SPARQL-to-SQL on Internet of Things Databases
and Streams

Eugene Siow, Thanassis Tiropanis, and Wendy Hall

Electronics & Computer Science, University of Southampton
{eugene.siow,t.tiropanis,wh}@soton.ac.uk

Abstract. To realise a semantic Web of Things, the challenge of achiev-
ing efficient Resource Description Format (RDF) storage and SPARQL
query performance on Internet of Things (IoT) devices with limited re-
sources has to be addressed. State-of-the-art SPARQL-to-SQL engines
have been shown to outperform RDF stores on some benchmarks. In
this paper, we describe an optimisation to the SPARQL-to-SQL ap-
proach, based on a study of time-series IoT data structures, that em-
ploys metadata abstraction and efficient translation by reusing existing
SPARQL engines to produce Linked Data ‘just-in-time’. We evaluate our
approach against RDF stores, state-of-the-art SPARQL-to-SQL engines
and streaming SPARQL engines, in the context of IoT data and scenar-
ios. We show that storage efficiency, with succinct row storage, and query
performance can be improved from 2 times to 3 orders of magnitude.

Keywords: SPARQL, SQL, Query Translation, Analytics, Internet of
Things, Web of Things

1 Introduction

The Internet of Things (IoT) envisions a world-wide, interconnected network
of smart physical entities with the aim of providing technological and societal
benefits [9]. However, as the W3C Web of Things (WoT) Interest Group charter!
states, the IoT is currently beset by product silos and to unlock its potential,
an open ecosystem based upon open standards for identification, discovery and
interoperation of services is required.

We see a semantic Web of Things as such an information space, with rich
descriptions, shared data models and constructs for interoperability that utilises
but is not limited to semantic & web technologies to provide an application layer
for ToT applications. As Barnaghi et al. [3] have proposed, semantic technologies
can serve to facilitate interoperability, data abstraction, access and integration
with other cyber, social or physical world data.

The semantic WoT does present a set of unique challenges: handling and
storing time-series data as RDF, querying with SPARQL on limited IoT devices
and distributed usage scenarios. Buil-Aranda et al. [5] have examined traditional
SPARQL endpoints on the web and shown that performance for generic queries

! https://www.w3.org/2014/12/wot-ig-charter.html

2 SPARQL-to-SQL on IoT Streams and Databases

can vary by up to 3-4 orders of magnitude. Endpoints generally limit or have
worsened reliability when issued with a series of non-trivial queries. IoT devices
have added resource constraints, however, we argue that time-series IoT data
and distribution also present the opportunity for specific optimisation.

The contribution of this paper is to present an optimisation of SPARQL-to-
SQL query translation for the particular case of time-series data, both historical
and streaming, with a novel approach that uses existing SPARQL engines to
resolve Basic Graph Patterns and mappings that allow intermediate nodes of
observations to be ‘collapsed’. This is advised by our study of IoT schemata
which exhibits a flat and wide structure. Our approach compares favourably
to native RDF storage, SPARQL-to-SQL engines and RDF stream processing
engines deployed on compact, resource-constrained devices, showing 2 times to 3
orders of magnitude performance and storage improvements on published sensor

benchmarks and IoT use cases like smart homes.
In Section 2, we first study the structure of time-series IoT data which leads

us, in Section 3, to study related work. We then describe the design and im-
plementation of our approach, that employs metadata abstraction through map-
pings and SPARQL-to-SQL translation for performance, reusing, at the core, any
existing SPARQL engine in Section 4. Finally, we evaluate our approach against
traditional RDF stores, SPARQL-to-SQL engines and streaming engines using
an established benchmark and a common IoT scenario in Section 5. Results are
presented and discussed in Section 6 with the conclusion in Section 7.

2 Structure of Internet of Things Data

To investigate the structure of data produced by sensors in the Internet of
Things, we collected the schemata of 19,914 unique IoT devices from public

data streams on Dweet.io? over a one month period in January 2016.
Dweet.io is a cloud platform that supports the publishing of time-series data

from IoT devices in JavaScript Object Notation (JSON). The schema represented
in JSON can be flat (row-like with a single level of data) or complex (tree-
like/hierachical with multiple nested levels of data). It was observed from the
schemata, removing the 1542 (7.7%) that were empty, that 18,280 (99.5%) of

the non-empty schemata were flat while only 92 (0.5%) were complex.
We also analysed the schemata to investigate how wide the IoT data was.

Wideness is defined as the number of properties beside the timestamp and a
schema is considered wide if there are 2 or more such properties. We found
that 92.2% of the devices sampled had a schema that was wide. The majority
(53.2%) had 4 properties related to each timestamp. We also obtained a smaller
alternative sample of 614 unique devices (over the same period) from Sparkfun?®,
that only supports flat schemata, which confirmed that most (76.3%) IoT devices

sampled have wide time-series schemata.
‘We concluded that our sample of over 20,000 unique IoT devices from Dweet.io

and Sparkfun contained 1) flat and 2) wide IoT time-series data. It follows that

2 http://dweet.io/see
3 https://data.sparkfun.com/streams

SPARQL-to-SQL on IoT Streams and Databases 3

a possible succinct representation of such data is as rows in a relational database
with column headings corresponding to properties. SPARQL-to-SQL translation
is then a possibility for querying. Investigating column stores was out of the scope
of this study, however provides for interesting future work and comparison, as
tension between inserts/updates and optimising data structures for reads [15] are
reduced for time-series data which are already sorted by time in entry sequence
order. The IoT schemata we collected is available on Github?.

