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Abstract. In several subject domains, classes themselves may be subject to
categorization, resulting in classes of classes (or “metaclasses”). When repre-
senting these domains, one needs to capture not only entities of different clas-
sification levels, but also their (intricate) relations. We observe that this is
challenging in current Semantic Web languages, as there is little support to
guide the modeler in producing correct multi-level ontologies, especially
because of the nuances in the constraints that apply to entities of different
classification levels and their relations. In order to address these representation
challenges, we propose a vocabulary that can be used as a basis for multi-level
ontologies in OWL along with a number of integrity constraints to prevent the
construction of inconsistent models. In this process we employ an axiomatic
theory called MLT (a Multi-Level Modeling Theory).
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1 Introduction

The Semantic Web, or Web of Data, provides a common framework that allows data to
be shared across application, enterprise, and community boundaries [1]. This is
achieved by linking and publishing structured data using RDF languages, which pro-
vide a basis for producing reusable vocabularies for various domains of interest [2].

A Semantic Web vocabulary is built using the basic notion of class, which is
present in both RDF Schema (RDFS) [3] and in the Web Ontology Language
(OWL) [4]. A class (or type) is a ubiquitous notion in modern conceptual modeling
approaches and is used to establish invariant features of the entities in a domain. Often,
subject domains are conceptualized with entities in two levels: a level of classes, and a
level of individuals which instantiate these classes. In many subject domains, however,
classes themselves may also be subject to categorization, resulting in classes of classes
(or metaclasses). For instance, consider the domain of biological taxonomies [5]. In this
domain, a given organism is classified into taxa (such as, e.g., Animal, Mammal,
Carnivoran, Lion), each of which is classified by a biological taxonomic rank
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(e.g., Kingdom, Class, Order, Species). Thus, to represent the knowledge underlying
this domain, one needs to represent entities at different (but nonetheless related)
classification levels. For example, Cecil (the lion killed in the Hwange National Park in
Zimbabwe in 2015) is an instance of Lion, which is an instance of Species. Species, in
its turn, is an instance of Taxonomic Rank. Other examples of multiple classification
levels come from domains such as software development [6] and product types [7].

The need to support the representation of knowledge domains dealing with multiple
classification levels has given rise to an area of investigation called multi-level
modeling [7, 8]. A number of research initiatives have also been conducted to support
multi-level modeling in the Semantic Web (e.g., [9–12]). These approaches exploit the
fact that a class is itself an RDF resource and may thus be the subject or object of
triples. OWL 2 explicitly adopts this strategy under the term “metamodeling”, enabling
the representation of facts that are stated about classes [13].

Despite these developments, the current support for the representation of domains
dealing with multiple levels of classification in the web still lacks a number of
important features. In some cases, there are no criteria or principles for the organization
of vocabularies into levels, leading to problematic classification and taxonomic state-
ments (see, e.g. [14]). Further, there has been no attention to the representation of the
relations between types at different levels. For example, in the biological domain, it is
key to represent that all instances of Species are subtypes of Organism (even when
particular species are not represented explicitly), and that all instances of Organism
belong to one and only one Kingdom.

In this paper, we address the challenges in the representation of domains with
multiple levels of classification in the Semantic Web by proposing an OWL vocabulary
that can be used as a basis for multi-level ontologies. By defining a taxonomy of
reusable relations between types, the vocabulary enables the expression of domain rules
that would otherwise not be captured. The vocabulary is based on a reference axiomatic
theory called MLT [15]. The axioms and theorems of MLT are used to derive integrity
constraints for multi-level vocabularies, offering guidance to prevent the construction
of inconsistent vocabularies. Further, MLT rules are used to infer knowledge about the
relations between types that is not explicitly stated. We focus on the support for domain
metaclasses as opposed to language metaclasses, i.e., we focus on ontological instan-
tiation instead of linguistic instantiation [16].

This paper is further structured as follows: Section 2 presents basic requirements
for the representation of knowledge in domains with multiple classification levels;
Sect. 3 reviews the current support for multi-level modeling in OWL as well as in
related work in the literature; Sect. 4 presents briefly the MLT multi-level theory;
Sect. 5 presents our approach to represent multi-level models in OWL reflecting the
rules of MLT; and Sect. 5.3 presents concluding remarks.

