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Abstract. Finding relevant concepts from a corpus of ontologies is use-
ful in many scenarios, such as document classification, web page anno-
tation, and automatic ontology population. Many millions of concepts
are contained in a large number of ontologies across diverse domains.
A SPARQL-based query demands the knowledge of the structure of
ontologies and the query language, whereas user-friendlier and, simpler
keyword-based approaches suffer from false positives. This is because
concept descriptions in ontologies may be ambiguous and may overlap.
In this paper, we propose a keyword-based concept search framework,
which (1) exploits the structure and semantics in ontologies, by con-
structing contexts for each concept; (2) generates the interpretations of
a query; and (3) balances the relevance and diversity of search results.
A comprehensive evaluation against the domain-specific BioPortal and
the general-purpose Falcons on widely-used performance metrics demon-
strates that our system outperforms both.

Keywords: Ontology concept search · Query interpretation ·
Diversification

1 Introduction

The current breed of Semantic Web search engines can be broadly grouped
into three categories: (1) those that search for ontologies [12,15], (2) those that
search for individual resources [15,20], and (3) those that search for concepts that
represent a group of individuals [17,27].1 Searching concepts across ontologies
represents an ideal granularity middle ground and has applicability in ontology
mapping, ontology merging, bootstrapping ontology population, entity annota-
tion, web page classification, and link prediction, all real world applications.
With structured content (e.g., knowledge graph) increasing on the web, search-
ing concepts across these is a challenge. In certain domains such as life sciences,

1 Throughout this paper we use the terms concept and class interchangeably.
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there are many overlapping domain ontologies that contain concepts and prop-
erties that describe and link concepts. In such a scenario, concept search in itself
is a very important task.

To the best of our knowledge, existing concept search approaches can be
divided into two types on basis of the nature of the input queries: (1) SPARQL
queries [23], which as precise input queries, lead to exact results. However, it
requires knowledge of writing SPARQL queries and knowledge of the structure
of the ontologies that are to be queried. In reality, learning SPARQL may be
an additional burden, and often the structure might not be known to the user.
(2) Keyword-based approaches [15,27], typically use the standard information
retrieval techniques such as tf-idf-based and PageRank-inspired algorithms. How-
ever, these approaches do not make use of the structure and semantics in ontolo-
gies to capture the intents of queries with multiple keywords. In our preliminary
work [17] we proposed a concept search framework that only considers relevance.
Extending it, in this work, we incorporate diversification of search results and
propose a context-based diversification framework that automatically captures
fine-grained query intents in the top-k results. We incorporated inferred knowl-
edge using reasoners and refined context further to include annotation properties
of widely used vocabularies such as SKOS.

In this paper, we propose a novel keyword-based concept search framework
that optimizes both the relevance and diversity of search results. In order to
improve search relevance, our framework interprets a query by constructing con-
texts for concepts from ontology axioms. We exploit the rich and inherent struc-
ture and semantics of ontologies and adopt an explicit query interpretation app-
roach [14] in our concept search problem. A keyword query can be ambiguous
with multiple intents. Our framework returns the subset of relevant results that
contain the most relevant as well as the most diverse results that cover these
intents. Our diversification approach achieves the goal of capturing fine-grained
intents in the top-k results by using the structure of the ontology.

The technical contributions of our concept search framework are three-fold:
(1) the proposal and design of contexts of concepts for their retrieval, (2) explicit,
context-based query interpretation based on co-occurrences among keywords in
a query, and, (3) explicit, context-based diversification of top-k results using
fine-grained search intents.

We have conducted extensive experiments that compare our framework
against two concept search systems: the domain-specific BioPortal and the
general-purpose Falcons. Our evaluation shows that our framework outperforms
both systems by a large margin for both relevance and diversity.

2 Related Work

We relate our work with the broad areas of search approaches and systems.

Semantic Search Approaches. Semantic search engines such as Sindice [32],
Swoogle [12,15], and Watson [11], enable keyword-based search for the ontologies



Concept Search across Ontologies 273

and entities within them. Sindice [32] provides a search interface by using key-
words, URI’s and inverse functional properties. Swoogle [12,15] has developed
algorithms to rank the importance of documents, individuals and RDF graphs.
The existing semantic search approaches do not leverage the structure and
semantics in ontologies to capture the intents of queries with multiple keywords.
BioPortal [26] and Falcons [27] are state-of-the-art concept search engines. The
Falcons system retrieves concepts, the textual descriptions of which match the
keyword query. The system then ranks the results according to the relevance
and popularity of the concepts. The BioPortal system provides multiple search
functions across ontologies, individuals, and concepts. The BioPortal concept
search system is based on the precise or partial matching of the preferred name
with the search string. BioPortal use ontology popularity to rank concept search
results. We differ in our approach from both these concept search systems in the
aspect of searching by using query interpretation and search result diversification
techniques.