3 Related Work

The fact that we are dealing with time-series sensor data, represented as Linked
Data with ontologies like the Semantic Sensor Network (SSN) ontology and
Linked Sensor Data [12] for interoperability, prescribes the study of: i) RDF
stores, i) R2RML and SPARQL-to-SQL translation with relational databases
to improve performance and storage efficiency for time series-data as rows and
iii) streaming engines for efficient processing on real-time streams.

RDF Stores Virtuoso [8] is based on an Object Relational DBMS optimised for
RDF storage while Jena Tuple Database (TDB) is a native Java RDF store using
a single table to store triples/quads. Indexes, like the 6 SPO (Subject-Predicate-
Object) permutations that Neumann et al. [11] propose often improve query
performance on tables by reducing scans. TDB creates 3 triple indexes (OSP,
POS, SPO) and 6 quad indexes while Virtuoso creates 5 quad indexes (PSOG,
POGS, SP, OP, GS; G is graph). Commercial stores like GraphDB, formerly
OWLIM, have also shown to perform well on benchmarks [4] with 6 indexes
(PSO, POS, entities, classes, predicates, literals). Indexing, however, increases
the storage size and memory required to load them.

Relational Databases (SPARL-to-SQL) Efficient SPARQL-to-SQL trans-
lation that improves performance and builds on previous literature has been
investigated by Rodriguez-Muro et al. [14] and Priyatna et al. [13] with state-of-
the-art engines ontop and morph respectively. Both engines support R2RML®,
a W3C recommendation based on the concept of mapping logical tables in re-
lational databases to RDF via Triples Maps (the subject, predicate and object
in a triple can be mapped to columns in a table). They also optimise query
translation to remove redundant self-joins. Ontop, which translates mappings
and queries to a set of Datalog rules, applies query containment and semantic
query optimisation to create efficient SQL queries. However, 1) R2RML is de-
signed for generality rather than abstracting and ‘collapsing’ (reducing self joins
on identifier columns in tables mapping to IRI templates) intermediate nodes
(Section 4) 2) Time-series data can be different from relational data (e.g. does
not have primary keys) 3) The round-trip to retrieve database metadata (ontop)
could be significant on devices with slower disk/memory access.

* https://github.com/eugenesiow /iotdevices/releases/download /data/dweet _release.zip
® http://www.w3.org/TR/r2rml/

4 SPARQL-to-SQL on IoT Streams and Databases

Streaming Engines The C-SPARQL [1] engine supports continuous pull-based
SPARQL queries over RDF data streams by using Esper®, a complex event pro-
cessing engine, to form windows in which SPARQL queries can be executed on
an in-memory RDF model. CQELS [10] is a native RDF stream engine, sup-
porting push and pull queries, that takes a ‘white-box’ approach for full control
over query optimisation and execution. morph-streams, from SPARQLstream
[6], supports query rewriting with R2RML mappings and execution with Esper.

4 Designing a SPARQL-to-SQL engine for the IoT

Based on the ontologies for integrating time-series sensor data, the SSN ontol-
ogy’, Semantic Sensor Web and Linked Sensor Data (LSD) [12] mentioned in
the previous section, we observe that semantic sensor data is modelled as 1) IoT
device metadata like the location and specifications of sensors, 2) IoT observation
metadata like the units of measure and types of observation 3) IoT observation
data like timestamps and actual readings. Listing 1.1 shows an example division
into the 3 categories from the Linked Sensor Data dataset in RDF Turtle.

Listing 1.1. LSD example, rainfall from Station 4UTO01 (abbreviated)

@prefix ssw:<http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#>
@prefix weather:<http://knoesis.wright.edu/ssw/ont/weather.owl#>
@prefix wgs:<http://www.w3.org/2003/01/geo/wgs84_pos#>

@prefix time:<http://www.w3.org/2006/time#>

@prefix sen:<http://knoesis.wright.edu/ssw/>

sen:System_4UT01 ssw:processLocation // Device Metadata
[wgs:1lat "40.82944"; wgs:long "-111.88222"].
_:0bs a weather:RainfallObservation; // Observation Metadata

ssw:observedProperty weather:_Rainfall;

ssw:procedure sen:System_4UTO01;

ssw:result _:data; ssw:samplingTime _:time.

:data a ssw:MeasureData;

ssw:uom weather:degrees.

:time a time:Instant;

time:inXSDDateTime "2003-03-31T12:35:00". // Observation Data
:data ssw:floatValue "O.1".

Table 1. LSD example, abbreviated row from the Table 4TUO01

Time Rainfall RelativeHumidity
2003-03-31T12:35:00 0.1 37.0

Although Linked Data as implemented in RDF is flexible and expressive
enough to represent both data and metadata as triples as seen in Listing 1.1,
however, given the resource constraints of IoT devices, we make these hypotheses:

1. Storing flat and wide IoT observation data as rows is more efficient than
storage as RDF as each field value in a row, under a column header, does
not require additional subject and predicate terms (Table 1).

