
OntoBench: Generating Custom OWL 2
Benchmark Ontologies

Vincent Link1, Steffen Lohmann2(B), and Florian Haag1

1 Institute for Visualization and Interactive Systems, University of Stuttgart,
Universitätsstraße 38, 70569 Stuttgart, Germany

2 Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS),
Schloss Birlinghoven, 53757 Sankt Augustin, Germany

steffen.lohmann@iais.fraunhofer.de

Abstract. A variety of tools for visualizing, editing, validating, and
documenting OWL ontologies have been developed in the last couple of
years. The OWL coverage and conformance of these tools usually needs
to be tested during development for evaluation and comparison purposes.
However, in particular for the testing of special OWL concepts and con-
cept combinations, it can be tedious to find suitable ontologies and test
cases. We have developed OntoBench, a generator for OWL benchmark
ontologies that can be used to test and compare ontology tools. In con-
trast to existing OWL benchmarks, OntoBench does not focus on scal-
ability and performance but OWL coverage and concept combinations.
Consistent benchmark ontologies are dynamically generated based on
any combination of OWL 2 language constructs selected in a graphical
user interface. OntoBench is available on GitHub and as a public service,
making it easy to use the tool to generate custom benchmark ontologies
and ontology fragments.

Keywords: Ontology · Benchmark · Generator · OWL 2 · Coverage ·
Conformance

1 Introduction

A large number of tools that support the visualization, editing, validation, and
documentation of OWL ontologies have been developed in the last couple of
years. During the development of such tools, it is important to test them with
ontologies representing different test cases (henceforth called benchmark ontolo-
gies) in order to ensure that the language constructs of OWL are adequately
represented. Benchmark ontologies are also useful to support the comparison
and evaluation of existing tools in order to assess the features of the tools and
to check whether they provide adequate support for a certain use case.

In our previous work [7,8], we developed a static benchmark ontology for
the purpose of testing feature completeness of ontology visualization tools. With
OntoBench, we took this idea one step further and made it generally applicable
in different use cases. Many ontology tools do not aim for a complete coverage
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part II, LNCS 9982, pp. 122–130, 2016.
DOI: 10.1007/978-3-319-46547-0 13

OntoBench: Generating Custom OWL 2 Benchmark Ontologies 123

of OWL but focus on specific aspects, or are designed to cover only some of
the OWL profiles. To overcome the inflexibility and overhead caused by a static
benchmark ontology, we developed a systematic approach to dynamically gen-
erate benchmark ontologies tailored to the OWL coverage and feature set that
a tool intends to support.

As opposed to most other ontology benchmarks, OntoBench is not meant
for testing the scalability or performance in terms of the number of elements
contained in an ontology, but it rather aims to test the scope of ontology tools
in terms of supported features and OWL constructs. Accordingly, it focuses
on the representation of the TBox of ontologies (i.e., the classes, properties,
datatypes, and a few key individuals), while it does not support the testing of
ABox information (i.e., larger collections of individuals and data values), which
is the focus of most of the related work.

2 Related Work

One well-known ontology benchmark is the Lehigh University Benchmark
(LUBM) [6], a test suite for ontology-based systems. LUBM extends benchmarks
for databases with a focus on the Semantic Web. It contains an ontology describ-
ing the university domain, a tool that generates instance data for the university
ontology, and test queries for the data whose performance can be evaluated by
using a couple of metrics provided by LUBM. Wang et al. extended the LUBM
benchmark by implementing a domain-agnostic generator for instance data [18].
It uses a probabilistic model to generate a user-given number of instances based
on representative data from the domain in focus. This enables testing a broader
range of possible topics and, consequently, different kinds of ontology struc-
tures. As an example, they created the Lehigh BibTeX Benchmark (LBBM) on
the basis of a BibTeX ontology.