2 Requirements for a Multi-level Approach

An essential requirement for a multi-level modeling approach is the ability to represent
entities of multiple (related) classification levels, capturing chains of instantiation
between the involved entities (requirement R1). To comply with this requirement, the
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approach must admit entities that are, simultaneously, type (class) and instance (object)
[17]. This means that a multi-level approach differs from the traditional two-level
scheme, in which classification (instantiation) relations can only be established between
classes and individuals. As a consequence, a multi-level modeling approach should
define principles for the organization of entities into levels (R2). These principles
should guide the modeler on the adequate use of classification (instantiation) relations.
An example of this sort of principle, which is adopted in some prominent multi-level
modeling approaches, is the so-called strict metamodeling principle [17]. It assumes
that each element of a level must be an instance of an element of the level above. The
lack of principles to guide organization of entities into levels may lead to the con-
struction of unsound multi-level models. For example, in [14] we assessed Wikidata
and found over 22,000 violations of the strict metamodeling principle. The identified
problems seem to arise from inadequate use of instantiation and subclassing and could
have been prevented with guidance from the editing/modeling environment.

Another important characteristic of domains with multiple levels of classification is
that there are rules that apply to the instantiation of types of different levels. This kind
of rule is present in an early and important approach for multi-level modeling, named
the powertype pattern [18, 19], which establishes a relationship between two types
such that the instances of a type (the so-called “powertype” or “higher-order” type) are
specializations of a lower-level type (the so-called “base type”). For example, all
instances of Dog Breed (e.g. Collie and Beagle) specialize the base type Dog. In order
to represent Dog Breed, it is thus key to establish its relation with the Dog type (we call
this sort of relation a structural relation, as it governs the instantiation of types at
different levels). Further, one may need to represent whether an instance of Dog may
instantiate: (i) only one, or (ii) more than one Dog Breed. In biological taxonomy,
another rule concerning instantiation of types at different levels is that the instances of
Biological Taxonomic Rank obey a sort of subordination chain such that every instance
of Phylum specializes one instance of Kingdom, every instance of Class specializes one
instance of Phylum, and so on. Thus, an expressive multi-level approach should be able
to capture rules for the instantiation of types at different levels (R3).

Finally, in various domains, there are relations which may occur between entities of
different classification levels. For example, consider the following domain rules:
(i) each Car has an owner (a Person), (ii) each Car is classified as instance of a Car
Model, and (iii) each Car Model is designed by a Person. In this domain, instances of
Person (individuals) must be related simultaneously with instances of Car Model
(which are classes) and also with instances of Car, i.e., instances of instances of Car
Model. Thus, a multi-level modeling approach should allow the representation of
domain relations between entities in different classification levels (R4).

3 Related Work

In this section, we review existing approaches to support the representation of multiple
levels of instantiation, with a focus on multi-level modeling in RDF languages.
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3.1 RDFS(FA)

In an early effort to organize the metamodeling architecture for RDF Schema (RDFS)
1.0 [20], Pan and Horrocks proposed RDFS(FA) [9]. They observed that “RDFS uses a
single primitive rdfs:Class to implicitly represent possibly infinite layers of classes”
(as it is an instance of itself) and that this creates barriers for understanding. They show
examples on how this lack of a principle of organization for levels creates a so-called
“layer mistake”. Inspired by the fixed UML metamodeling architecture [21], they
proposed the use of four layers: Metalanguage (M), Language (L), Ontology (O) and
Instance (I). The M Layer is responsible for defining the language, where modelling
primitives of this topmost layer have no types. The L Layer defines a language for
specifying vocabularies and each entity in this layer is an instance of an entity in the M
Layer. Vocabularies are defined in the O Layer (“Person” and “Animal” are examples
of classes in this layer) and each element in this layer is an instance of an element in the
L Layer. Lastly, the I Layer is populated with concrete individuals, which are instances
of the vocabulary defined in O Layer.

Figure 1 shows the result of applying this architecture to RDFS. RDFS classes are
replicated in the M and L Layers with the respective prefix (M and L). In O layer,
Animal and Person are represented as instances of rdfsfa:LClass (instead of rdfs:
Class); and John and Mary in the Instance Layer, as an instance of Person.