5 http://www.espertech.com/products/esper.php
" https://www.w3.org/2005/Incubator /ssn/ssnx /ssn

SPARQL-to-SQL on IoT Streams and Databases 5

2. Queries that retrieve more fields from a row (e.g. Rainfall & RelativeHumid-
ity) will require less joins as compared to RDF stores’ and perform better.

3. Most device and observation metadata can be abstracted and stored in-
memory, with a mapping language that can express this. Metadata triples
can be produced ‘just-in-time’ and intermediate nodes (e.g. ssw:MeasureData
in Listing 1.1), if not projected in queries, can be ‘collapsed’ (reduces joins
in RDF stores and self joins on identifier columns in tables that map to
intermediate nodes, e.g. _:obs, :data and _:time for SPARQL-t0o-SQL).

4. Efficient queries can be produced without relying on primary keys within
time-series data and retrieving database schema from IoT devices.

4.1 sparql2sql and sparql2stream

We present, based on our hypotheses, sparql2sql (translates SPARQL-to-SQL)
and sparql2stream (translates SPARQL to Event Processing Language (EPL)
for streams) engines. They utilise the same core to provide a holistic approach
to SPARQL translation for both historical and streaming IoT datasets.

Firstly, to support SPARQL-to-SQL translation, a mapping for IoT data
stored as rows is required. R2RML (as in Section 3) is designed for generality
rather than for specific IoT time-series data. As such, we propose S2SML in
Section 4.2, an R2RML-compatible mapping language designed for metadata
abstraction, collapsing intermediate nodes and in-memory storage.

Next, in Section 4.3, we explain how S2SML mappings can be used to trans-
late SPARQL to SQL, reusing any existing SPARQL engine. Finally, in Section
4.4, we show how this applies for SPARQL on streams.

4.2 S2SML Mapping

Sparql2Sql Mapping Language (S2SML) mappings serve the dual purpose of pro-
viding bindings from rows and abstracting sensor & observation metadata from
observation data stored as rows. Mappings are pure RDF and compatible with
R2RML (can be translated to and from). Furthermore, S2SML is also designed
to support ‘collapsing’ intermediate nodes of observation metadata through the
use of blank nodes or faux nodes, nodes containing identifiers only created on
projection. Listings 1.2 & 1.3 show a comparison of S2SML and R2RML from
Listing 1.1. R2RML is more verbose and uses the {time} column for IRI tem-
plates, which might not be unique and cannot be ‘collapsed’ (Section 6.2).

Listing 1.3. R2RML

. . :tl a rr:TriplesMap; rr:logicalTable :4UTO01;
Llstlng 1.2. S2SML rr:subjectMap[rr:template "http: ...o/{time}";
rr:class weather: RainfallObservation];
rr:predicateObjectMap [rr: predicate ssw:result;
rr:objectMap [rr:parentTriplesMap :t2]].
:t2 a rr:TriplesMap; rr:logicalTable :4UTO01;
rr:subjectMap [rr:template "http://..m/{time}";
rr:class ssw:MeasureData |;
rr:predicateObjectMap [rr: predicate ssw:floatValue ;
rr:objectMap [rr:column "Rainfall"]].

:b a weather: RainfallObservation
Tsswiresult _:c.

:c a ssw:MeasureData;
“ssw:floatValue

"4UTO01. Rainfall"~~<:LiteralMap >.

To define S2SML, we adopt the notation introduced by Chebotko et al. [7]
where I, B, L denote pairwise disjoint infinite sets of IRIs, blank nodes and lit-
erals while I,,qp, Limap, F' are IRI Map, Literal Map and Faux Node respectively.

6 SPARQL-to-SQL on IoT Streams and Databases

Table 2. Examples of elements in (s,p, 0) sets

Symbol Name Example

I IRI <http://knoesis.wright.edu/ssw/ont /weather.owl#degrees>
Imap IRI Map <http://knoesis.wright.edu/ssw/{sensors.sensorName} >

B Blank Node _ :bNodeld

L Literal "-111.88222"" " <xsd:float>

Lpmap Literal Map "readings.temperature"” " <s2s:literalMap >

F Faux Node <http://knoesis.wright.edu/ssw/obs/{readings.uuid}>

Examples can be found in Table 2. Combinations of these terms (e.g. Ijnqpl BF)
denote the union of their component sets (e.g. Iap UIUBUF).

Definition 1 (S2SML Mapping, m). Given a set of all possible S2SML map-
pings, M, an S2SML mapping, m € M, is a set of triple tuples, (s,p,0) €
(ImapI BF) X I X (IapI BLyyapLF) where s, p and o are subject, predicate and
object respectively.

As shown in Table 2, I,,,, are IRI templates that consist of the union of
IRI string parts (e.g. http://knoesis.wright.edu/ssw/) and reference bindings to
table columns (e.g. {tableName.colName}). Ly,q, are RDF literals whose value
contains reference bindings to table columns (e.g. "tableName.colName") with
a datatype of <s2s:literalMap>.

Definition 2 (Faux Node, F). F is defined as an IRI template that consists
of the union of a set of IRI string parts, I, and a set of placeholders, Usq,
referencing a table, so that F = I,, UU;q and |U;q| >=1,|I,,| >=1.