Indexing and Ranking. SchemEX [24] is an indexing approach for search across
the linked open data (LOD) using structured queries. SchemEX consists of three
schema layers of RDF classes, RDF types, and equivalence classes with each layer
supporting different types of structured queries. However, our framework sup-
ports keyword queries and makes use of contexts based on a richer set of ontology
constructs. Blanco et al. [5] propose r-vertical index (reduced version of their ver-
tical index) for the RDF entity search problem. The r-vertical index is built by
manually categorizing RDF properties in three fields (important, unimportant
and neutral). In comparison, our index is built using context information of con-
cepts in the ontologies suitable for our concept search problem. Recent work in
the area of Semantic Web resources ranking has largely focused on adapting and
modifying the PageRank algorithm. ReConRank [19] is PageRank-inspired [22]
algorithm for Semantic Web data. It uses node degree to rank Semantic Web
resources in a manner analogous to the PageRank algorithm. ReConRank com-
bines ranks from the RDF graph data sources and their linkage. AKTiveRank [3]
ranks ontologies on the basis of how well they cover the specified search terms.
The Linked open vocabularies (LOV) [4] search system ranks results on the basis
of the popularity of the term in the LOD datasets and in the LOV ecosystem.
Butt et al. [6,7], use offline ranking with the popularity of the concept within
the ontology and the popularity of the ontology that contains the concept as the
ranking features. Blanco et al. [5] propose instance/entity search using BM25F
ranking function. Their ranking function does not exploit proximity information
or term dependencies. The existing approaches do not directly exploit the struc-
ture in ontologies for indexing and ranking. Dali et al. [9], propose the learning to
rank (LTR) [25] approach by using query-independent frequency-based features
to rank the results of structured queries. We build the context-based inverted
index to interpret the queries, and rank the results of keyword queries using
query-based features in the LTR algorithm.
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Query Processing and Interpretation. There has been work on structured query
processing over LOD and related ontologies. The work on Top-k exploration of
query candidates on the (RDF) graph data [31] proposes an intermediate step
of converting keyword queries to structured queries. The user needs to select the
correct SPARQL query interpretation to retrieve search results. However, our
method internally interprets the keyword query without needing to explicitly
generate the candidate SPARQL query. Fu and Anyanwu [16] generate query
interpretations using the query history as contextual information. However, the
queries may not always be iterative and extensive query logs of similar queries
may not be available for interpretations. In our approach, we use the context
information around a concept across ontologies to interpret the query. We also
discuss query interpretation work in the context of implicit and explicit query
interpretation. Sawant and Chakrabarti [29] propose implicit generative and dis-
criminative formulations for joint query interpretation and response ranking in
keyword-based searches across web documents. Agarwal et al. [1] use proba-
bilistic modeling techniques to mine query templates from query logs for query
interpretation. While these approaches may work well for large-scale unstruc-
tured data, they may not work in our problem of searching over structured
ontologies with low number of redundancies. Our technique of interpreting rela-
tions among keywords in the query by using a rich ontology structure is different
from the rest of the approaches.

Search Result Diversification. There are two main approaches to diversifica-
tion: (1) implicit ones that assume that similar documents that cover similar
intent/aspects of the query should be demoted to achieve diversified ranking
(maximum marginal relevance, or MMR [8]); and (2) those that explicitly model
query aspects by sub-queries and maximize the coverage of selected documents
with respect to these aspects [10,21,28]. These approaches are applied to the
unstructured text document search. We believe the diversification techniques
have not been designed for the structured data setting of ontologies. Herzig
et al. [18] propose language model (LM) approach for consolidating entity search
results to reduce redundancy by grouping similar entities. However, their app-
roach does not consider diversity of intent capture in the top-k results. While in
our explicit diversification approach, we eliminate redundancy and also capture
the fine-grained intents in the top-k search results.

3 Overall Approach

Given a multi-word query Q that consists of m keywords, Q = {k1, k2, . . . , km}
on a search space of diverse web ontologies O = {O1, O2, . . . , On}, the goal
is to retrieve relevant (named) concepts R = {R1, R2, . . . , Rp} across these
ontologies. We retrieve concept results R by interpreting relations among key-
words in the query via the context of a concept (class). Given an ontology,
Og (g = 1, 2, . . . , n), the entities of Og include named concepts and named
(object-, datatype-, or annotation) properties that are declared in Og. Given an
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axiom a ∈ Og (logical or annotation), let sig(a) represent the signature (the
set of entities) in a. sig(·) is extended naturally to apply to sets of axioms
also. For an entity e, let annotations(e) represent the values of annotation
axioms on e. These annotation axioms include rdfs:label, rdfs:comments,
rdfs:isDefinedBy, rdfs:seeAlso as well as those defined in other widely-used
vocabularies such as SKOS.