This architecture organizes the language engineering effort, but it does not aim to
address the representation of domains with multiple levels of classification. In fact, it is
based on the two-level scheme for the representation of domains in the O and I layers,
with classes at the O layer, and individuals at the I layer, related through rdfsfa:otype
(which represents what is known as ontological instantiation [16]). Metaclasses are
only used in the domain-independent L layer; classes at the O layer are related to
classes at the L layer through rdfsfa:ltype (which represents what is known as linguistic
instantiation [16]). In order to represent a domain type such as Species one would be
forced to include it in the L layer, specializing rdfsfa:LClass, which would be inade-
quate according to [9], as language and ontology issues would be confused. In this
case, one would have to instantiate Species using rdfsfa:ltype, clearly misusing

 

Fig. 1. Example of directed labeled graph of RDFS(FA) (from [9])
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linguistic instantiation [16]. In conclusion, RDFS(FA) satisfies requirements R1 and R2
only for linguistic instantiation, but not for ontological instantiation.

3.2 OWL 2

OWL 2 [4] explicitly introduced support for metamodeling, enabling the representation
of classes of classes. For example, in Fig. 2, two subclasses of Eagle, namely Golden
Eagle and Steppe Eagle are defined as instances of Species, which means that they are
member of the set of all species. In Fig. 2 (as well as in the remainder of the paper) we
use a notation that is largely inspired in UML. We use UML specialization to represent
the rdfs:subClassOf properties, and dashed arrows to represent statements, with labels
to denote the names of the predicates that apply. For instance, a dashed arrow labeled
rdf:type between Golden Eagle and Species represents that the former is an instance of
the latter. Finally, we use the instance specification notation (i.e., underlining an ele-
ment’s name) to represent an individual (e.g. Harry).

OWL’s multi-level modeling support is based on the notion of contextual semantics
[10], often referred to as “punning”, which means that a class is seen as an individual
when it is an instance of another class, and that its interpretation as a class and as an
individual are completely independent of each other. This “independent” interpretation
means that a constraint stated to a class will not be considered when it is seen as an
individual, which leads to non-intuitive interpretations [11]. For instance, consider the
following statements: (i) Harry is an instance of Golden Eagle, and; (ii) Golden Eagle
is the same as Aquila chrysaetos. Statement (i) treats Golden Eagle as a class, while
statement (ii) treats Golden Eagle as an individual. These two aspects of Golden Eagle
are never considered at the same time for reasoning. Thus, in this approach, it is
impossible to infer that Harry is an instance of Aquila chrysaetos, which violates our
intuition with respect to the multi-level model. We can say that while OWL 2 seems to
satisfy R1 (admitting classes that are also instances), it does so only partially, given the
notion of contextual semantics employed. The same can be said for the representation
of relations between entities of different levels (partially satisfying R4).

OWL offers no principle of organization into levels (failing to satisfy R2). Further,
punning also prevents us from correctly expressing the relation between a higher-order
class and a base class in the powertype pattern, which inevitable involves considering
the specializations of the base class as types and instances simultaneously (failing thus

Fig. 2. OWL representation for biological taxonomic domain
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to satisfy R3). Finally, considering the open world assumption, it is also impossible to
formally identify in this fragment above that Harry is an individual, as there could be
unstated rdf:type declarations involving Harry as a class. Further, given the same
assumption, it would be impossible to identify that Species (in isolation) is a metaclass;
in other words, we cannot express when modeling Species (and omitting its instances)
that all its instances are classes (in particular subclasses of Organism).

3.3 OWL FA

Later, Pan and Horrocks also proposed OWL FA [11], a metamodeling extension of
OWL 1 DL, with an architecture based on RDFS(FA). They argue that OWL 1 Full
supports some metamodeling by allowing users to use the built-in vocabulary without
restrictions, but that leads to undecidability (as Motik pointed out [10]). They then
propose a decidable extension of OWL 1 DL that can reuse existing reasoners.

While RDFS(FA) uses prefixes (M, L, O and I) to indicate the layer in which a class
or axiom belongs, OWL FA intuitively introduces a layer number in its constructors
and axioms, through annotations. The semantics of OWL FA [22, 23] takes into
account elements that share the same URIs and interpret them dependently (in contrast
to OWL 2). For instance, if Golden Eagle and Aquila chrysaetos are stated as the same
and Harry is an instance of Golden Eagle, OWL FA assumes that Harry must be an
instance of Aquila chrysaetos. However, it does not allow property assertions between
layers except for instantiation. For example, subclassing and domain relations must be
between classes at the same layer (failing thus to satisfy R4).

