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Abstract. The traversal-based approach to execute queries over Linked
Data on the WWW fetches data by traversing data links and, thus,
is able to make use of up-to-date data from initially unknown data
sources. While the downside of this approach is the delay before the
query engine completes a query execution, user perceived response time
may be improved significantly by returning as many elements of the
result set as soon as possible. To this end, the query engine requires a
traversal strategy that enables the engine to fetch result-relevant data
as early as possible. The challenge for such a strategy is that the query
engine does not know a priori which of the data sources discovered during
the query execution will contain result-relevant data. In this paper, we
investigate 14 different approaches to rank traversal steps and achieve
a variety of traversal strategies. We experimentally study their impact
on response times and compare them to a baseline that resembles a
breadth-first traversal. While our experiments show that some of the
approaches can achieve noteworthy improvements over the baseline in
a significant number of cases, we also observe that for every approach,
there is a non-negligible chance to achieve response times that are worse
than the baseline.

1 Introduction

The availability of large amounts of Linked Data on the World Wide
Web (WWW) presents an exciting opportunity for building applications that
use the data and its cross-dataset connections in innovative ways. This possibil-
ity has spawned research interest in approaches to enable such applications to
query Linked Data [4,7]. A well-understood approach to this end is to populate
a centralized repository of Linked Data copied from the WWW. By using such a
repository it is possible to provide almost instant query results. This capability
comes at the cost of setting up and maintaining the centralized repository. Fur-
ther limitations of this approach are that query results may not reflect the most
recent status of the copied data, new data and data sources cannot be exploited,
and legal issues may prevent storing a copy of some of the data in the repository.
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To address these limitations a number of works adopt an alternative view
on querying Linked Data: The idea is to conceive the Web of Linked Data itself
as a distributed database in which URI lookups are used to access data sources
at query execution time [8,11-13,16,17]. A particularly interesting approach is
traversal-based query execution which intertwines the query execution process
with a traversal of data links [8,11-13]. This approach can discover initially
unknown data and data sources on the fly, and it can be used to start querying
right away (without first having to populate a repository of data). An inher-
ent downside, however, is the delay before the data retrieval process terminates
and a complete query result can be returned to the user. Nonetheless, users
may want to start receiving elements of the query result set as soon as pos-
sible. The following example shows that the user experience may be improved
significantly by query optimization approaches that aim to reduce the response
times of query executions, that is, the times required to find a particular num-
ber of result elements (as opposed to the overall time required to complete the
query execution).

Example 1. Consider the following SPARQL query from the FedBench
benchmark [15].

SELECT * WHERE { ?person nyt:latest_use ?mentionInNYT . ?person owl:sameAs ?chancellor .

?chancellor dct:subject <http://dbpedia.org/resource/Category:Chancellors_of_Germany> }
We used the URI at the end of this query as a starting point for a traversal-based
execution of the query over the WWW (under ¢pmatch-bag-semantics; cf. Sect. 2).
For this execution we used a randomized traversal strategy; that is, we prioritized
the retrieval of Linked Data by using randomly chosen lookup priorities for
all URIs that are discovered and need to be looked up during the execution
process. By repeating this query execution five times, for each of these executions,
we measured an overall execution time of 8.9 min (because all five executions
eventually retrieve the same set of documents, which always requires almost the
same amount of time). However, due to the random prioritization, the documents
always arrive in a completely different order, which affects the time until all the
data has been retrieved that is needed to compute any particular result element:
In the best of the five cases, a first element of the result set can be returned
after 9s, that is, 1.7 % of the overall query execution time; on average however
the five executions require 3.1 min (34.8 %) to return a first result element, and
the standard deviation of this average is as high as 1.3 min (14.6 %).

The example illustrates that there exists a huge potential for optimizing the
response times of traversal-based query executions (i.e., returning result ele-
ments as early as possible) and that these response times may vary significantly
depending on the strategy chosen to traverse the queried Web of Linked Data.
A desirable traversal strategy is one that prioritizes the lookup of URIs such
that it discovers as early as possible the result-relevant documents (whose data
can be used to compute at least one of the elements of the query result). Then,
as soon as these documents arrive, a pipelined result construction process can
compute and output result elements. The primary challenge in this context is
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that the URIs to be looked up are discovered only recursively, and we cannot
assume up-to-date a priori information about what URIs will be discovered and
which of the discovered URIs allow us to retrieve documents that are result-rel-
evant. Given these issues, an investigation of possible approaches to prioritize
URI lookups and their impact on the response times is an open research problem
that is important for improving the user experience of applications that can be
built on the traversal-based paradigm.

In this paper, we focus on this problem. To this end, we identify a diverse
set of 14 different approaches to prioritize URI lookups during a traversal-based
query execution. None of these approaches assumes any a priori information
about the queried Web. Then, as our main contribution, we conduct an experi-
mental analysis to study the effects that each of these prioritization approaches
can have on the response times of traversal-based query executions. This analysis
is based on a comprehensive set of structurally diverse test Webs. We show that
some of the approaches can achieve significant improvements over a breadth-
first search baseline approach that looks up URIs on a first-come, first-served
basis. However, we also observe that, even for the most promising ones of our
approaches, there is a non-negligible number of cases in which they perform worse
than the baseline. Before describing the approaches (Sect.4) and discussing our
experiments in more detail (Sects.5 and 6), we briefly review the state of the
art in querying Linked Data on the Web and elaborate more on the focus of
our work.

2 Linked Data Query Processing

The prevalent query language used in existing work on querying Linked Data on
the WWW is the basic fragment of SPARQL. Approaches to evaluate such basic
graph patterns (BGPs) over Linked Data can be classified into traversal-based,
index-based, and hybrid [7,11]. All these approaches compute a query result
based on Linked Data that they retrieve by looking up URIs during the query
ezecution process. Their strategy to select these URIs is where the approaches
differ.