A keyword query is interpreted using the context of each concept. The context
of a given concept Cj across ontologies O is defined as the set of annotation values
of the concept and of the entities that co-occur with Cj in some axioms in an
ontology.

AxCj ={a| a ∈ O ∧ Cj ∈ sig(a)} ∪
{a| a is A � B ∧ {A,B} ⊆ sig(O) ∧ o � a ∧ (Cj = A ∨ Cj = B)} ∪
{a| a is A ≡ B ∧ {A,B} ⊆ sig(O) ∧ o � a ∧ (Cj = A ∨ Cj = B}

PxCj ={a | a ∈ O ∧ Cj ∈ sig(a) where a is an object-, datatype-

or annotation property axiom}
Context(Cj) ={annotations(Cj)} ∪

{annotations(e) | e ∈ sig(AxCj ∪ PxCj )}
where AxCj

and PxCj
are sets of class-axioms and property-axioms that

are relevant to Cj , respectively. Note that AxCj
includes subClassOf and

EquivalentClasses axioms a that are entailed by an ontology (i.e., O � a), where
both concepts are named concepts (i.e., A and B), and one of them is Cj . These
additional, inferred axioms are obtained through reasoning. Context(Cj) consist
of its annotation values (annotations(Cj)) and the annotation values of the set
of entities that are relevant to Cj (annotations(e)|e ∈ sig(AxCj

∪ PxCj
)).

We further employ search result diversification to cover maximum user intents
in the top-k search results. We pose our search result diversification problem as
a an optimization problem, in which the objective is to maximize the relevance
of a result, while minimizing the redundancy among the results. Given a ranked
set R of relevant concepts for Q, the goal is to select the subset of concepts
Cs ⊆ R that are most relevant to the query and diverse among Cs. Along the
lines of the MMR [8] framework, our diversification optimization model is:

C∗ = arg max
Ci∈R\Cs

((1 − λ) × S(Ci) + λ × D(Ci, Cs)) (1)

where S(Ci) is the relevance score of concept Ci, and D(Ci, Cs) is the diversi-
fication score of Ci. S(Ci) is obtained by using LTR algorithms. D(Ci, Cs) is
estimated using the diversity function in which Ci is compared with each of the
concepts in Cs. The diversity parameter, λ ∈ [0, 1], is the tuning parameter that
draws a balance between the relevance and the diversity of a concept.

4 The Concept Search Framework

Figure 1 depicts the high-level architecture of our search framework. The com-
ponents at the bottom are constructed offline, whereas the computations at the
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Fig. 1. The high-level architecture of our concept search framework.

top are performed online for each new query. The concept inverted index I is
built offline using Context(Cj), that is relevant to each Cj as defined in Eq. 1
(Sect. 3). Each class and property axiom in AxCj

and PxCj
, which is relevant

to each Cj in the ontology corpus is indexed as a field such as rdfs:label,
rdfs:comments, rdfs:isDefinedBy. Since the probability of having more than
two words together in the ontology corpus is small, we set the shingle size (num-
ber of co-occurring words used in co-occurrence computation) to two. In addi-
tion, we store the term-vectors for performing co-occurrence computation. We
perform natural language processing (NLP) techniques such as tokenization and
stemming using the Lucene standard analyzer in order to store the context infor-
mation in the inverted index.

4.1 The Concept Search Procedure

Given a query Q, the search proceeds by finding concepts with human-readable
label L(Cj) or class-name(Cj) (fragment of the URI) that match exactly with
the query Q terms as a phrase (line 3 in Procedure CS ). We define L(Cj):

L(Cj) ={l | l ∈ rdfs : label(Cj) ∨ l ∈ skos:prefLabel(Cj)} (2)

The lexical co-occurrence LC among keywords in a query is evaluated using
Pearson’s Chi-squared test (line 6). A Chi-squared value that is greater than
3.841 implies that the keywords co-occur with 95 % confidence. The Pearson’s
Chi-squared test returns a set of all co-occurring terms, Cterms in the query.
We use Cterms for explicit query interpretation in procedure QI (line 7, further
described in Sect. 4.2). QI generates direct and inferred parses for the query
using context of concepts. The parses return a set of concepts as search results.
Feature vectors (fv’s) are then built for these results to obtain relevance by using
LTR model (line 8). An LTR ranking model that is trained offline is applied in
order to obtain the relevance score of each search result (line 9, further described
in Sect. 4.3). Finally, the search results are diversified to capture fine-grained user
intents (line 10, further described in Sect. 4.4).