While RDFS(FA) allows instantiations only from Instance Layer to Ontology
Layer, OWL FA allows the representation of multiple levels of instantiation. Thus, we
understand here that identifying layers by numbers addresses the limitation of RDFS
(FA) (see Sect. 3.1) thus satisfying R1 fully. Moreover, as advantages when compared
to the current multi-level modeling support of OWL 2 (see Sect. 3.2), OWL FA:
(i) interprets dependently elements that share the same URI, and; (ii) it introduces
restrictions for instantiation and subclassing, providing some criteria for the organi-
zation into levels (R2). Finally, OWL FA offers no special support for the represen-
tation of constraints for the instantiation of types at different levels (not satisfying R3).

3.4 PURO

Svatek et al. [12] proposed the PURO approach which includes an OWL vocabulary
that can be used as a basis for multi-level domain vocabularies. In PURO, each entity
of a domain vocabulary can be annotated with a PURO term in order to clarify the
entity’s ontological status. The term B-object is used to refer to concrete individuals in
the world (such as Harry). In contrast, the term B-type is used to refer to classes (such
as Eagle). A B-type is analogous to an OWL class, however, B-types are organized into
strata: instances of 1st order B-types are B-objects, instances of nth-order B-types are
(n − 1)th-order B-types (for n > 1). The OWL vocabulary supporting the PURO
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approach only deals with B-objects and first-, second- and third-order B-types.
B-relationship is analogous to an object property assertion and there are variations:
(i) B-instantiation is an assertion to indicate that an entity instantiates a B-type;
(ii) B-axiom express a relationship between the extensions of two B-types (e.g., sub-
classing); and (iii) B-fact express information about an entity, e.g., who discovered
certain species. Finally, B-relation is analogous to OWL Object Property.

Similarly to OWL 2 and OWL FA, PURO has the required expressivity for rep-
resenting multiple levels of instantiation (R1) through the notions of B-object and the
B-types. Moreover, PURO defines rules for the organization of entities along levels
(R2). Finally, PURO allows modelers to express domain relations between entities of
different levels (R4); an example is provided in [12] in which a musician is considered
an expert in a type of instrument (e.g., the musician Yo-Yo Ma is an expert in Violin).
However, similarly to OWL 2 and OWL FA, PURO offers no special support for the
representation of constraints for the instantiation of types at different levels (not sat-
isfying R3).

3.5 Intermediate Conclusions

Table 1 summarizes the current support provided by each of the efforts discussed here
according to the requirements defined in Sect. 2. We classified this support in three
categories: fully covered (+), partially covered (±) and not covered (−). Despite pro-
viding support and guidance for representing multiple levels of classification, RDFS
(FA) focuses on linguistic instantiation instead of ontological instantiation, hence the
partial support for R1 and R2. OWL 2 fails in the representation of relations and
constraints crossing levels, due to its contextual semantics, and hence offers partial
support for R1 and R4. OWL FA and PURO offer full support for R1 and R2 through
annotations, and PURO also supports domain relations crossing levels (R4). Despite
the efforts in all these approaches, none of them support the representation of con-
straints involving instantiation relations across levels (thus, not satisfying R3).

Table 1. Support for multi-level modeling in RDFS languages

Requirement RDFS
(FA)

OWL
2

OWL
FA

PURO

R1 – represents entities of multiple levels of
classification

± ± + +

R2 – offers guidance for the organization of entities
into levels

± − + +

R3 – represents rules for the instantiation of types
at different levels

− − − −

R4 – supports domain relations between entities of
different levels

− ± − +
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4 MLT: A Theory for Multi-level Modeling

Motivated by the lack of theoretical foundations for multi-level modeling, some of us
have proposed a formal axiomatic theory called MLT [15] founded on the notion of
(ontological) instantiation. MLT has been used successfully to analyze and improve the
UML support for modeling the powertype pattern [24], to uncover problems in
multi-level taxonomies on the web [14] and to provide conceptual foundations for
dealing with types at different levels of classification both in core [25] and in foun-
dational ontologies [26].

The theory is defined using first-order logic, quantifying over all possible entities
(individuals and types). The instance of relation is represented in this formal theory by
a binary predicate iof(e,t) that holds if an entity e is instance of an entity t (denoting a
type). In order to accommodate the varieties of types in the multi-level setting, the
notion of type order is used. Types having individuals as instances are first-order types,
types whose instances are first-order types are second-order types and so on.