Another extension of LUBM has been proposed by Ma et al. with the Univer-
sity Ontology Benchmark (UOBM) [12]. UOBM aims to contain the complete set
of OWL 1 language constructs and defines two ontologies, one being compliant
with OWL 1 Lite and the other with OWL 1 DL. In addition, several links were
added between the generated instances in order to create more realistic data.

The W3C Ontology Working Group also published a number of small ontolo-
gies and ontology fragments together with the specifications of OWL 1 and 2,
providing normative test cases [5,16]. These test cases are intended for validat-
ing applications in terms of conformance to the respective OWL version and to
demonstrate the correct usage of OWL. The majority of these test cases aim at
testing different syntaxes, specific combinations of OWL constructs, or reasoners.

Furthermore, there are benchmarks addressing certain aspects of ontology
engineering. For instance, a number of datasets and test cases has been created
in the context of the Ontology Alignment Evaluation Initiative (OAEI) [1]. They
are intended to evaluate and compare the quality and performance of ontology
matching methods in particular. Finally, benchmarks for comparing the perfor-
mance of SPARQL endpoints are available that feature RDF data generators
and provide sets of benchmark queries [4,15].

124 V. Link et al.

To conclude, there is currently no benchmark—except for the static
OntoViBe ontology we developed in our previous work [7,8]—that focuses on
testing ontology tools for feature-completeness with regard to OWL coverage,
and which supports a major part of the concepts specified in OWL 2. For gener-
ating custom ontologies, one could use ontology editors like Protégé to manually
create a benchmark ontology tailored to one’s needs. However, despite the mod-
eling support provided by ontology editors, reliably covering all relevant test
cases can still be very error-prone and tedious for users.

3 Requirements and Design Considerations

To fill this gap, we developed OntoBench, a generator for benchmark ontologies
with a focus on testing the OWL 2 coverage of ontology tools. The OWL language
constructs contained in the generated ontologies are selected by the user. For
this purpose, we have defined abstract features that encompass one or more
OWL language constructs and thereby form a test case. The features can be
individually enabled or disabled by the user when generating the benchmark
ontology.

3.1 Requirements

The features defined for OntoBench were drawn from two main considerations:

1. A complete (as far as possible) coverage of OWL 2 language constructs was to
be achieved, hence features were built around the list of language constructs.

2. OWL includes some concepts that cannot be represented by single language
constructs but require combinations of constructs. Such combinations were
also included as test cases.

Each test case can be seen as a fragment of the ontology to be generated. In
order to optimally embed the fragments in the resulting ontology, we specified
that the test cases should satisfy a couple of requirements:

Compactness. All test cases have to be designed compactly with regards to
the amount of OWL constructs they require. On the one hand, this reduces side
effects due to language constructs that are not in the focus of the test case. On
the other hand, it improves the readability of the test cases in the generated
ontology.

Independence. All test cases shall be defined as independently as possible in
order to avoid that they interfere with each other. However, this goes along with
a larger number of helper constructs in the ontology. For instance, properties
can only reasonably be tested if classes are added that the properties are linked
with. Since adding a pair of classes for each property would result in a large
number of additional ontology elements, we used the same class as a domain for

OntoBench: Generating Custom OWL 2 Benchmark Ontologies 125

all properties in OntoViBe [8]. OntoBench builds upon this approach by reusing
a domain class several times, but creating a new one once a given number of
properties has been linked to that class.

Self-Descriptiveness. The elements for all used OWL language constructs
have to be named in a way that eases the verification process. Like OntoViBe,
OntoBench names elements according to their role in the benchmark ontology.
However, where OntoViBe was static and could thus rely on the uniqueness of
self-explanatory, yet non-systematically assigned names, OntoBench introduces
a uniform naming scheme that ensures uniqueness of names despite the variation
in generated ontologies. This is accomplished by prefixing all elements with the
name of their corresponding test case. The suffix of the name indicates the role
in the test case. For example, the class that serves as the range for the OWL
construct owl:ReflexiveProperty is named OwlReflexiveProperty Range.