4.2 Explicit Query Interpretation

Our explicit query interpretation approach generates interpretations by analyz-
ing the interrelationships among the keywords along with the inherently rich
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Procedure CS(Q, C)
Data: Query Q = {k1, k2, . . . , km}
Data: Number of results to be returned, k
Data: Concepts across ontologies, C = {C1, C2, . . . , Cl}
Data: An LTR ranking model trained offline, rankingModel
Result: SearchResults

1 SearchResults ← ∅;
2 foreach Cj ∈ C do
3 if IsExactMatch(L(Cj), Q) or IsExactMatch(class-name(Cj , Q)) then
4 SearchResults ← SearchResults ∪ {Cj} ;

5 if |Q| ≥ 2 then
6 Cterms = {Ct | Ct ⊆ Q ∧ Ct = {ki, ki+1} ∧ LC(ki, ki+1) > 3.841} ;
7 SearchResults ← SearchResults ∪ QI(Cterms, Q);

8 fv ← BuildFV (Q,SearchResults) ;
9 SearchResults ← relevance(fv, SearchResults, rankingModel) ;

10 SearchResults ← diversify(SearchResults, k);
11 return SearchResults ;

structure and semantics of ontologies. Our explicit approach embeds a precise
understanding of how each search result is obtained. In the procedure QI, we
use the set of co-occurring terms Cterms and all the individual keywords in
the query. For each co-occurring terms pair Ct ∈ Cterms, we search for the set
of classes CtermClasses for which IsExactMatch(L(Cj), Ct) is true (line 5).
We implement the direct and inferred parse on each of the concepts Cj in
CtermClasses. The direct and inferred parse returns the set of relevant con-
cept results (SearchResults) for the query (line 6–7). If the SearchResults found
using direct and inferred parse for co-occurring tokens are less than the threshold
(set to 50), we search for a set of classes StermClasses in order to match each
keyword St ∈ Q, for which IsExactMatch(L(Cj), St) is true (line 10). We imple-
ment the direct and inferred parse on each of the classes Cj in StermClasses
to obtain relevant concept results (SearchResults) for the query (line 11–12). In
addition we also return the set of classes CtermClasses and StermClasses as
SearchResults if the SearchResults found using direct and inferred parse are less
than the threshold (line 14–15).

Direct Parse: The direct parse (DP) returns sets of concepts (SearchResults).
DP analyzes the relation among the query keywords by using the context of a
concept and is defined as:

DP (tC, S) = {Cj |Cj ∈ tC ∧ sim(Context(Cj), S) > 0} (3)

where tC is either CtermClasses or StermClasses, and sim(Context(Cj), S)
is calculated using the Jaccard similarity measure.

We explain DP with an example for a query “Myocardial infarction
causes” in Fig. 2. The query contains the co-occurring terms pair Ct,



278 C. Gavankar et al.

Procedure QI(Cterms, Q)
Data: Co-occurring terms Cterms, Q
Result: SearchResults

1 SearchResults ← ∅;
2 CtermClasses ← ∅;
3 StermClasses ← ∅;
4 foreach Ct ∈ Cterms do
5 CtermClasses ← CtermClasses ∪ {Cj |IsExactMatch(L(Cj), C

t))} ;
6 SearchResults ← SearchResults ∪ DP (CtermClasses,Q \ Ct) ;
7 SearchResults ← SearchResults ∪ IP (CtermClasses,Q \ Ct) ;

8 if |SearchResults| ≤ th then
9 foreach St ∈ Q do

10 StermClasses = StermClasses ∪ {Cj |IsExactMatch(L(Cj)), S
t)} ;

11 SearchResults ← SearchResults ∪ DP (StermClasses,Q \ St) ;
12 SearchResults ← SearchResults ∪ IP (StermClasses,Q \ St) ;

13 if |SearchResults| ≤ th then
14 SearchResults ← SearchResults ∪ CtermClasses ;
15 SearchResults ← SearchResults ∪ StermClasses ;

16 return SearchResults ;

Fig. 2. Direct parse

“Myocardial infarction”. The keywords “Myocardial infarction” appear
as the label of some concept Cj in our concept index i.e., IsExactMatch
(L(Cj), Ct) = true. If the context of the same concept Cj contains “causes”
(hence sim(Context(Cj), S) > 0 is satisfied), then Cj with label ‘Myocardial
infarction” will be returned as a search result.