The example F' in Table 2 shows how a placeholder is defined in the format
of {tableName.uuid} with keyword ‘.uuid’ identifying this as a Faux node.

Listing 1.2 shows an S2SML mapping of an LSD weather station 4UTO01 in
Salt Lake City. Observation data is referenced from table columns with Literal
Maps, Lmap (e.g. "4UT01.Rainfall"). Observation metadata which serves to con-
nect nodes (e.g. _:c) is ‘collapsed’ through the use of blank nodes, B, which in
R2RML (Listing 1.3) is mapped to {time} columns. The R2RML specification
does support blank nodes but none of the other engines support their use yet.
Faux nodes in S2SML are used if there is a possibility that the identifier /interme-
diate node will be projected in queries (described in Section 4.3). Finally, device
metadata also contains constant Literals, L (e.g. the latitude of the sensor).

Mapping Closures IoT devices might also have multiple sensors, each produc-
ing a time-series with a corresponding S2SML mapping. In Fig. 1, there might
be multiple observations mappings each in different readings tables and a single
sensors mapping and sensors table all forming a mapping closure.

Definition 3 (Mapping Closure, M.). Given the set of all mappings on a
device, Mg = {mg|mq € M}, where M is a set of all possible S2SML mappings,
a mapping closure is the union of all elements in My, so M, = UmGJWd m.

SPARQL-to-SQL on IoT Streams and Databases 7

Implicit Join Conditions Observation data that is represented across mul-
tiple tables within a mapping closure might need to be joined if matched by a
SPARQL query. In R2RML, one or more join conditions (rr:joinCondition) may
be specified between triple maps of different logical tables.

In S2SML, these join conditions are automatically discovered as they are
implicit within mapping closures from IRI template matching involving two or
more tables. We define IRI template matching as follows.

Definition 4 (IRI Template Matching). Let I, be the set of IRI string parts
in an element of Lap- Imap, and Lyap, are matching if Uilelm i1 = Uz‘zelp2 19

and Yiy € I, ,Yig € I,, : pos(i1) = pos(iz) where pos(x) is a function that
returns the position of © within its Lyqp.

[geonames:{sensors.near}] wgs:lat
: R i

1
|
|
|
|
|
|
|
|
|
ssw:hasLocation wgs:long . !
wgs:alt 1
|
|
|
|
|
|
|
|
|
|
|
|

[ssw:LocatedNearReI] [wgs:Point]—)w

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
I A 3
! ssw:processLocation
|
|
|
|
L
I
|
|
|
|
|
|
|
|
|
|
|
|

ssw:hasLocatedNearRel

sen:system_{sensors.name} I

sen:system_{readings.sensor}l . Literal Map

T ssw:Procedure D BNode Class

weather:RainfallObservation] D RI

Fig. 1. Graph representation of an Implicit Join within a Mapping Closure

Given matching /4y, join conditions can be inferred. Fig. 1 shows a mapping
closure consisting of a sensor and observation mapping. An IRI map in each of the
mappings, sen:system{sensors.name} in I,q,, and sen:system{readings.sensor}
in Imap,, fulfil a template matching. A join condition is inferred between the
columns sensors.name and readings.sensor as a result.

Compatibility with R2RML S2SML is compatible with R2RML as they can
be mutually translated without losing expressiveness. Triple Maps are translated
to triples based on the elements in Table 2. Table 3 defines additional R2RML
predicates and the corresponding S2SML construct. rr:inverseFzpression, for
example, is encoded within a literal, L;,, with a datatype of <s2s:inverse>
and the rr:column denoted with double braces {{COL2}}. rr:sqlQuery is en-
coded by generating a context /named graph to group triples produced from that
TripleMap and the query is stored in a literal object with context as the subject

8 SPARQL-to-SQL on IoT Streams and Databases

Table 3. Other R2RML predicates and the corresponding S2SML construct

R2RML predicate S2SML example

rr:language "iteral"@en
rr:datatype "iteral" "~ <xsd:float>
rr:inverseEzpression "{COL1} = SUBSTRING({{COL2}}, 3)"""<s2s:inverse>
rr:class ?s a <ont:class>.
rr:sqlQuery <contextl> {<sen:sys {table.col}> ?p 0.}
<contextl> s2s:sqlQuery "query".

and <s2s:sqlQuery> as predicate. Faux nodes are translated as IRI templates.
A specification of S2SML is available on the sparql2sql wiki on Github.

4.3 Translation

Building a Mapping Closure Following from Definition 3 of a Mapping
Closure, M., a translation engine needs to perform, (J,, . M, ™, a union of all
mappings on a device, My. To support template matching with any in-memory
RDF store and SPARQL engine, as described in Definition 4, we replace all I;,qp
within each mapping m with I,,, the union of IRI string parts, and extract C, the
set of table column binding strings. C is then stored within map, Mgy, with I,
as key and C as value. For example, in Fig. 1, <sen:system > will replace both
<sen:system_ {sensors.name}> and <sen:system_ {readings.sensor}> while m o,
will store (<sen:system >, {sensors.name, readings.sensor}).

SPARQL Algebra and BGP Resolution A SPARQL query, spargl, can
be translated by the function trans(M,, sparql). The first step within trans is
algebra(spargl) —o, where o< is a SPARQL algebra expression. For example,
SRBench [17] query 6%, which looks for weather stations that have observed
low visibility within an hour of time by projecting stations that have either (by
union) low visibility, high rainfall or snowfall observations, has o as follows.