Traversal-based approaches perform a recursive URI lookup process dur-
ing which they incrementally discover further URIs that can be selected for
lookup. Existing work in this context focuses on techniques to implement such a
traversal-based query execution [8,12,13]; additionally, as a well-defined founda-
tion for these approaches, we have proposed a family of reachability-based query
semantics for SPARQL that restrict the scope of any query to a query-specific
reachable subweb [6]. To this end, the specification of any query in this context
includes a set of seed URIs (in addition to the query pattern). Then, a document
in the queried Web of Linked Data is defined to be reachable (and, thus, part of
the reachable subweb) if it can be retrieved by looking up either a seed URI—in
which case we call it a seed document—or a URI u such that (i) u occurs in
an RDF triple of some other reachable document and (ii) u meets a particular
reachability condition specified by the given reachability-based query semantics.
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For instance, such a condition may require that the triple in which the URI is
found is a matching triple for any of the triple patterns in the given query. Our
earlier work formalizes this condition in a reachability-based query semantics
that we call ematch-semantics [6].

Index-based approaches use a pre-populated index whose entries are URIs
that can be looked up to retrieve Linked Data. Then, for any given query, such an
approach uses its index to select a set of URIs whose lookup will result in retriev-
ing query-relevant data. By relying on their index, index-based approaches fail to
exploit query-relevant data added to indexed documents after building the index,
and they are unaware of new documents. Existing work on such approaches
focuses on different ways to construct the corresponding index [17], on tech-
niques to leverage such an index [17], and on ranking functions that prioritize
the lookup of the selected URIs in order to reduce response times [11,17]. The
latter aims to achieve the same objective as our work in this paper. However, the
ranking functions proposed for index-based approaches rely on statistical meta-
data that has been added to the index. For our work on traversal-based query
executions we do not assume an a priori availability of any metadata whatsoever.

The only hybrid approach that has been proposed in the literature so far
exploits an index to populate a prioritized list of seed URIs; additional URIs
discovered during a subsequent traversal-based execution are then integrated
into the list [11]. To this end, discovered URIs that are in the index (but have
not been selected initially) are prioritized based on a ranking function that uses
information from the index. For any URI for which no index entry exists, the
approach simply uses as priority the number of retrieved Linked Data documents
that mention the URI in some of their RDF triples (i.e., the number of known
incoming links). One of the prioritization approaches that we analyze in this
paper resembles the latter strategy (cf. Sect.4.1).

3 Focus of Our Work

As discussed in the previous section, the prioritization of URI lookups is an idea
that has been shown to be suitable to improve the response time of queries over
the Web of Linked Data. However, the only systematic analyses of approaches
that implement this idea focus on index-based query executions [11,17]. The
approaches proposed in this context cannot be used for a traversal-based exe-
cution because they rely on statistical metadata that may be recorded when
building an index but that is not a priori available to a (pure) traversal-based
query execution system (which also rules out these approaches for non-indexed
URIs in a hybrid system). Therefore, the overall goal of the work presented in
this paper is to investigate URI prioritization approaches that can be used to
reduce the response times of traversal-based query executions.

For this work we make minimal assumptions about how traversal-based query
execution is implemented, which ensures independence of the peculiarities of
any particular implementation techniques (such as those proposed in earlier
work [8,12,13]). That is, we only make the general assumption that traversal-
based query engines consist of a data retrieval component (DR-component) and
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a result construction component (RC-component), and these two components
operate in parallel to execute a query as follows.

The DR-component receives Linked Data by looking up URIs. To this end,
the component is equipped with a lookup queue that is initialized with the seed
URIs of the given query. The component may use multiple URI lookup threads.
Whenever such a thread is free, it obtains the next URI from the queue, looks
up this URI on the Web, and scans the RDF triples that are contained in the
document retrieved by the lookup. This scan has two goals: First, the triples
may contain new URIs that can be scheduled for lookup. However, the lookup
threads do not necessarily have to add all new URISs to the lookup queue. Instead,
the DR-component can support an arbitrary reachability-based query semantics.
That is, the component may schedule only those URIs for lookup that satisfy the
reachability condition specified by the semantics. By doing so, the lookup threads
incrementally discover (and retrieve) the specific reachable subweb that the given
query semantics defines as the scope of the query. Hence, all triples scanned
by the lookup threads—and only these—have to be considered to compute the
sound and complete query result. Consequently, the second goal of scanning these
triples is to identify triples that match a triple pattern in the given query. Any
such matching triple is then sent to the RC-component, which starts processing
them as soon as they arrive.

Regarding the RC-component we make only three assumptions: (i) it uses
the incoming matching triples to compute the final query result, (ii) it processes
intermediate results in a push-based manner, and (iii) as soon as an element
of the final query result is ready, it is sent to the output. For techniques to
implement such a push-based RC-component we refer to the literature [12,13]
and to the extended version of this paper [10].

The whole query execution process continues until the DR-component has
accessed all data from the query-specific reachable subweb and the RC-compo-
nent has finished processing the resulting intermediate solutions. If the queried
Web is distributed over a comparably slow network such as the Internet (as we
assume in this paper), it is not surprising to observe that data retrieval is the
dominating factor for query execution times. In fact, as we verify experimentally
in the extended version of this paper, due to this dominance of data retrieval,
the execution times of traversal-based query executions over the WWW are not
affected at all by the order in which URIs are looked up [10]. For the same reason,
however, the URI lookup order has a crucial impact on the times required to find
a specific number of result elements (as demonstrated by Example 1). Therefore,
when aiming to minimize such response times, a suitable approach to prioritize
URI lookups is of critical importance. We study 14 candidates in this paper.