Inferred Parse: The inferred parse (IP) returns a set of other concepts that
do not directly appear in the query, but rather indirectly through SubClassOf
or EquivalentClasses axioms. The IP is defined as:

OC(Cj) ={Ck | SubClassOf(Cj , Ck)}∪ (4)
{Ck | EquivalentClasses(Cj , Ck)}

IP (tC, S) =
⋃

Cj∈tC

{Ck |Ck ∈ OC(Cj) ∧ sim(Context(Ck), S) > 0} (5)
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Fig. 3. Inferred parse

where OC(Cj) is a collection of all other classes that are indirectly related to Cj

through either SubClassOf or EquivalentClasses axioms, and IP is similarly
constructed from classes in OC(Cj). Here tC, sim are defined in the same way
as explained in Eq. 4 of the definition of direct parse.

An example of IP is shown in Fig. 3. Consider the query “Heart attack
causes”. The keywords “Heart attack” co-occur and appear as a label of some
concept, Cj , in our concept index that is, IsExactMatch(L(Cj), Ct) = true.
However, the keyword “causes” is not present in the context of Cj . An equivalent
class of Ck, Myocardial infarction, has the context that contains “causes”.
This is interpreted as an inferred relation between “Heart attack” (co-occurring
terms) and “causes” (single term) and the class Myocardial infarction with
causes as its relevant property will be returned as a search result.

4.3 Relevance Score Computation

The relevance score for the search results are computed by the ranking model
that is built using learning to rank (LTR) algorithms [25]. LTR algorithms are
supervised machine learning algorithms. Training data for the ranking model is
generated from a query log, in which feature vectors (FV’s) are generated for
each combination of query and a result. Components of such FV’s are ranking
features, which are obtained using ISUB [30] (12 features) and Jaccard (12 fea-
tures) similarity, between query terms and concept context fields in the index. The
twelve features are computed as the ISUB similarity of query with rdfs:label,
rdfs:isDefinedBy, skos:prefLabel, rdfs:comments, rdfs:seeAlso, synonym,
dataproperty, objectpropertydomain, objectpropertyrange, SuperClassOf,
SubClassOf, EquivalentClasses, respectively. Similar features are obtained
using the Jaccard similarity measure.

The training data of FV’s are used to build LTR models, by employing the
RankLib implementation2. We use the pairwise RankNet algorithm because the
highest normalized distributive cumulative gain (NDCG) value was obtained
from this algorithm among the pairwise algorithms by using the query log test
data. The RankNet parameters that are used are: the number of epochs to train =
100; the number of hidden layers = 1; number of hidden nodes per layer = 10;

2 http://people.cs.umass.edu/∼vdang/ranklib.html.

http://people.cs.umass.edu/~vdang/ranklib.html
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and the learning rate = 0.00005. The LTR model is trained using 70 % of the
log queries in order to learn the weights of the features and 30 % of the queries
are used for testing (excluding training queries). The model is then applied to
search results in order to obtain the relevance scores for all the concept search
results.

4.4 Search Result Diversification

A keyword query may have diverse possible search intents. Search result diver-
sification aims to retrieve k items that are the subset of all relevant results
that contain the most relevant and the most diverse intent results. We use the
relevance score that is obtained by the LTR algorithm for search result diver-
sification. Search results are diversified by capturing fine-grained query intents
explicitly, using the context of concepts.

Baseline Approach. The baseline Implicit approach assumes that similar
search results map to the same query intent. Such results should be demoted
in order to achieve diversified ranking. Maximum marginal relevance MMR [8] is
a canonical technique from the implicit approach. The implicit diversity function
is defined as follows:

D(Ci, Cs) =
∑

Cj∈Cs

(1 − SC(Ci, Cj)) (6)

We calculate the similarity SC(Ci, Cj) among two concepts by comparing their
respective context similarity. For example, the context information that is cap-
tured in sig(a), in which a is a SubClassOf axiom of the concept Ci is compared
with similar information of the other Cj . We use the greedy algorithm [13] by
substituting Eq. 6 in Eq. 1 of Sect. 3 in order to implement the implicit diversi-
fication.

C∗ = arg max
Ci∈R\Cs

((1 − λ) × S(Ci) + λ × (
∑

Cj∈Cs

(1 − SC(Ci, Cj))) (7)

We iteratively select the best concept result with the highest LTR score (S(Ci))
from R which can maximize the diversity of the selected concepts Cs. The iter-
ative process is repeated until top-k results (|Cs| = k) are obtained.

Fine-Grained Explicit Diversification. Explicit approaches [10,28] directly
map search results to query intents. Diversified ranking is achieved by selecting
results that maximize coverage with respect to query intents. Existing explicit
diversification approaches obtain query intents from commercial search engines
such as Google, which may not be useful in our setting because they are indepen-
dent of the ontology corpus. Our explicit diversification is based on fine-grained
intents that are captured by the contextual information around a concept.
We make use of super-class and subclass relations of the returned concepts to
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generate search intents. Super-classes of concepts cover more generic intents,
while subclasses of concepts generate more specific intents.