The logic constant “Individual” is used to define the conditions for entities to be
considered individuals: an entity is an instance of “Individual” iff it does not have any
possible instance (Axiom A1 in Table 2). The constant “First-Order Type” (or shortly
“1stOT”) characterizes the type that applies to all entities whose instances are
instances of “Individual” (A2 in Table 2). Analogously, each entity whose possible
extension contains exclusively instances of “1stOT” is an instance of “Second-Order
Type” (or shortly “2ndOT”) (A3 in Table 2). It follows from axioms A1, A2 and A3
that “Individual” is instance of “1stOT” which, in turn, is instance of “2ndOT”. We call
“Individual”, “1stOT” and “2ndOT” the basic types of MLT. According to MLT, every
possible entity must be instance of exactly one of its basic types (except the topmost
type) (A4 in Table 2). We consider here only first- and second-order types. However,
this scheme can be extended to consider as many orders as necessary [15].

Table 2. MLT axioms
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Some structural relations to support conceptual modeling are defined in MLT,
starting with the ordinary specialization between types. A type t specializes another
type t’ iff all instances of t are also instances of t’ (see definition D1 in Table 2). Since
the reflexivity of the specialization relation may be undesired in some contexts, we
define in MLT the proper specialization relation as follows: t proper specializes t’ iff t
specializes t’ and t is different from t’ (see D2 in Table 2). Additionally, MLT defines a
subordination relation. Subordination between two higher-order types implies spe-
cializations between their instances, i.e., t is subordinate to t’ iff every instance of t
proper specializes an instance of t’ (see D3 in Table 2). The definitions presented thus
far guarantee that both specializations, proper specializations and subordinations may
hold exclusively between types of the same order. We term these intra-level relations.

MLT also defines relations that occur between types of adjacent orders, the
so-called cross-level structural relations. These relations are inspired on different
notions of powertype in the literature. Based on the notion of powertype proposed by
Cardelli [19] (which is founded on the notion of powerset), MLT defines a powertype
relation between a higher-order type and a base type at a lower order: a type t is
powertype of a base type t’ iff all instances of t specialize t’ and all possible special-
izations of t’ are instances of t (see D4). Note that it follows from the axioms and
definitions presented so far that “1stOT” is powertype of “Individual”, i.e. all possible
instances of “1stOT” specialize “Individual” and all possible specializations of “Indi-
vidual” are instances of “1stOT”. Analogously, “2ndOT” is powertype of “1stOT”, and
so on. Thus, every instance of a basic higher-order type (“1stOT” and “2ndOT”) must
specialize the basic type at the immediately lower level (respectively, “Individual” and
“1stOT”). In other words, the notion of orders or levels in MLT can be seen as a result
of the iterated application of Cardelli’s notion of powertype to the basic types.

Odell [18], in turn, defined powertype simply as a type whose instances are sub-
types of another type (the base type), excluding the base type from the set of instances
of the powertype. Inspired on Odell’s definition for powertypes, MLT defines the
characterization relation between types at adjacent levels: a type t characterizes a type
t’ iff all instances of t are proper specializations of t’ (definition D5). The charac-
terization relation occurs between a higher-order type t and a base type t’ when the
instances of t specialize t’ according to a specific classification criteria. Thus, differ-
ently from the cases involving (Cardelli’s) is powertype of relation, there may be
specializations of the base type t’ that are not instances of t. For example, we may
define a type named “Organism by Habitat” (with instances “Terrestrial Organism” and
“Aquatic Organism”) that characterizes “Organism”, but is not a powertype of
“Organism” since there are specializations of “Organism” that are not instances of
“Organism by Habitat” (e.g. “Plant” and “Golden Eagle”).

MLT defines some refinements of the cross-level relation of characterization, which
are useful to capture further constraints in multi-level models. We consider that a type t
completely characterizes t’ iff t characterizes t’ and every instance of t’ is instance of,
at least, an instance of t (D6). Moreover, iff t characterizes t’ and every instance of t’ is
instance of, at most, one instance of t it is said that t disjointly characterizes t’ (D7).
Finally, a common use for the notion of powertype in the literature considers a
higher-order type that, simultaneously, completely and disjointly characterizes a
lower-order type. To capture this notion MLT defines the partitions relation. Thus,
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t partitions t’ iff each instance of the base type t’ is an instance of exactly one instance
of t (D8). For example, considering the biological taxonomy for living beings we have
that “Species” (and all other biological ranks) partitions “Organism”.