In this study we focus on conjunctive queries (represented by BGPs) under
the bag version of the aforementioned cmaicn-semantics . This semantics is the
most prominent reachability-based query semantics supported by the travers-
al-based approaches studied in the literature [8,12,13]. While, in theory, there
exist an infinite number of other reachability-based query semantics and our
experiments can be repeated for any of them, we conjecture that the results
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will be similar to ours because none of the approaches studied in this paper
makes use of anything specific to cmatcn-semantics. Using the bag version of
CMatch-Semantics allows us to focus on a notion of the response time optimization
problem that is isolated from the additional challenge of avoiding the discovery
of duplicates (which is an additional aspect of response time optimization under
set semantics and worth studying as an extension of our work).

As a final caveat before going into the details, we emphasize the following
limitations of our study: We ignore factors that may impact the response times
of traversal-based queries but that cannot be controlled by a system that exe-
cutes such queries (e.g., varying latencies when accessing different Web servers).
Moreover, we focus only on approaches that do not assume any a priori infor-
mation about the queried Web of Linked Data. That is, the topology of the
Web or statistics about the data therein is unknown at the beginning of any
query execution. This focus also excludes approaches that aim to leverage such
information collected during earlier query executions (of course, studying such
approaches is an interesting direction for future work). Similarly, we ignore the
possibility to cache documents for subsequent query executions. While caching
can reduce the time to execute subsequent queries [5], this reduction comes at
the cost of potentially outdated results. However, studying approaches to bal-
ance the performance vs. freshness trade-off in this context is another interesting
direction for future work.

4 Approaches to Prioritize URI Lookups

A variety of approaches to pri-

oritize URI lookups are possible. non-adaptive adaptive
In this section, we identify differ-  + breadth-first e N
ent classes of such approaches. gbaseline) local proce:ssing local processing

. > * depth-first agnostic aware
Figurel illustrates our tax- -« random a7 1
onomy. All these approaches ° (o) » B intermediate
assume that the lookup queue of purely : migrap h-based Sl
the DR-component is maintained graph-based | o, b aranh base’ i ‘IS
as a priority queue. Priorities are . ;:g:g%:k . ;ZB . ISrccyl . IS%CCE ISrell » ISrel2

denoted by numbers; the greater

the number, the higher the pri- Fig. 1. Approaches to prioritize URI lookups
ority. URIs that are queued with

the same priority are handled in

a first-come, first-served manner (after all higher priority URIs have been looked
up).

A first class includes non-adaptive approaches that determine a fized priority
for each URI when the URI is added to the lookup queue. A trivial example is to
treat all URIs equal, which resembles a breadth-first traversal. We consider this
approach as our baseline. In the extended version of this paper we also discuss
depth-first and random as alternative non-adaptive approaches (Example 1 uses
the latter). These turn out to be unsuitable for reducing the response times of
traversal-based query executions [10].
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4.1 Purely Graph-Based Approaches

In contrast to non-adaptive approaches, adaptive approaches may reprioritize
queued URIs. A first class of such approaches is based on the idea of apply-
ing a vertex scoring method to a directed graph that represents the topology
of the queried Web as discovered during the data retrieval process. Each ver-
tex in this graph corresponds either to a retrieved document or to a queued
URI. Each directed edge between two document vertices represents a data link
that is established by URIs that occur in some RDF triple in the source doc-
ument and that turned out to resolve to the target document when looked up.
Directed edges from a document vertex to a URI vertex represent data links to
documents that are yet to be retrieved. Obviously, such a graph is an incom-
plete model of the topology of the queried Web. However, as a side-effect of the
data retrieval process, the DR-component obtains increasingly more information
about the topology and, thus, can augment its model continuously. That is, any
URI vertex becomes a document vertex after the corresponding URI has been
looked up. If such a lookup results in discovering new URIs for the lookup queue,
new URI vertices and connecting edges can be added to the graph. Similarly,
new edges can be added if a retrieved document mentions URIs that either are
already queued for lookup or have already been looked up.

Given such a graph, it is possible to apply a vertex scoring method and use
the score of each URI vertex as the priority of the corresponding URI in the
lookup queue. Whenever the DR-component extends the graph after completing
some URI lookup, the vertex scores can be recomputed, and the priorities can
be adapted accordingly.

A multitude of different vertex scoring methods exist. We select PageRank
and indegree-based scoring as two examples for our study. PageRank is a well-
known method that uses an iterative algorithm to determine a notion of impor-
tance of vertices [14]. Indegree-based scoring is a less complex method that sim-
ply uses the number of incoming edges as the score of a vertex. Hereafter, we
refer to the two resulting URI prioritization approaches as PageRankand indegree,
respectively. We note that the latter approach is equivalent to the only existing
proposal to prioritize URI lookups during traversal-based query executions [11].
However, its effectiveness has not been studied so far.

4.2 Solution-Aware Graph-Based Approaches

We now turn to local processing aware approaches that aim to leverage run-
time information about the result construction process in the RC-component. To
enable an implementation of these approaches, the traversal-based query execu-
tion engine must be extended with a feedback channel from the RC-component to
the DR-component. Then, specific information required to prioritize URI lookups
can be sent over this channel.

Given the possibility to obtain runtime information from the RC-component,
we now can define graph-based URI prioritization approaches for which we use
vertex scoring methods that leverage such runtime information . In this paper
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we focus on methods that are based on the number of solutions that retrieved
documents have contributed to.

To enable the application of such methods, intermediate solutions must be
augmented with provenance annotations. In particular, each intermediate solu-
tion must be annotated with a set of all documents that contributed a match-
ing triple to the construction of that intermediate solution. To this end, before
sending a matching triple to the RC-component, the DR-component augments
this triple with metadata that identifies the source document of the triple. This
document becomes the provenance of the initial intermediate solution that the
RC-component generates from the matching triple. When two intermediate solu-
tions are joined in the RC-component, the union of their provenance annotations
becomes the provenance of the resulting intermediate solution. Then, whenever
an intermediate solution has been completed into a solution that is ready to be
sent to the output, the RC-component uses the feedback channel to send the
provenance annotation of this solution to the DR-component. The DR-compo-
nent uses these annotations to maintain a result contribution counter (RCC)
for every document vertex in the Web graph model that the component builds
incrementally as described in Sect.4.1. This counter represents the number of
solutions that the document represented by the vertex has contributed to so far,
which may increase as the query execution progresses.