More specifically, for a query, Q, and the set of most relevant concepts R
returned by the LTR model, two levels of intents are generated. Firstly, the top-
level intents consists of all of the super-classes of concepts in R. Secondly, the
sub-level intents consists of all the subclasses of the super-classes of R.

Top-level intent diversity: The top-level intents are represented as I. Along
the lines of the work by Hu et al. [21], we define diversity of the top-level intents
as follows:

D(Ci, Cs, I) =
∑

x∈I

[
p(Ci|x) × p(x|Q) ×

∏

Cj∈Cs

(1 − p(Cj |x))
]

(8)

p(Ci|x), is the probability that Ci satisfies the top-level intent x, and I represents
the set of the top-level intents of Q. p(Ci|x) = sim(L(Ci), L(x)) is estimated as
the Jaccard similarity between the labels L(Ci) of a concept and the intent L(x),
in which L(Ci) and L(x) are defined by Eq. 3 in Sect. 4.1.

p(x|Q), which is the probability of x for the given query Q, is estimated by
assuming uniform probability distribution p(x|Q) = 1

|I| . Uniform intent distrib-
ution has been demonstrated to be the most useful [28].

(1 − p(Cj |x)) is the probability that Cj does not satisfy intent x, which
indicates that x is less substantially covered and should have higher “priority” in
getting more results. The product

∏
Cj∈Cs

(1−p(Cj |x)) estimates the probability
that all concepts Cs, that are selected by the LTR model fail to satisfy intent x.

After summing over all query intents, and after being weighted by p(x|Q),
the diversity measure in Eq. 8 is the probability that Ci covers the search intents
I while the existing list Cs, fails to satisfy them.

Sub-level intent diversity: Each of the top-level intents x ∈ I is subdivided
into sub-level intents S. The sub-level intents are represented as Sx in which x
is a top-level intent.

D(Ci, Cs, S) =
∑

x∈I

∑

y∈Sx

[
p(Ci|y) × p(y|Q) ×

∏

Cj∈Cs

(1 − p(Cj |y))
]

(9)

where p(Ci|y) estimates the probabilities that concept Ci satisfies the sub-level
intent y, and p(y|Q) is the probability of each of the subclass level intents y for
the given query Q. The probability of each of the sub-level intents, y, for query,
Q, p(y|Q), is estimated by assuming uniform probability for sub-level intents,
p(y|Q) = 1∣∣I

∣∣×
∣∣Sx

∣∣ .

By combining the diversity of the top-level and sub-level intents, our fine-
grained explicit diversification is estimated as follows

D(Ci, Cs) = γ × D(Ci, Cs, I) + (1 − γ) × D(Ci, Cs, S) (10)

where γ is the tuning parameter for the top-level and the sub-level depending
on the granularity of the diversification.
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By plugging Eq. 10 into Eq. 1, our diversification optimization model is

C∗ = arg maxCi∈R\Cs
((1− λ)× S(Ci) + λ(γ ×D(Ci, Cs, I) + (1− γ)×D(Ci, Cs, S)))

(11)

where λ is the diversity parameter and γ is the intent parameter for the top-level
and sub-level intents.

The model considers the relevance between the concept results Cs and query
Q and the diversity among concepts in Cs. Using a greedy algorithm [13], it iter-
atively selects the next best concept that is relevant to query Q which maximizes
the diversity of selected concepts Cs.

5 Evaluation

We compare our system with the search function of two large, widely-used,
and openly available ontology repositories, the Bio-medical domain BioPortal,3

and the generic Falcons4. A summary of the two repositories can be found in
Table 1. A separate inverted index was built for each of the BioPortal and Falcons
repositories respectively.

We evaluate our system’s performance in terms of relevance only (query
interpretation, Sect. 5.1), as well as relevance and diversity (search diversifica-
tion, Sect. 5.2). Standard information retrieval (IR) ranking measures [25], mean
reciprocal rank (MRR) and normalized distributive cumulative gain (NDCG) are
used to evaluate our query interpretation approach. The standard search diver-
sification metric of normalized cumulative gain-intent aware (NDCG-IA) [2] is
used for evaluation of our diversification technique. Our evaluation dataset is
publicly available.5

Table 1. A summary of the BioPortal and Falcons repositories.

Repository Type # ontologies # concepts # axioms

BioPortal Domain-specific 296 2,062,080 9,221,087

Falcons Generic 294,504 804,380 2,566,921

5.1 Query Interpretation Evaluation

Comparison with BioPortal. The BioPortal query log (July 2012 to July
2014) contains more than 2,000 real-world queries as well as click-through data.
Among these queries, more than 50 % are multiple-token queries.