Project
|
Union
Filteryime Union

‘ /\
BGPSTLO?U

Filters 30,time Flilter<10,time

\ \
BGPrgin BGPyisivitity
Basic graph patterns (BGPs) are sets of triple patterns within the query.
trans walks through o from the leaf nodes executing function o (M., BGP) on

each BGP. As the M, is pure RDF and represents the graph as it is, it can

8 https://github.com/eugenesiow /sparql2sql /wiki/Q06

SPARQL-to-SQL on IoT Streams and Databases 9

be loaded into an RDF store, ideally, in-memory. A SPARQL select * query
containing the BGP within its where clause can then be executed on the M,
within the store. Literal datatypes are removed from the query and stored in
a map. In the above example, BG Pspnow and BG Pyisipitity return no results for
4UTO1 (Listing 1.1) but BGPy.q;r, returns a result from o. Each result from o is a
map of (vk,vv) € VX (IqpI BLyapLF) where V is a variable in a triple pattern.
The (vk,vv) maps are passed to the operator, ,, above in . Eventually, an
SQL union is performed at the project operator 7 for all |o| > 1. We have
implemented a pluggable BGP resolution interface to show various in-memory
RDF stores can be supported, with Jena and Sesame as reference examples.

Table 4. Operators ., and corresponding SQL Clauses

Xop SQL Clause Remarks

Project Select, From Restricts relation to subset using (vk, vv)
Extend p Select Renames an attribute in (vk, vv)

Filter ¢ Where, Having, From Restriction translated using (vk, vv)
Union U From Add unrestricted select of SQL; in FROM
Group vy Group By, From Aggregation translated using (vk, vv)
Slice ¢g Limit Add a LIMIT clause

Distinct ¢p Select Add a DISTINCT to SELECT clause

Left Join ba Left Join..On, Select If I add to (vk,vv), else LEFT JOIN

Syntax Translation trans continues its walk from BGP leaf nodes through o
to the root. At each node, x,y, a syntax translation syn(SQL;, (vk,vv);, Xop) —
(SQL,, (vk,vv),) is performed, producing an updated SQL query, SQL,. In the
example, at the Filtersso time Xop, SQL; which consists of a blank SQL where
clause is updated using (vk,vv); to translate restrictions on ?time and ?value
to those with bindings 4UT01.time<...T17:00:00 and 4UT01.Rainfall>30. The
SQL from clause is also updated with the table 4UT01. An unchanged (vk,vv),
and the updated SQL, are output from syn and passed upwards.

Table 4 shows a list of common operators o<, and their corresponding SQL
clauses and syn descriptions. If an operator uses (vk,vv) for mapping a V' and
retrieves a Imap, Lmap or F, it adds the table binding to the FROM clause. If
there are tables in the FROM without join conditions, a cartesian product (cross
join) of two tables is taken. Finally, if faux nodes, F, are encountered in 7, an
SQL update (UPDATE table SET col=RANDOM _UUID()) is run to generate
identifiers and vv in (vk, vv) is updated from {table.uuid} to {table.col}.

4.4 Streaming

The mapping and translation design can be used to translate SPARQL to Event
Processing Language (EPL) for streams. Listing 1.4 shows the additional syntax
in the SPARQL from clause specified in Extended Backus Naur Form.

10 SPARQL-to-SQL on IoT Streams and Databases

Listing 1.4. SPARQL FROM Clause Definition for sparql2stream
FromClause = FROM NAMED STREAM <StreamIRI> [RANGE Time TimeUnit WindowTypel
TimeUnit = ms | s | m | h | d
WindowType = TUMBLING | STEP

A TUMBLING window is a pull-based buffer that reevaluates at the specified
time interval while the STEP window is a push-based sliding window extending
for the specified time interval into the past. The syn function is modified to
support EPL as an SQL dialect. Streaming for the IoT is useful for 1) scenarios
with high sampling (e.g. accelerometers) or insertion rate (e.g. many sensors
to a device/hub) and 2) applications that perform real-time analytics requiring
push-based results from queries rather than results at pull intervals.

5 Experiment

To evaluate our approach against RDF stores, SPARQL-to-SQL engines and
streaming engines in an WoT context, we selected two unique IoT scenarios
using published datasets. Code and experiments can be found on Github®.

Distributed Meteorological System The first scenario uses Linked Sensor
Data with sensor metadata and observation data from about 20,000 weather sta-
tions across the United States. In particular, we used the period of the Nevada
Blizzard (100k triples) for storage and performance tests and the largest Hurri-
cane Ike period (300k triples) for storage tests. SRBench [17] is an accompanying
analytics benchmark for streaming SPARQL queries but can be applied, with
similar effect, to SPARQL queries constrained by time. Queries'® 1 to 10 were
used as they involve time-series sensor data while the remaining queries involved
integration or federation with DBpedia or Geonames which was not within the
scope of the experiment. Queries are available on Github!'!'. The experiment sim-
ulates a distributed setup as each station’s data is stored on an IoT device as
RDF or rows with S2SML or R2RML mappings. Queries are broadcast to all
stations, total query time was the maximum time as the slowest station was the
limiting factor. Due to resource constraints, we assumed broadcast and individ-
ual connection times to be similar over a gigabit switch, hence, distributed tests
for the 4700+ stations were run in series, recording individual times, averaging
over 3 runs and taking the maximum amongst stations for each query.