Given these counters, we define four vertex scoring functions that can be
applied to the Web graph model. Informally, for each vertex v € V' in such a
graph G=(V, E), the rcc—1 score of v, denoted by recScorey(v), is the sum of the
(current) RCCs of all document vertices in the in-neighborhood of v; and the rel-
1 score of v, denoted by relScore;(v), is the number of document vertices in the
in-neighborhood of v whose RCC is greater than 1. Similarly, the rcc—2 score and
rel-2 score of v, denoted by rccScores(v) and relScores(v), respectively, focus on
the 2-step in-neighborhood. To define these scores formally, let ing(v) denote the
set of vertices in the k-step in-neighborhood of v, and, if v is a document vertex,
let rce(v) be its (current) RCC. Then, for each vertex v € Vand k € {1, 2}, the
scoring functions are defined as follows:

rccScoreg(v) = > yrec(v'),  relScorey(v) = |{v" € in(v) |rec(v') > 0}].

v'€ing(v
These vertex scoring functions can be used by a graph-based approach to priori-
tize URI lookups (in the same manner as the PageRank and indegree approaches
use the PageRank algorithm and indegree-based scoring, respectively). Here-
after, we refer to the four resulting URI prioritization approaches as rccl, rcc2,
rell, and rel2, respectively.

4.3 Intermediate Solution Driven Approaches

An alternative class of local processing aware approaches use the aforementioned
feedback channel to obtain information about all the intermediate solution map-
pings sent between operators in the RC-component. We focus on one such app-
roach, denoted by IS, that assigns an initial priority of 0 to any new URI added
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to the lookup queue, and it reprioritizes queued URIs based on the following two
assumptions:

Al: The greater the number of operators that have already processed a given
solution mapping p, the more likely it is that this intermediate solution u
can be completed into a solution y’ that covers the whole query and, thus,
can be sent to the output.

A2: The documents that can be retrieved by looking up the URIs mentioned in
a given (intermediate) solution mapping p are the documents that are most
likely to contain matching triples needed for completing p into a solution.

Recall that the objective is to return solutions as early as possible. Hence, by
assumption A2, it seems reasonable to increase the priority of a URI in the
lookup queue if the URI is mentioned in an intermediate solution. Further-
more, by assumption A1, such an increase should be proportional to the number
of operators that have already processed the intermediate solution. Then, to
implement the IS approach, intermediate solutions do not only have to be sent
between operators in the RC-component, but they also have to be sent over the
feedback channel to the DR-component—after annotating them with the num-
ber of operators that contributed to their construction. Given an intermediate
solution mapping p with such a number, say opcnt, the IS approach iterates over
all variables that are bound by u. For each such variable ?v € vars(u), if p binds
the variable to a URI (i.e., u(?v) is a URI) and this URI is queued for lookup
with a priority value that is smaller than opent, then IS increases the priority of
this URI to opent.

4.4 Hybrid Local Processing Aware Approaches

The idea of the 1S approach (cf. Sect.4.3) can be combined with the solution-
aware graph-based approaches (cf. Sect.4.2). To this end, the DR-component
has to obtain via the feedback channel both the provenance annotation of each
solution and all intermediate solution mappings. Based on the former, the DR-
component increases the RCCs of document vertices in the Web graph model
(as described in Sect.4.2). The intermediate solutions are used to maintain an
additional number for every URI that is queued for lookup; this number repre-
sents the maximum of the opent values of all the intermediate solutions that bind
some variable to the URI. Hence, initially (i.e., when the URI is added to the
lookup queue) this number is 0, and it may increase as the DR-component gets to
see more and more intermediate solutions via the feedback channel. Observe that
this number is always equal to the lookup priority that the IS approach would
ascribe to the URI. Therefore, we call this number the IS-score of the URI.
Given such IS-scores, we consider four different approaches to prioritize URI
lookups, each of which uses one of the RCC-based vertex scoring functions intro-
duced in Sect. 4.2. We call these approaches isrccl, isrcc2, isrell, and isrel2 (the name
indicates the vertex scoring function used). Each of them determines the priority
of a queued URI by multiplying the current IS-score of the URI by the current
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vertex score that their vertex scoring function returns for the corresponding URI
vertex. Whenever the DR-component increases the IS-score of a URI, or the ver-
tex score of the corresponding URI vertex changes , then the lookup priority of
that URI is adapted accordingly.

4.5 Oracle Approach

We also want to gain an understanding of what response times a traversal-
based query execution system could achieve if it had complete information of
the queried Web (which is impossible in practice). To this end, we developed
another approach assuming an oracle that, for each reachable document, knows
(i) the URIs leading to the document and (ii) the final RCC of the document (i.e.,
the number of solutions of the complete query result that are based on matching
triples from the document). Then, this oracle approach uses as priority of a URI
lookup the final RCC of the document that will be retrieved by this lookup.
As a consequence, retrieving documents with a greater final RCC has a higher
priority. Clearly, without a priori information about the queried Web, a travers-
al-based system can determine such final RCCs only after retrieving all reachable
documents —which is when it is too late to start prioritizing URI lookups. Hence,
the oracle approach cannot be used in practice. However, for our experiments
we performed a baseline-based “dry run” of our test queries and collected the
information necessary to determine the RCCs that are required to execute the
queries using the oracle approach.