A complete formalization of MLT in first-order logic can be found in [15], which
presents proofs for all MLT theorems. Further, a formal specification in Alloy is
provided in [27] and was used to verify the theorems and to simulate admissible models
of the theory using the Alloy analyzer.

5 Applying MLT for Multi-level Modeling Support in OWL

Aiming to improve the OWL support for multi-level modeling, we propose (i) a
vocabulary based on distinctions put forth by MLT, and (ii) a number of derivation and
integrity rules reflecting axioms and theorems of MLT. The proposed vocabulary aims
at providing modelers with an expressive set of constructs to support the production of
multi-level ontologies in OWL. The integrity rules, in their turn, are used to verify if
ontologies built using the proposed vocabulary are well-formed according to MLT
rules. Finally, the derivation rules make use of MLT rules to infer information not
represented explicitly by the modeler.

5.1 OWL Vocabulary Based on MLT Distinctions

The proposed vocabulary encompasses the representation of the basic types of MLT
and the relations defined in the theory. The basic types of MLT are represented as
instances (rdf:type) of owl:Class. The class representing the MLT Individual basic type
is named mlt:TokenIndividual1, the class representing the First-Order Type is named
mlt:1stOrderClass, and the classes mlt:2ndOrderClass and mlt:3rdOrderClass repre-
sent, respectively, the Second-order and Third-order basic types. Considering that,
according to MLT, instances of Individual are not instantiable (i.e. are not types), mlt:
TokenIndividual does not specialize owl:Class. In contrast, the classes representing all
other basic types have a rdf:subClassOf relation with owl:Class capturing the fact that
their instances are classes (i.e. their instances are instantiable) (see Fig. 3).

Concerning the MLT relations, instance of relations are represented as rdf:type
properties and specialization relations are represented as rdfs:subClassOf properties.
All other intra- and cross-level relations of MLT are represented in this vocabulary in a
hierarchy of instances of owl:ObjectProperty, including at the top: mlt:in-
traLevelProperty, which is as a super-property for all MLT intra-level relations; and
mlt:crossLevelProperty, which is a super-property for all MLT cross-level relations.
The subordination relation of MLT is then represented by the property mlt:isSubor-
dinateTo as a sub-property of mlt:intraLevelProperty, while the characterization
(mlt:characterizes) and the is power type of (mlt:isPowertypeOf) relations are
represented as sub-properties of mlt:crossLevelProperty. Finally, each variation of

1 The term “TokenIndividual” was adopted here to avoid confusion with the term “Individual” in the
OWL specification. “TokenIndividual” corresponds to what we call “Individual” in [15].
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characterization (e.g. complete characterization, disjoint characterization and so on) is
represented as a sub-property of mlt:characterizes.

These properties are also used in the vocabulary definition to represent relations
that occur between the basic types of MLT. To capture the fact that the basic type in
one order is instance of the basic type in an immediately higher order, statements with
rdf:type are defined between the classes representing the basic types (e.g., mlt:
TokenIndividual rdf:type mlt:1stOrderClass, mlt:1stOrderClass rdf:type mlt:2ndOr-
derClass). Further, mlt:isPowertypeOf is used to represent that a basic type in an order
is the powertype of the basic type in the immediately-lower order (Fig. 3).

The MLT vocabulary allows the representation of domain rules concerning the
instantiation of types in different levels. For example, Fig. 4 illustrates a fragment of an
ontology in the biological taxonomy domain applying this vocabulary. In such an
ontology, Genus and Species are represented as instances of mlt:2ndOrderClass (and,
thus, as subclasses of mlt:1stOrderClass) meaning that their instances (e.g. Panthera,
Panthera Onca, and so on) must specialize mlt:TokenIndividual, i.e. instances of their
instances are non-instantiable elements (e.g. Cecil, the lion, which does not possibly
have instances). The domain rule that every instance of Species must be a subclass of
an instance of Genus is captured by the mlt:isSubordinateTo property between Species
and Genus. Further, the mlt:partitions property between Species and Panthera captures
the rule that every instance of Panthera must be instance of exactly one instance of
Species. Finally, Genus mlt:partitions Organism and Species mlt:partitions Organism,
to capture that every organism must be instance of exactly one Genus and instance of
exactly one instance of Species. Note that domain modelers only need to declare their
domain classes as instances and/or specializations of the MLT basic types. (As we shall
discuss later in Sect. 5.2, some of these relations can be inferred automatically, using
derivation rules reflecting MLT axioms and theorems.)