Smart Home Analytics Benchmark This scenario uses smart home IoT
data collected by Barker et al. [2] over 3 months in 2012. 4 queries'? requiring
space-time aggregations with a variety of data for descriptive and diagnostic an-
alytics were devised. 1) hourly aggregation of temperature, 2) daily aggregation

9 https://github.com/eugenesiow /sparql2sql
9 http:/ /www.w3.org/wiki/SRBench
' https://github.com/eugenesiow /sparql2sql/wiki
12 https://github.com/eugenesiow /ldanalytics-PiSmartHome /wiki/

SPARQL-to-SQL on IoT Streams and Databases 11

of temperature, 3) hourly and room-based aggregation of energy usage and 4) di-
agnosis of unattended devices through energy usage and motion, aggregating by
hour and room. Time taken for queries were averaged over 3 runs.

Environment and Stores The IoT devices used were Raspberry Pi 2 Model
B-+s’ with 1GB RAM, 900MHz quad-core ARM Cortex-A7 CPU and Class 10 SD
Cards, as they are widely available and relatively powerful. 512mb was assigned
to the Java Virtual Machine on Raspbian 4.1. Ethernet connections were used
between the querying client (i5 3.2GHz, 8GB RAM, hybrid drive) and the Pis’.

RDF stores compared were TDB (Open Source) and GraphDB (Commer-
cial). Virtuoso 7 was not supported on the 32-Bit Raspbian and Virtuoso 6
did not support SPARQL 1.1 time functions like hours. H2'? (disk mode) was
used as the relational store for all SPARQL-to-SQL tests. ontop and morph
were tested within the limits of query compatibility and a quantitative evalua-
tion of SQL queries and translation time was done. Native SPARQL streaming
engine CQELS was compared for push-based performance. As CQELS already
benchmarked against C-SPARQL and push results for real-time analytics helped
differentiate streams, we did not compare against C-SPARQL.

6 Results & Discussion

6.1 Storage Efficiency

Table 5 shows the store sizes of different datasets for the H2, TDB and GraphDB
setups. As time-series sensor data benefits from succinct storage as rows, H2
outperformed the RDF stores, which also suffered from greater overheads for
multiple stores and indexing [16], from about one to three orders of magnitude.

Table 5. Store Size By Dataset (in MB)

Dataset #Store(s) H2 TDB GraphDB Ratio
Nevada Blizzard 4701 90 6162 121694 1:68:1352
Hurricane Ike 12381 761 85274 345004 1:112:453
Smart Home 1 135 2103 1221 1:15:9

6.2 Query Performance

Fig. 2 shows the performance of SRBench queries on the various stores with
the Nevada Blizzard dataset. We see that our sparql2sql approach performs bet-
ter consistently on all queries with stable average execution times. We argue
that this was the result of SQL queries produced not having joins as each sta-
tion was a single time-series (wide) and intermediate nodes not being projected

13 http://www.h2database.com/

12 SPARQL-to-SQL on IoT Streams and Databases

(could be ‘collapsed’). GraphDB generally performed better than the TDB store
especially on query 9 due to TDB doing a time consuming join operation in
the low-resource environment between two subtrees, WindSpeedObservation and
WindDirectionObservation. If queries were executed to retrieve subgraphs indi-
vidually with TDB, each query cost a 100 times less. Query 4 was similar but
with TemperatureObservation and WindSpeedObservation subgraphs instead.

10 1747 2097 47 1328

Max Time Taken (ms) Thousands

o~
-
;.o!.» s

>

i ‘ il bk
5 550
5 6

2 3 4 7 8 9 10
Query sparql2sq] B TDB ®& GraphDB & Ontop M Morph

Fig. 2. Max Time Taken for Distributed SRBench Queries

Both ontop (v1.6.1) and morph (v3.5.16), at the time of writing, will only
support the aggregation operators required for queries 3 to 9 sans query 6 in
future versions. morph was also unable to translate queries 6 and 10 as yet
while ontop’s SQL query 10 did not return from the H2 store on some stations
(e.g. BLSC2). ontop performs better than the RDF stores on queries 2 and 6.
Although queries 1 and 2 are similar in purpose, query 2 has an OPTIONAL on
the unit of measure term, hence as shown in Table 6, ontop generates different
structured queries, explaining the discrepancy in time taken.

We did an additional comparison between SPARQL-to-SQL engines in terms
of the structure of queries generated and translation time. Table 6 shows the
average translation time, ¢4, Of the 3 engines on the client. The plugin BGP
resolution engine for sparql2sql (s2s) used was Jena. Both ontop and morph have
additional inference/reasoning features and ontop makes an extra round trip to
the Pi to obtain database metadata explaining the longer translation times.

In R2RML, as shown in Listing 1.3, in the absence of row identifiers in time-
series data, time has to be used in IRI templates for intermediate observation
metadata nodes. As timestamps are not unique in LSD (observed from data),
they are not suited as a primary key, hence cannot be used to chase equality
generating dependencies in the semantic query optimisation ontop does [14]. The
resulting queries from ontop and morph both have redundant inner joins on the
time column (used to model intermediate IRIs in R2RML).