3 http://bioportal.bioontology.org/.
4 http://ws.nju.edu.cn/falcons/conceptsearch/.
5 https://dx.doi.org/10.4225/03/57218DB2399B9.

http://bioportal.bioontology.org/
http://ws.nju.edu.cn/falcons/conceptsearch/
https://dx.doi.org/10.4225/03/57218DB2399B9
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Table 2. Comparison with BioPortal.

Measure Multi-token Single-token

BioPortal Ours BioPortal Ours

NDCG 0.61 0.72 0.62 0.63

MRR 0.42 0.60 0.49 0.51

Table 3. Comparison of implicit and explicit with BioPortal for multi-token queries.

Measure BioPortal Ours

Implicit Explicit

NDCG 0.61 0.69 0.72

MRR 0.42 0.52 0.60

Comparison with BioPortal Average Values. We present average NDCG and
MRR for our approach vis-a-vis BioPortal for multi-token and single-token
queries in Table 2. Our system significantly outperforms BioPortal for multi-
token queries, and both systems demonstrate comparable performances in single-
token queries.

Query-Wise Comparison with BioPortal. For each query, we calculated the dif-
ference between the NDCG values obtained by our system and BioPortal. Of
the 2,000 queries, the NDCG values for 1,000 queries (>50 %) are better in
our system, and more than 700 queries (>35 %) have the same level of per-
formance. The number of queries in which BioPortal performs better is 300
(<15 %). Our system performs better (>50 %) due to effective use of context
information in query interpretation. The level of performance is the same for the
queries (>35 %) in which the keywords match the class label exactly. The lower
performance (<15 %) may be due to unavailability of context information in the
ontologies. The better performance of BioPortal in these (<15 %) queries can
be attributed to their statistical consideration of ontology popularity in ranking
search results.

Comparison with Implicit Query Interpretation. We evaluated explicit and
implicit implementations of query interpretation on the BioPortal dataset. The
feature-based implicit model was trained using query logs. Explicit techniques
can be more useful in searches over structured data with a low number of redun-
dancies due to the structuredness of the corpora; we also confirm this experi-
mentally. A comparison of the implicit, explicit query interpretation approaches
and BioPortal can be found in the Table 3.

Comparison with Falcons. We compared our system vis-a-vis the Falcons
search engine [27] in order to explore the generic applicability of our approach.
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Table 4. Comparison with Falcons for multi-token queries.

Measure Falcons Ours

NDCG 0.54 0.79

MRR 0.49 0.78

We performed a human-based evaluation in this experiment for better evaluation
accuracy and to eliminate noise in automatic clicks. We performed an evaluation
on 102 queries that were obtained from two years of TREC web track compe-
titions.6 This TREC dataset does not contain single token queries. Our system
was evaluated by 30 human users who were undergraduate, graduate, and post-
graduate students and had a high level of Web search experiences. Each of the
102 queries was evaluated by at least three of the users. We recorded the binary
relevance judgment for the same set of queries for each result on both systems.
The performance was evaluated using standard information retrieval measures
of NDCG and MRR. Again, our system outperforms Falcons.

Comparison with Average Values of Falcons. We present average NDCG and
MRR for our approach vis-a-vis Falcons for multi-token queries in Table 4.

Query-Wise Comparison with Falcons. We calculated the difference of the
NDCG and P@k (precision at k) values of our system (with QI) in comparison
with Falcons, for the same set of queries. Our NDCG performance was better for
>66 % of the queries. It was at par in >25 % and lower in <8 % of the queries.
We recorded the top-k (k = 1, 3, 5) P@k (precision at kth position) results of our
system and Falcons. Of all the queries, the performance of our system in P@1,
P@3, and P@5 respectively was better than Falcons in >50 %, >60 %, and >70 %
respectively, the same as Falcons in >40 %, >30 %, and >20 % respectively, and
lower than Falcons for <10 % for all P@k. The average precision (AP) was calcu-
lated by taking an average of P@1, P@3, and P@5 for each query. The positive
difference for AP for >70 % queries indicates the better overall performance of
our approach.

The subsequent indicative queries give a fair idea of our performance.
A query, standard axioms of set theory, has co-occurring keywords set theory and
the keywords standard axioms appears in the context of the set theory class. The
same query failed to return any results in the Falcons system. For another query,
machine learning algorithms, Falcons failed to return relevant results while our
system returned relevant result such as machine learning program, and machine
learning topic.