5 Experimental Setup

In this section we specify the setup of our experiments. Although the execution
of queries over Linked Data on the WWW is the main use case for the concepts
in this paper, the WWW is not a controlled environment to run experiments on.
For this reason, we set up a simulation environment consisting of two identical
machines, each with an Athlon 64 X2 dual core CPU, and 3.6 GB of main
memory. Both machines use an Ubuntu 12.04 LTS operating system with Sun
Java 1.6.0 and are connected via a fast university network. One machine runs a
Tomcat server (7.0.26) with a Java servlet that can simulate different Webs of
Linked Data (one at a time); the documents of these Webs are materialized on the
machine’s hard disk. The other machine executes queries over such a simulated
Web by using an in-memory, Java implementation of a traversal-based query
engine. To rule out any effects of parallelized URI lookups as a factor that may
influence our measurements we set up the system to use a single lookup thread.

In the following, we specify the Webs of Linked Data simulated for our exper-
iments, the corresponding test queries, and the metrics that we use. Software and
data required for our experiments are available at http://squin.org/experiments/
ISWC2016/.
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5.1 Test Webs

The goal of our experiments is to investigate how the different URI prioritization
approaches impact the response times of traversal-based query executions. This
impact (as well as the chance to observe it) may be highly dependent on how the
queried Web of Linked Data is structured and how data is distributed. Therefore,
we generated multiple test Webs for our experiments. To be able to meaningfully
compare measurements across our test Webs, we used the same base dataset for
generating these Webs.

We selected as base dataset the set of RDF triples that the data generator of
the Berlin SPARQL Benchmark (BSBM) suite [1] produces for a scaling factor
of 200. This dataset, hereafter denoted by Gpase, consists of 75,150 RDF triples
and describes 7,329 entities, each of which is identified by a unique URI. Let
Upase denote the set consisting of these 7,329 URIs. Hence, the subject of any
triple (s, p, 0) € Gpase is such a URI (i.e., s € Upase), and the object o either is a
literal or also a URI in Upase.

Every test Web that we generated from this base dataset consists of 7,329
documents, each of which is associated with a different URI in Up,se. To dis-
tribute the triples of Gpase Over these documents, we partitioned Gpase into 7,329
potentially overlapping subsets (one for each document). First, we always placed
any base dataset triple whose object is a literal into the subset of the document
for the subject of that triple. Next, for any of the other base dataset triples
(s,p,0) € Gpase (Whose object o is a URI in Upase), we considered three options:
placing the triple (i) into both the documents for s and for o—which establishes
a bidirectional data link between both documents, (ii) into the document for s
only—which establishes a data link from that document to the document for o,
or (iii) into the document for o only—which establishes a data link to the doc-
ument for s. It is easy to see that choosing among these three options impacts
the link structure of the resulting test Web (note that the choice may differ for
each triple).

We exploited this property to systematically generate test Webs with differ-
ent link structures. That is, we applied a random-based approach that, for every
generated test Web, uses a particular pair of probabilities (¢1,¢2) as follows:
For every base dataset triple (s,p,0) € Gpase With 0 € Upase, we chose the first
option with a probability of ¢1; otherwise, ¢o is the (conditional) probability
of choosing the second option over the third. To cover the whole space of pos-
sible link structures in a systematic manner, we have used each of the twelve
pairs (¢1,¢2) € {0,0.33,0.66} x {0,0.33,0.66,1} to generate twelve test Webs
Wte;g, Wtigt’loo and we complemented them with the test Web W% that we
generated using probability ¢; = 1 (in which case ¢5 is irrelevant) .

While these 13 test Webs cover a wide range of possible link structures, we
are also interested in an additional test Web whose link structure is most repre-
sentative of real Linked Data on the WWW. To identify a corresponding pair of
probabilities (¢1, ¢2) we analyzed the 2011 Billion Triple Challenge dataset [3].
For this corpus of real Linked Data we identified a ¢; of 0.62 and a ¢- of 0.47.
Given this pair of probabilities, we used our base dataset to generate another
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test Web, Wtizt’u. In this paper we discuss primarily the measurements obtained
by querying this test Web. However, for our analysis we also queried the other
test Webs; the measurements of all these query executions contribute to our
empirical comparison of the URI prioritization approaches (cf. Sect.6.6).

We emphasize that a systematic creation of test Webs with different link
structures as achieved by the given, random-based approach requires a base
dataset that has a high degree of structuredness, which is the case for our BSBM
dataset [2]. On the other hand, even if the base dataset is highly structured,
our random-based approach ensures that the documents in each generated test
Web (except W) contain data with varying degrees of structuredness, which
reflects most of the Linked Data on the WWW [2].

5.2 Test Queries

For our experiments we use six SPARQL basic graph patterns (BGPs) under
CMatch-bag-semantics (cf. Sect.2); as seed URIs, we use all URIs in the given
BGP, respectively. These queries, denoted by Q1 to Q6, are listed in the extended
version of this paper [10].

We created these six queries so that they satisfy the following three require-
ments: First, each of these queries can be executed over all our test Webs. Second,
the queries differ w.r.t. their syntactical structure (shape, size, etc.). Third, to
avoid favoring any particular traversal strategy, the reachable subwebs induced
by the queries differ along various dimensions. For instance, Table 1 lists sev-
eral properties of the six query-specific reachable subwebs of test Web Wtiig‘”
These properties are the number of reachable documents, the number of edges
between these documents in the link graph of the reachable subweb, the number
of strongly connected components and the diameter of the link graph, the num-
ber of reachable documents that are result-relevant (i.e., their data is required
for at least one solution of the corresponding query result), the percentage of
reachable documents that are result-relevant, the mean lengths of the shortest
paths (in the link graph) from seed documents to these relevant documents,
the lengths of the shortest and the longest of these shortest paths, and similar
statistics for the reachable documents that are not result-relevant. Additionally,
Table 1 lists the cardinality of the corresponding query results. We emphasize

Table 1. Statistics about the reachable subwebs of test queries Q1-Q6 over test Web
Wea™".