SPARQL-to-SQL on IoT Streams and Databases 13

Table 6. SPARQL-to-SQL Translation Time and Query Structure

Q tirans (mS) Joins Join Type & Structure
s2s ontop morph s2s ontop morph ontop (qview) morph

1 16 702 146 0 6 4 implicit 4 inner

2 17 703 144 0 6 4 5 nested, 1 left outer 4 inner

6 19 703 - 0 5 - 5 implicit -

10 32 846 - 0o 6 - UNION(2x3 implicit) -

In the smarthome scenario, sparql2sql query performance on aggregation
queries as shown in Fig. 3 is still ahead of the RDF stores. GraphDB also has
all-round better performance than TDB. All the queries performed SPARQL 1.1
space-time aggregations, excluding the other SPARQL-to-SQL engines.

Through the experiments, we observe that although other SPARQL-to-SQL
engines have reported significant performance improvements over RDF stores
on various benchmarks and deployments, there is still room for optimisation for
IoT devices and scenarios and perform below RDF stores on Pis’ or do not yet
support queries relevant to IoT scenarios such as aggregations. sparql2sql with
S2SML, utilises the strengths of SPARQL-to-SQL on IoT scenarios and time-
series data and performed better than both RDF stores and SPARQL-to-SQL
engines. Table 8 summarises the average query times for all the tests.

6.3 Push-based Streaming Query Performance

Table 8 shows the average time taken to evaluate a query from the insertion
of an event to the return of a push-based result from sparql2stream, tss, and
CQELS, tcgrrs with 1s delays in between. This was averaged over 100 results.
For sparql2stream, the one-off translation time at the start (ranging from 16ms
to 32ms) was added to the sum during the average calculation. Query 6 of
SRBench was omitted due to EPL and CQELS not supporting the UNION
operator. The sparql2stream engine (using Esper to execute EPL) showed over
two orders of magnitude performance improvements over CQELS. Queries 4,
5 and 9 that involved joining subgraphs (e.g. WindSpeed and WindDirection
in 9) and aggregations showed larger differences. It was noted, that although
CQELS returned valid results for these queries, they contained an increasing
number of duplicates (perhaps from issues in the adaptive implementation) which
caused a significant slowdown over time and when averaged over 100 pushes. The
experiments are available on Github'#,15.

This ability to answer queries in sub-millisecond average times in a push-
based fashion makes sparql2stream a viable option for real-time analytics on
IoT devices like medical devices that require reacting instantaneously.

To verify that sparql2stream was able to answer SRBench queries close to the
rate they are sent, even at high velocity, we reduced the delay between insertions

1 https://github.com/eugenesiow /cqels
15 https://github.com/eugenesiow /sparql2stream

14 SPARQL-to-SQL on IoT Streams and Databases

'S
=)
s}

w
=
S

b
=}
S

—
=)
s

Time Taken (ms) Thousands

|

| N—

1 2 3 4
Query spargl2sq] B TDB ® GraphDB

Fig. 3. Average Time Taken for Smarthome Analytical Queries

Table 7. Average Query Run Times (in ms)

SRpench ts2s trpB tGDB tot tmorph Ratio || ts2r tcqrrs Ratio
1 365 1679 1223 4589 1747702 1:5:3:13:4k || 0.47 138 1:294
2 415 1651 1627 945 2097159 1:4:4:2:5k || 0.46 119 1:261
3 375 1258 2251 - - 1:3:6 0.66 202 1:306
4 533 47084 3004 - - 1:88:6 0.67 186k 1:277k
5 415 1119 1404 - - 1:3:3 0.63 1476k 1:3243k
6 457 2751 2181 987 - 1:6:5:2 - - -

7 455 6563 1082 - - 1:14:2 0.66 2885 1:5245
8 320 1785 1162 - - 1:6:4 0.67 282 1:426
9 436 1328197 1175 - - 1:3k:3 0.67 188k 1:280k
10 354 2514 685 - - 1:7:2 0.73 72 1:98
Smarthome ts2s trpe tepp Ratio || ts2r tcgers Ratio

1 466 13709 3132 1:29:7 || 0.64 125 1:196

2 2457 21898 6914 1:9:3 || 0.77 129 1:167

3 4685 322357 59803 1:69:13 |/ 0.81 - -

4 147649 527184 147275 1:4:1 || 3.78 - -

from 1000ms to 1ms and 0.1ms. Table 8 shows a summary of the average latency
(the time from insertion to when query results to be returned) of each query (in
ms). We observe that the average latency is slightly higher than the inverse of the
rate. The underlying stream engine, Esper, maintains context partition states
consisting of aggregation values, partial pattern matches and data windows. At
high rates, the engine introduces blocking to lock and protect context partition
states. However, Figure 4 shows the effect of this blocking is minimal as the
percentage of high latency events is less than 0.3% (note that x-axis is 99% to
100%) across various rates. This comparison which groups messages by latency
ranges is also used in the Esper benchmark and by Calbimonte et al. [6].