Figure 5 shows an example of an ontology representing employees and their roles
in a company to illustrate the use of variations of characterization relations to capture
domain rules. To capture the rule that each Employee must play one or more Business
Roles in the company, Business Role mlt:completelyCharacterizes Employee meaning
that every instance of Employee must be instance of at least one instance of Business
Role. Further, to represent that an Employee may play at most one Management Role,
Management Role mlt:disjointlyCharacterizes Employee.

Fig. 3. Fragment of MLT vocabulary for order classes and individual.
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5.2 Integrity Constraints and Derivation Rules Based on MLT

An important aspect of the proposed vocabulary is that it allows us to leverage rules of
the MLT formalization in order to guide modelers in producing sound models. The
rules discussed in this section ensure that the domain classes respect the stratification
into orders.

Some of these rules are expressible in pure OWL and thus were directly included in
the vocabulary. For example, a disjointness constraint (owl:AllDisjointClasses) is
introduced to reflect the fact that the basic types of MLT are all mutually disjoint.

The majority of the MLT rules, though, are not expressible directly in OWL, and
are represented here in SPARQL. This is the case of constraints concerning the domain
and range of MLT structural relations. For example, mlt:isPowertypeOf, mlt:charac-
terizes and all its variations must occur between classes of adjacent levels, i.e., if the
domain is a 2ndOrderClass, then the range must be a 1stOrderClass, if the domain is a
3rdOrderClass, then the range must be a 2ndOrderClass, and so on.

Table 3 shows the domain/range restrictions for MLT relations.
SPARQL queries are also provided to allow the verification of rules concerning the

nature of the basic types of MLT. For example, considering that instances of Individual
must have no instances, we provide an integrity constraint to verify if there are
instances of instances of mlt:TokenIndividual (see Q1 in Fig. 6, which would detect
violations of this constraint).

mlt:TokenIndiv idualmlt:1stOrderClassmlt:2ndOrderClass

Species

Genus

Panthera

Panthera Onca Panthera Tigris Panthera Leo Cecil

Organism

Panthera Species

rdf:type

mlt:partitions

rdfs:subClassOf

mlt:partitions

mlt:partitions

rdfs:subClassOfrdfs:subClassOf

rdf:type

mlt:isSubordinateTo

rdf:type

rdfs:subClassOf

rdfs:subClassOf

Fig. 4. Illustrating the use of mlt:isSubordinateTo and mlt:partitions properties.

mlt:1stOrderClassmlt:2ndOrderClass mlt:TokenIndiv idual
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Programmer DB Designer SW Designer

Management Role
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rdf:type
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rdfs:subClassOf

rdfs:subClassOf
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rdf:type

rd
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:s
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Fig. 5. Illustrating the use of mlt:completelyCharacterizes and mlt:overlappinglyCharacterizes.
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Integrity constraints are also provided to verify MLT theorems concerning char-
acteristics of structural relations. For instance, given the definition of the is powertype
of relation, a base class can have, at most, one higher-order class as powertype and a
higher-order class may be the powertype of at most one base class. This suggests two
clear integrity constraints: (i) a class can be the subject of at most one triple having mlt:
isPowertypeOf as predicate (violations detected by Q2 in Fig. 6), and (ii) a class can be
the object of at most one triple having mlt:isPowertypeOf as predicate. Another
example is a constraint provided to allow the verification of the MLT theorem that
states that if two classes t1 and t2 both partition the same class t then it is not possible
for t1 to be subclass of t2 (Q3 in Fig. 6).

Considering that models built using our MLT vocabulary may exhibit incomplete
information, we leverage MLT axioms and theorems to allow the inference of infor-
mation not represented explicitly. For example, it follows from the axioms of MLT
that, if t is subclass of t1 then the powertype of t is subclass of the powertype of t1. This
is reflected in a query to identify cases in which the subclass of relation is not

Table 3. Domain and range restrictions for multi-level relations.

