrency Control Mechanisms
in Centralized Database Systems, pp. 58–105 (1996)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

3. Azevedo, P.J., Jorge, A.M.: Comparing rule measures for predictive association
rules. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič,
D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 510–517.
Springer, Heidelberg (2007)

4. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell,
T.M.: Toward an architecture for never-ending language learning. In: Proceedings
of AAAI (2010)

5. Chen, Y., Goldberg, S., Wang, D.Z., Johri, S.S.: Ontological pathfinding: mining
first-order knowledge from large knowledge bases. In: Proceedings of SIGMOD
2016, pp. 835–846 (2016)

6. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming as abductive search.
In: Proceedings of ICLP, pp. 54–63 (2010)

7. Darari, F., Nutt, W., Pirrò, G., Razniewski, S.: Completeness statements about
RDF data sources and their use for query answering. In: Alani, H., et al. (eds.)
ISWC 2013, Part I. LNCS, vol. 8218, pp. 66–83. Springer, Heidelberg (2013)

8. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing
wikidata to the linked data web. In: Mika, P., et al. (eds.) ISWC 2014, Part I.
LNCS, vol. 8796, pp. 50–65. Springer, Heidelberg (2014)

9. Fierens, D., den Broeck, G.V., Renkens, J., Shterionov, D.S., Gutmann, B., Thon,
I., Janssens, G., Raedt, L.D.: Inference and learning in probabilistic logic programs
using weighted boolean formulas. TPLP 15(3), 358–401 (2015)

10. Flach, P.A., Kakas, A.C.: Abduction and Induction: Essays on Their Relation and
Integration. Applied Logic Series, vol. 18. Springer, Heidelberg (2000)

11. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with AMIE+. VLDB J. 24, 707–730 (2015)

12. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of ICLP/SLP, pp. 1070–1080 (1988)

13. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–
87 (2004)

14. Józefowska, J., Lawrynowicz, A., Lukaszewski, T.: The role of semantics in mining
frequent patterns from knowledge bases in description logics with rules. TPLP
10(3), 251–289 (2010)

15. Katzouris, N., Artikis, A., Paliouras, G.: Incremental learning of event definitions
with inductive logic programming. Mach. Learn. 100(2–3), 555–585 (2015)

16. Lassila, O., Swick, R.R.: Resource description framework (RDF) model and syntax
specification (1999)

17. Law, M., Russo, A., Broda, K.: Inductive learning of answer set programs. In:
Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 311–325. Springer,
Heidelberg (2014)

18. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for
ontology engineering. J. Web Sem. 9(1), 71–81 (2011)

Exception-Enriched Rule Learning from Knowledge Graphs 251

19. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM TOCL 7(3),
499–562 (2006)

20. Lisi, F.A.: Inductive logic programming in databases: from datalog to DL+log.
TPLP 10(3), 331–359 (2010)

21. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987)

22. Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: a knowledge base from mul-
tilingual Wikipedias. In: Procedings of CIDR (2015)

23. Muggleton, S., Feng, C.: Efficient induction of logic programs. In: ALT, pp. 368–381
(1990)

24. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

25. Nickles, M., Mileo, A.: A hybrid approach to inference in probabilistic non-
monotonic logic programming. In: Proceedings of ICLP, pp. 57–68 (2015)

26. Ray, O.: Nonmonotonic abductive inductive learning. J. Appl. Logic 3(7), 329–340
(2008)

27. Sakama, C.: Induction from answer sets in nonmonotonic logic programs. ACM
Trans. Comput. Log. 6(2), 203–231 (2005)

28. Taniar, D., Rahayu, W., Lee, V., Daly, O.: Exception rules in association rule
mining. Appl. Math. Comput. 205(2), 735–750 (2008)

29. Wang, Z., Li, J.: RDF2Rules: learning rules from RDF knowledge bases by mining
frequent predicate cycles. CoRR abs/1512.07734 (2015)

30. Wrobel, S.: First order theory refinement. In: Raedt, L.D. (ed.) Advances in Induc-
tive Logic Programming, pp. 14–33. IOS Press, Amsterdam (1996)

	Exception-Enriched Rule Learning from Knowledge Graphs
	1 Introduction
	2 Preliminaries
	3 Learning Exception-Enriched Rules
	4 Computing Exception Witnesses and Potential Rule Revisions
	5 Rules Quality Assessment
	6 Evaluation
	6.1 Evaluation of the Revision Steps
	6.2 Exception-Enriched Rules vs. Horn Rules

	7 Related Work
	8 Conclusions and Future Work
	References