link graph of reachable subweb result-relevant reachable documents res.-irrel. reach. documents | | result
Query || #of | #of | str.conn. | dia- ||#o0f| % of all |shortest paths from seeds|| shortest paths from seeds ||cardi-
docs | edges | components | meter | |docs |reach.docs|mean (st.dev) [min| max ||mean (st.dev) min| max ||nality
Q1 [|3818{10007 413 8 572 15.0% |1.12(£043)| 1 3 1.69 (£0.93)| 1 3 2481
Q2 || 214 | 627 8 15 22 | 10.3% |2.34(£1.70)| 1 8 ||5.04(£1.40)| 2 8 34
Q3 || 234 410 57 6 3 1.3% | 1.41 (£0.50)| 1 2 [|2.74(4£0.53)| 1 3 4
Q4 [|1098| 7805 36 12 || 43 39% (138 (£0.73)| 1 3 113.49(£0.98)| 1 5 804
Q5 || 333 | 2340 14 10 36 | 10.8% |[2.21(£0.78)| 1 4 (13.83(£0.37)| 3 5 116
Q6 [|2232| 6417 88 45 12 0.5% [2.40(£0.78)| 1 4 ||4.08 (£1.34)| 1 8 28
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that a computation of any of the properties in Table 1 requires information that
a traversal-based system discovers only during query execution. Hence, such sta-
tistics can be computed only after completing a traversal-based query execution
and, thus, they cannot be used for query optimization.

By comparing the properties in Table 1, it can be observed that our six test
queries induce a very diverse set of reachable subwebs of test Web W%, In
an earlier, more detailed analysis of these queries we make the same observation
for the other 13 test Webs [9]. Moreover, if we consider each query in separation
and compare its reachable subwebs across the different test Webs, we observe a
similarly high diversity [9]. Hence, these six queries in combination with all 14
test Webs represent a broad spectrum of test cases. That is, we have some test
cases that reflect interlinkage characteristics of a real snapshot of Linked Data
on the WWW (i.e., WE%*") and others that systematically cover other possible
interlinkage characteristics (W ... W00).

5.3 Metrics

For each solution that our test system computes during a query execution, it
measures and records the fraction of the overall execution time after which the
solution becomes available. An example of such numbers for the first reported
solution are the percentages given in Example 1. For our analysis we focus pri-
marily on the two extreme cases: the relative response times for a first solution
and the relative response times for the last solution. The former is interesting
because it identifies the time after which users can start looking over some out-
put for their query; the latter marks the availability of the complete result (even
if the system cannot verify the completeness at this point). Hence, we define
two metrics. Let exec be a query execution; let fsiart, tend, t1st, and sy be the
points in time when ezxec starts, ends, returns a first solution, and returns the
last solution, respectively. The relative first-solution response time (relRTl1st)
and the relative complete-result response time (relRTCmpl) of exec are defined
as follows:

fist — ¢ tast —
relRTIst = =" apd  relRTCmpl = -2t — start

end — Ustart end — tstart

We can use such relative metrics for our study because, for each query, the overall
query execution time is always the same, independent of the URI prioritization
approach (cf. Sect.3). The advantage of relative metrics is that they directly
show the differences in response times that can be achieved by different URI
prioritization approaches relative to each other. Measuring absolute times—such
as the times that Example 1 provides in addition to the percentages—would not
provide any additional insight for such a comparison. Moreover, absolute times
that we may measure in our simulation environment are mostly a function of
how fast our simulation server responds to URI requests. Hence, such absolute
times in our simulation would be quite different from what could be measured
for queries over the “real” Web of Linked Data (such as in Example1).
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To increase the confidence in our measurements we repeat every query exe-
cution five times and report the geometric mean of the measurements obtained
by the five executions. The confidence intervals (i.e., error bars) in the charts
in this paper represent one standard deviation. To avoid measuring artifacts
of concurrent query executions we execute queries sequentially. To also exclude
possible interference between subsequent query executions we stop and restart
the system between any two executions.

6 Experimental Results

To experimentally analyze the URI prioritization approaches introduced in
Sect. 4 we used each of these approaches for traversal-based query executions
over our test Webs. The charts in Fig.2 illustrate the mean relRT1st and the
mean relRTCmpl measured for the query executions over test Web nggu (in
some cases the bars for relRT1st are too small to be seen). For instance, the left-
most bars in Fig. 2(a) indicate that the baseline executions of query Q1 returned
a first solution of the query result after 26.5% of the overall query execution
time, and it took them about 99 % of the time to complete the query result.
In this section, we discuss these measurements, as well as further noteworthy
behavior as observed for query executions over the other test Webs. The discus-
sion is organized based on the classification of URI prioritization approaches as
introduced in Sect. 4 (Fig. 1). However, we begin with some general observations.

6.1 General Observations

A first, unsurprising observation is that, in almost all cases, none of the
approaches achieves response times that are smaller than the response times
achieved by the oracle approach. However, we also notice a few (minor) excep-
tions. These exceptions can be explained by the fact that—independent of what
URI prioritization approach is applied—the DR-component discovers the URIs
to be looked up only gradually. Then, by greedily ordering the currently available
URIs (based on our pre-computed RCCs), the oracle approach may only achieve
a local optimum but not the global one.

Ignoring the oracle approach for a moment, we note that approaches that
achieve a good relRT1st for a query do not necessarily also achieve a good
relRTCmpl for that query.