Relation name Domain and range

rdfs:subClassOf Classes of the same order (instances of 1st, 2nd or 3rd
OrderClasses)

isSubordinateTo Higher-order classes of the same order (2ndOrderClass or
3rdOrderClass)

rdf:type Elements of adjacent levels.
isPowertypeOf Classes of adjacent levels (2ndOrderClass ! 1stOrderClass or

3rdOrderClass ! 2ndOrderClass)characterizes
completelyCharacterizes
incompletelyCharacterizes
disjointlyCharacterizes
overlappinglyCharacterizes

Fig. 6. SPARQL queries representing MLT rules
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represented between the power types (Q4). Since, according to MLT, if t2 is powertype
of t1 and t3 characterizes t1, then t3 is subclass of t2, we provide a SPARQL query to
identify cases in which the powertypeOf and the characterization relations are repre-
sented but the subclass relations are not (Q5 in Fig. 6). Further, since every instance of
a basic higher-order type must specialize the basic type at the immediately lower level,
we can identify some missing relations. For example, query Q6 in Fig. 6 allows the
identification of cases in which types are represented as instances of mlt:1stOrderClass
but their subclass relations with mlt:TokenIndividual are not represented.

Since MLT is formalized quantifying over all possible entities, some MLT defi-
nitions are not expressible considering the Open World Assumption (OWA). For
instance, according to MLT if t1 has instances such that all of them are also instances of
t2, then we can conclude that t1 is a subclass of t2 (D1 in Table 2). This rule could not
be captured in our approach since, considering the OWA, we cannot assume that all
instances of an entity are represented in the knowledge base. Thus, these rules cannot
be reflected in the implementation.

Finally, it is worth mentioning that, due to space limitations, we only expose here
some rules to illustrate the approach. The vocabulary and the complete set of SPARQL
queries is available at [27], including information on the traceability between MLT
axioms and theorems and the implemented queries.

5.3 Final Considerations

Multi-level modeling addresses phenomena dealing with a number of complex notions
and subtle relations that cross multiple levels of instantiation. These phenomena are
ubiquitous in application domains, ranging from biology, to software engineering, from
enterprise modeling to product classification [15]. Aside from the recurrence of these
phenomena in practical cases, what also makes it of great importance is the fact that
multi-level modeling seems to pose a significant challenge to modelers. As previously
mentioned, in [14], we have empirically analyzed the presence of three anti-patterns
related to multi-level modeling in Wikidata, finding over 22,000 occurrences of these
anti-patterns. In fact, for one these anti-patterns, we found its manifestation in 85 % of
the cases of taxonomic hierarchies spanning more than one level in Wikidata! That
study clearly indicates that for complex modeling phenomena such as these, an
expressive engineering support must be offered for vocabulary engineers as well as
semantic web application developers. In [27], we provide a technical report showing
how each of these anti-patterns found in Wikidata could be avoided by using the
artifact proposed in this paper, demonstrating the relevance of MLT-OWL using
real-world data.

The recognition of the importance of offering support for multi-level modeling led
many researchers in the Semantic Web community to propose solutions addressing this
issue. Some prominent results in that respect are reviewed in this paper, namely, RDFS
(FA), metamodeling (punning) in OWL 2, OWL FA and PURO. We have shown in our
analysis of these related works that all of them fail to fully support the identified
modeling desiderata.
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We adopted as a basis for our work a theoretically sound and well-tested formal
theory (MLT) that was shown to be able to address all these multi-level modeling
requirements. We then decided to offer a set of engineering tools that together would
implement the modeling distinctions and axiomatization of this theory. These tools
include: (i) an OWL vocabulary (capturing the formal relations put forth by this the-
ory); (ii) a set of OWL axioms that would capture derivation and integrity rules over
this vocabulary put forth by the theory; and (iii) a set of SPARQL queries that would
capture those derivation and integrity rules put forth by this theory but that could not be
represented in OWL directly. We strongly believe that these tools amount to an
important methodological and computational contribution for guiding modelers to
produce sound multi-level models in the Semantic Web.

The reason why these phenomena are recurrent in a large variety of practical
application domains is because they are genuine ontological phenomena (from a
philosophical point of view) [26]. As such, we advocate that truly ontological con-
siderations cannot be eschewed from a fuller analysis of multi-level modeling. Addi-
tionally, some initiatives have demonstrated that the systematic evaluation of the
ontological consistency of Semantic Web ontologies and vocabularies can greatly
benefit from the use of foundational distinctions and axioms [28, 29]. In order to
leverage the benefits of both a foundational ontology and a multi-level modeling
theory, in [30] some of us have already combined MLT and the foundational ontology
UFO [31]. A natural extension of this work is to enrich the set of engineering tools
proposed here with support for the ontological distinctions and axiomatization of UFO
(e.g., dealing with temporal aspects of anti-rigid concepts).
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