We also tested the size of data that can fit in-memory for sparql2stream with
SRBench Query 8, that uses a long TUMBLING window. The engine ran out of
memory after 33.5 million insertions. Given a ratio of 1 row to 75 triples within

SPARQL-to-SQL on IoT Streams and Databases 15

Table 8. Average Latency (in ms) at Different Rates

R Qx 1 2 3 4 5 7 8 9 10

1 1.300 1.374 1.279 1.303 1.2561 1.268 1.267 1.295 1.255
10 0.155 0.159 0.143 0.161 0.1291 0.137 0.141 0.155 0.129

R = Rate(rows/ms), Q# = Query number

1000 W
Latency
100 "l
@ 0-1
g10 .I
Iy W15
25
o m5-10
£ I
2 W 10-100
g1
99% Percentage events at latency band 100%

Fig. 4. Percentage Latency at Various Rates

the SSN mapping (each observation type with 10+ triples), by projection, an
RDF dataset size of 2.5 billion triples was ‘fit’ in a IoT devices’ memory.

Queries 1 & 2 of the smart home scenario also corroborated the 2 orders
of magnitude performance advantage of sparql2stream over CQELS. Queries 3
and 4 were not run on CQELS due to issues with the FILTER operator in the
version tested. Query 4 which involved joins on motion and meter streams and
an aggregation saw the average latency of sparql2stream increase, though still
stay under 4ms. The latency for this query was measured from the insertion time
of the last event involved (that trips the push) to that of the push result.

7 Conclusion

A Web of Things based on open standards and the innovations introduced in
the Semantic Web and Linked Data can encourage greater interoperability and
bridge product silos. This paper shows how time-series Internet of Things data
that is flat and wide, can be stored efficiently as rows on devices with limited
resources and by optimising SPARQL-to-SQL translation and ‘collapsing’ inter-
mediate nodes while retrieving multiple fields from the same wide row efficiently,
performance on smart home monitoring and a distributed meteorological system
show storage and query performance improvements that range from 2 times to 3
orders of magnitude. The independence from primary keys and database meta-
data also resulted in less joins in resultant SQL queries and faster query trans-
lation times respectively. Future work will expand experimentation to consider
additional datasets, data sizes, queries and include a greater variety of stores
and stream processing use cases for time-series data e.g. column stores, stream
analytics and compression/approximation.

16

SPARQL-to-SQL on IoT Streams and Databases

The limitations of this approach lie in the assumption that the bulk of IoT

time-series data is flat and read-only. Queries issued also experience larger per-
formance improvements when accessing multiple fields within the same row by
exploiting the wideness of time-series data. Current state-of-the-art Ontology-
Based Data Access (OBDA) systems which do query translation support general
use cases (web/enterprise relational database mapping) and support reasoning
which our approach does not seek to address at the moment.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying RDF
streams with C-SPARQL. ACM SIGMOD Record 39(1), 20 (2010)

Barker, S., Mishra, A., Irwin, D., Cecchet, E.: Smart*: An open data set and tools
for enabling research in sustainable homes. In: Proceedings of the Workshop on
Data Mining Applications in Sustainability (2012)

Barnaghi, P., Wang, W.: Semantics for the Internet of Things: early progress and
back to the future. International Journal on Semantic Web and Information Sys-
tems 8(1), 1-21 (2012)

Bishop, B., Kiryakov, A., Ognyanoff, D.: OWLIM: A family of scalable semantic
repositories. Semantic Web 2(1), 33—-42 (2011)

Buil-Aranda, C., Hogan, A.: SPARQL Web-Querying Infrastructure: Ready for
Action? In: Proceedings of the International Semantic Web Conference (2013)
Calbimonte, J.P., Jeung, H., Corcho, O., Aberer, K.: Enabling Query Technolo-
gies for the Semantic Sensor Web. International Journal on Semantic Web and
Information Systems 8(1), 43-63 (2012)

Chebotko, A., Lu, S., Fotouhi, F.: Semantics preserving SPARQL-to-SQL transla-
tion. Data and Knowledge Engineering 68(10), 973-1000 (2009)

Erling, O.: Implementing a sparql compliant rdf triple store using a sql-ordbms.
Tech. rep., OpenLink Software (2001)

International Telecommunication Union: Overview of the Internet of things. Tech.
rep. (2012)

Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and
adaptive approach for unified processing of linked streams and linked data. Pro-
ceedings of the International Semantic Web Conference (2011)

Neumann, T., Weikum, G.: x-RDF-3X. In: Proceedings of the VLDB Endowment.
vol. 3, pp. 256-263 (2010)

Patni, H., Henson, C., Sheth, A.: Linked Sensor Data. In: Proceedings of the In-
ternational Symposium on Collaborative Technologies and Systems (2010)
Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and Experiences of R2ZRML-
based SPARQL to SQL Query Translation using Morph. In: Proceedings of the
23rd International Conference on World Wide Web. pp. 479-489 (2014)
Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings.
Web Semantics: Science, Services and Agents on the WWW 33, 141-169 (2014)
Stonebraker, M., Abadi, D., Batkin, A.: C-store: a column-oriented DBMS. Pro-
ceedings of VLDB pp. 553 — 564 (2005)

Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web
data management. In: Proceedings of the VLDB Endowment (2008)

Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.P.: SRBench: A streaming RD-
F/SPARQL benchmark. In: Proceedings of the International Semantic Web Con-
ference. Lecture Notes in Computer Science (2012)