Another general observation is that, by using different URI prioritization
approaches to execute the same query over the same test Web, the number
of intermediate solutions processed by our system can vary significantly, and
so does the number of priority changes initiated by the adaptive approaches.
These variances indicate that the amount of computation within our system
can differ considerably depending on which URI prioritization approach is used.
Nonetheless, in all our experiments the overall time to execute the same query
over the same test Web is always almost identical for the different approaches!
This fact again illustrates the dominance of the data retrieval fraction of query
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Fig. 2. Relative response times for queries Q1 to Q6 over test Web Wtseft“” as achieved
by employing the different approaches to prioritize URI lookups.

execution time (cf. Sect. 3) and, thus, is a strong verification of the comparability
of our relative measurements. The only exception is the PageRank approach
for which query execution times range from 120% to 320 % of the execution
times measured for the other approaches. Hence, in contrast to the additional
computation required for each of the other approaches, the frequent execution
of the iterative PageRank algorithm becomes a non-negligible overhead. As a
result, the PageRank approach cannot compete with the other approaches and,
thus, we ignore it in the remainder.

Finally, in Fig. 2(c) (for query Q3 over test Web WE%*"), we note that, for all
approaches, the differences between the time needed to return a first solution and
the time to return the last solution are insignificant. We explain this phenomenon
as follows: Only three of the 234 reachable documents for Q3 over Wiz con-
tribute to the query result and this result consists of four solutions (cf. Table1).
It turns out that the computation of each of these four solutions requires data
from each of the three result-relevant documents. Hence, only after (and as soon
as) the last of these three documents has been retrieved, the system can compute
and return all four solutions.
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6.2 Evaluation of the Purely Graph-Based Approaches

After ruling out the PageRank approach (cf. Sect.6.1), indegree is the only
remaining purely graph-based approach in our experiments. We observe that this
approach is often worse and only in a few cases better than the baseline app-
roach (for both relRT1st and relRTCmpl). The reason for the negative per-
formance of this approach—as well as any other possible purely graph-based
approach—is that the applied vertex scoring method rates document and URI
vertices only based on graph-specific properties, whereas the result-relevance of
reachable documents is independent of such properties. In fact, in our earlier
work we show empirically that there does not exist a correlation between the
result-relevance—or irrelevance— of reachable documents and the indegree of
the corresponding document vertices in the Web graph model (similarly, for
the PageRank, the HITS scores, the k-step Markov score, and the betweenness
centrality) [9].

6.3 Evaluation of the Solution-Aware Graph-Based Approaches

In contrast to the purely graph-based approaches, the solution-aware graph-
based approaches (rccl, rec2, rell, and rel2) employ vertex scoring methods that
make use of information about result-relevant documents as discovered during
the query execution process. We notice that, until such information becomes
available (that is, not before a first query solution has been computed), these
methods rate all vertices equal. As a consequence, all URIs added to the lookup
queue have the same priority and are processed in the order in which they
are discovered. Hence, until a first solution has been computed, the solution-
aware graph-based approaches behave like the baseline approach. Therefore,
these approaches always achieve the same relRT1st as the baseline.

Once a first set of result-relevant documents can be identified, the solution-
aware graph-based approaches begin leveraging this information. As a result,
for several query executions in our experiments, these approaches achieve a
relRTCmpl that is significantly lower than the baseline. Moreover, for the major-
ity of query executions for which this is not the case, the relRTCmpl achieved by
the solution-aware graph-based approaches is comparable to the baseline. In the
following, we identify characteristics of reachable subwebs that are beneficial for
our four solution-aware graph-based approaches (for a more detailed discussion
refer to the extended version of this paper [10]).

A necessary (but not necessarily sufficient) characteristic is that every reach-
able document that is result-relevant must have at least one in-neighbor that is
also result-relevant (for rel2 and rec2 it may also be a 2-step in-neighbor). How-
ever, even if the in-neighborhood of a relevant document d contains some other
relevant documents, the solution-aware graph-based approaches can increase the
retrieval priority of document d only if the relevance of at least one of these other
documents, say d’, is discovered before the retrieval of d. This is possible only if
the relevance of d’ can be attributed to its contribution to some query solution
whose computation does not require document d.
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Hence, an early discovery of a few first solutions may increase chances that
the solution-aware graph-based approaches retrieve all relevant documents early,
which then leads to smaller complete-result response times (relRTCmpl). How-
ever, there are also cases in which the identification of relevant documents may
mislead these approaches; in particular, if some relevant documents link to many
irrelevant documents. A special case that is particularly worse for rccl and rcc2
is the existence of a result-relevant document d with an RCC that is signif-
icantly higher than the RCCs of the other relevant documents in the corre-
sponding subweb; such a high RCC may dominate the RCC-based scores in the
in-neighborhood of document d. The Q4-specific reachable subweb of test Web
WS4 is an example of such a case (cf. Fig. 2(d)).

6.4 Evaluation of the Intermediate Solution Driven Approaches

Intermediate solution driven approaches (including the hybrid approaches ana-
lyzed in the next section) use information about all intermediate solutions sent
between operators in the RC-component. Regarding these approaches, we notice
a high variation in our measurements (observe the error bars in Fig.2). We
attribute this variation to the multithreaded execution of all operators in the
RC-component of our traversal-based query engine (which we describe in detail
in the extended version of this paper [10]). Due to multithreading, the exact order
in which intermediate solutions appear in the RC-component and are sent to the
DR-component is nondeterministic. As a result, the intermediate solution driven
adaptation of the priorities of URIs that are queued for lookup becomes non-
deterministic. Then, due to this nondeterminism, the order in which reachable
documents are retrieved may differ for repeated executions with the same prior-
itization approach. Such differences may cause different response times because
the retrieval order of documents determines which intermediate solutions can be
generated at which point during the query execution process.

Irrespective of the variations, our measurements indicate that, in a number
of cases, the IS approach can achieve an advantage over the baseline approach.
For instance, compare the relRT1st values in Fig.2(a) or the relRTCmpl values
in Fig. 2(f). However, there also exist a significant number of cases in which IS
performs worse than the baseline approach (e.g., query Q4 over test Web Wtiig”;
cf. Fig. 2(d)).