5.2 Evaluation of Diversification

Search result diversification was evaluated using a variation of NDCG which is
known as the intent-aware normalized cumulative gain measure (NDCG-IA) [2]
6 http://trec.nist.gov/data/webmain.html.

http://trec.nist.gov/data/webmain.html
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Table 5. Comparison of our implicit and explicit diversification techniques with Bio-
Portal and Falcons on two separate indices. The best NDCG-IA value in each compar-
ison is highlighted in bold

Measure BioPortal Ours Falcons Ours

Implicit Explicit Implicit Explicit

NDCG-IA 0.66 0.75 0.83 0.47 0.73 0.77

on the BioPortal and Falcons dataset. We have implemented the implicit diver-
sification approach as defined in Eq. 7 as a baseline, and the explicit diversifi-
cation approach as defined in the Eq. 11. We set the diversity parameter λ to
0.5, and assigned equal probability to diversity and relevance. Similarly, we set
the intent level parameter γ to 0.5, assigning equal priority to top-level and sub-
level intents. Table 5 compares the NDCG-IA values produced by our explicit
fine-grained diversification method with the implicit diversification baseline, as
well as BioPortal and Falcons. Note that separate indices are constructed for the
comparison with BioPortal and Falcons.

Comparison with BioPortal. We conducted experiments with 52 queries
randomly selected from the BioPortal query log in order to evaluate the effec-
tiveness of intent-capture in our concept search results. Each query was evaluated
by three users with a basic level of bio domain expertise and a high level of web
search experience. We designed an interface for evaluating our diversification
approach. The evaluation interface provided the users with list of intents for
search results. The users selected intent for each search result that was used for
computing NDCG-IA values.

Comparison of NDCG-IA Values. We report the average NDCG-IA values for
the top-10 results of baseline implicit diversification and explicit diversification
vis-a-vis BioPortal for multi-token queries in the left part of Table 5. Of the total
queries, 70 % fared well with diversification, 25 % were the same as the baseline
and 5 % performed lower. The better results for diversification are due to the
use to explicit intent capture in our approach. For example, a query Myocar-
dial infarction captures the following intents-myocardial infarction definition,
myocardial infarction symptoms, myocardial infarction types, and myocardial
infarction causes in the top-k results. On the other hand, the implicit approach
removes redundancy but may not address the specific user intents, whereas, the
BioPortal captures the intents in their results but not in the top-k.

Comparison with Falcons. We conducted experiments with 50 queries that
were randomly selected from the TREC competitions on the Falcons dataset in
order to evaluate the effectiveness of intent-capture in our results. Each query
was evaluated by three users. The users were graduate students and had a high
level of search experience. NDCG-IA was computed for the intents assigned by
the user during evaluation.
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Comparison of NDCG-IA Values. We present the average NDCG-IA values of
baseline implicit diversification and explicit diversification vis-a-vis Falcons, in
the right part of Table 5. Of the total queries, 75 % fared well with diversifica-
tion, 10 % were the same as the baseline and 15 % performed lower. Our explicit
diversification techniques effectively captures the fine grained intents. For exam-
ple, natural language processing applications captures diverse intents such as the
linguistic translation process, linguistic topic, and artificial intelligence in our
approach, while Falcons returns search results that repeat the single intent in
the top-k results.

5.3 Discussion

Our comprehensive log-based and human-based evaluation includes domain-
specific and generic ontologies. Our system demonstrated better performance in
both settings using standard information retrieval measures, indicating the effec-
tiveness of our framework, especially in multi-token queries. Relation among the
keywords in the multi-token queries is effectively captured in our approach. All of
our experiments presented in this section (for both multi-token and single-token
queries) were found to be statistically significant using the Wilcoxon signed-
rank test with p-value <0.0001. Our system’s effectiveness can be attributed to
the following factors: (1) Co-occurrence is prevalent among multi-token queries
(>50 % queries). (2) Contexts of concepts facilitate effective query interpretation.
(3) Our search result diversification methods effectively captures fine-grained
intents in top-k results for multi-token queries. As a result, our system seldom
returns null or irrelevant results.

6 Conclusion

In this paper we present a novel and effective concept search framework that
balances relevance and diversity. We propose to construct contexts for concepts,
and use these contexts to (1) interpret user queries and (2) capture fine-grained
search intents. The effectiveness of our context-based query interpretation and
search result diversification techniques is demonstrated through a comprehen-
sive evaluation against two concept search systems, BioPortal and Falcons. Our
evaluation shows that our concept search framework significantly outperforms
both systems on widely-used IR metrics.

Our work opens up several directions for further research. Our approach of
explicit query interpretation can be improved by incorporating user involvement
in the customization of the search. Our explicit diversification formulation can
be improved by using proportionality-based optimization techniques. Finally,
implementing the applicability of concept search in applications such as ontology
population may be useful.
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