6.5 Evaluation of the Hybrid Approaches

For the hybrid approaches (isrccl, isrcc2, isrell, isrel2) we first notice that they
all achieve similar response times in many cases. More importantly, however,
these response times are comparable, or at least close, to the best of either the
response times achieved by the solution-aware graph-based approaches or the
response times of the IS executions.

A typical example are the executions of Q1 over test Web Wtizt’”
(cf. Fig.2(a)). On one hand, the hybrids achieve complete-result response
times (relRTCmpl) for this query that are smaller than the baseline—which is
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also the case for the solution-aware graph-based approaches but not for the
IS-based executions. On the other hand, instead of also achieving first-solu-
tion response times (relRT1st) as achieved by the solution-aware graph-based
approaches (which are as high as the baseline), the hybrids achieve a relRT1st
that is as small as what the IS-based executions achieve. Regarding relRT1st we
recall that the solution-aware graph-based approaches cannot be better than the
baseline. The latter observation shows that this is not the case for the hybrid
approaches. On the contrary, even if each hybrid approach is based on a solu-
tion-aware graph-based approach, their combination with intermediate solution
driven functionality enables the hybrid approaches to outperform the baseline
in terms of relRT1st.

6.6 Comparison

Our measurements show that there is no clear winner among the URI prioriti-
zation approaches studied in this paper. Instead, for each approach, there exist
cases in which the approach is better than the baseline and cases in which the
approach is worse.
Table2 quantifies these cases;

that is, the table lists the percentage relRT1st relRT50 || relRTCmpl

of cases in which the response times apg?gd' T ;’gt:;z e :’;2?75 B :’gtltf;z
achieved by each approach are at |random |[13.0%|27.5%]|58.9%| 8.2%||59.4%| 8.7%

indegree |[21.7%|21.7% | |65.8%| 4.1%||50.7%| 5.8%
least 10% better (resp. 10% worse) rccl || 0.0%] 00%]| 4.1%| 14%]| 72%|23.6%

than the baseline. For this compar- rec2 || 0.0%| 0.0%|| 27%| 27%|| 4.1%|203%
i : N relt 0.0%]| 0.0%]|| 5.5%]| 1.4%]||11.6%[29.0%
ison, we conblde.r the executions of o2 || 00%l oowllitoe! 00wl 29% e 1%
all six test queries over all 14 test 1S 7.2%]31.9%|[15.1%]|27.4%][26.1%]| 10.1 %

ebs (ic.. 84 cases for each app- | 1Sfcel || 29%|304%| 5.5%]|26.0%|[14.5%]| 18.8%
W (Le., 8 2% isrcc2 || 5.8%(33.3%|| 5.5%|24.7%||13.0%(26.1%

roach), and we use the threshold | isrelt || 0.0%|333%|| 2.7%|24.7%]|15.9%|26.1%
of 10% to focus only on notewor- | iSre2 || 29%|319%]| 4.1%|23.3%]|11.6%)26.1%

. X oracle || 0.0%|353%]| 0.0%]|41.2%]| 0.0%|64.7%
thy differences to the baseline. In

addition to relRT1st and relRTCmpl, Table 2. Percentage of cases in which the

the table also covers relative 50 % approaches achieve response times that are

response time (relRT50); that is, the ¢ 1east 10% worse (resp. 10 % better) than
fraction of the overall execution time ihe paseline

after which 50 % of all solutions of the
corresponding query result have been computed.

For both relRT1st and relRT50, we observe that isrell is the best of the
approaches tested (ignoring the oracle approach which cannot be used in practice;
cf. Sect.4.5). Although the other intermediate solution driven approaches (IS,
isrel2, isrccl, isrcc2) have a similarly high number of cases in which they are at
least 10 % better than the baseline, these approaches have a higher number of
cases in which they are at least 10 % worse. We also notice that, as discussed
in Sect. 6.3, for relRT1st, the solution-aware graph-based approaches (rccl, rec2,
rell, rel2) behave like the baseline.

For relRTCmpl, we observe some differences. The hybrid approaches (isrccl,

.., isrel2) still have a comparably high number of cases in which they are at
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least 10 % better than the baseline, but they also have a significant number of
noteworthy cases in which they are worse. IS has an even higher number of such
worse cases. In contrast, the solution-aware graph-based approaches are more
suitable, with rel2 being the best choice.

In summary, to return some solutions of query results as early as possi-
ble, isrell appears to be the most suitable choice among the approaches studied
in this paper. However, if the objective is to reduce complete-result response
times (relRTCmpl), the solution-aware graph-based approaches are usually bet-
ter suited; in particular, rel2. In the extended version of the paper we additionally
show that, by and large, these general findings are independent of whether the
queried Web is densely populated with bidirectional data links (i.e., ¢1 > 0.66)
or sparse (i.e., ¢1 < 0.33) [10].

7 Conclusions

This is the first paper that studies the problem of optimizing the response times
of traversal-based query executions over Linked Data. In particular, we focus on
the fundamental problem of fetching result-relevant data as early as possible.
To this end, we introduce heuristics-based approaches to prioritize URI lookups
during data retrieval and analyze their impact on response times. For this exper-
imental analysis we use a broad range of simulated, structurally diverse Webs
of Linked Data. One of these test Webs reflects interlinkage characteristics of a
real snapshot of Linked Data on the WWW, and the others systematically cover
other possible interlinkage characteristics as may reflect other Webs of Linked
Data (e.g., within the intranet of an enterprise).

Our experiments show that some of the approaches can achieve noteworthy
improvements over the baseline in a significant number of cases. However, even
for the best URI prioritization approaches in this paper, there exist cases in
which the baseline approach achieves better response times. Moreover, a com-
parison to the oracle approach shows that there is further room for improvement.
A promising direction of future work are approaches that collect statistics during
(traversal-based) query executions and leverage these statistics to optimize the
response times for subsequent queries.
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