3.2 OWL Profiles and Specific Test Cases

OWL 1 and 2 define multiple profiles of different expressiveness. These profiles
restrict the set of eligible language constructs and the way the constructs can be
combined. Some ontology tools do not support all elements defined by OWL but
are limited by design to one of the less powerful profiles. Accordingly, OntoBench
is able to generate ontologies that are conformant with the selected OWL profiles.
It provides a preselection of test cases for OWL Lite and DL as defined in
the OWL reference [3] as well as OWL 2 EL, RL and QL from the OWL 2
profiles [17]. There is no separate profile for OWL Full, since it does not contain
new OWL constructs in comparison to OWL DL.

Since ontologies can make use of multilingualism, for instance in rdfs:label
annotations, there are also test cases for this aspect.

4 Implementation as a Web Application

OntoBench is implemented as a web application to ease access and reuse [10].1

The frontend implementation is based on HTML, CSS, and JavaScript in com-
bination with SemanticUI and jQuery. A REST interface is used for communi-
cation with the backend, which is implemented as a Java server using the Spring
Framework. This server contains the business logic for generating the customized
ontologies by means of the OWL API [9]. Additionally, it manages a database of
previously generated benchmark ontologies that can be restored via short URIs.
These short URIs are provided for easy reference of the generated ontologies,
whereas their long URIs are more persistent and transparent, as they include a
list of the features contained in the ontology.

1 OntoBench is released under the MIT license and available on GitHub at https://
github.com/VisualDataWeb/OntoBench A public OntoBench service is available at
http://ontobench.visualdataweb.org.

https://github.com/VisualDataWeb/OntoBench
https://github.com/VisualDataWeb/OntoBench
http://ontobench.visualdataweb.org

126 V. Link et al.

As an example, the main part of the ontology generated for the test case of
the OWL construct owl:AllDisjointClasses is depicted in Listing 1.1. The
order and indentation of all statements in the ontology is determined by the
Turtle syntax formatter of the OWL API.

Listing 1.1.Main part of the ontology generated for the test case of the OWL construct
owl:AllDisjointClasses formatted in Turtle syntax.

:AllDisjointClasses_Class1 rdf:type owl:Class .
:AllDisjointClasses_Class2 rdf:type owl:Class .
:AllDisjointClasses_Class3 rdf:type owl:Class .

[rdf:type owl:AllDisjointClasses ;
owl:members (:AllDisjointClasses_Class1
:AllDisjointClasses_Class2
:AllDisjointClasses_Class3
)
] .

4.1 Graphical User Interface

The graphical user interface (GUI) of OntoBench consists of two panels organized
in tabs, one allows to configure the benchmark ontology and the other displays
the generated output. Figure 1 shows screenshots of parts of the two panels. The
configuration panel lists all eligible features grouped into categories, inspired by
the grouping of the OWL 2 quick reference guide [2]. The categories are organized
into frames in the GUI, while predefined buttons allow to immediately select
certain presets, such as all elements of a category or all elements matching a
particular OWL profile.

When the user hits the generate button or switches to the generator tab, the
second panel is opened which displays the generated ontology. The ontology is
shown on screen and can be downloaded as a file (cp. Fig. 1). It is provided in
Turtle syntax by default, but the user can also chose other OWL serializations
from a drop-down menu. OntoBench provides all OWL serializations supported
by the OWL API (which are Turtle, Manchester, Functional, OWL/XML, and
RDF/XML at the moment). The generated output as well as the endings of
the ontology URIs change accordingly, so that a particular serialization can be
directly accessed from remote via its URI.

OntoBench has been designed for a target group that is at least somehow
familiar with OWL and/or wants to use or learn OWL. In some informal user
tests, the user interface was praised for its ease of use. The test users liked that
they could create OWL ontologies with only a few clicks and found the user
interface very self-explanatory.

OntoBench: Generating Custom OWL 2 Benchmark Ontologies 127

Fig. 1. Screenshots of the user interface of OntoBench showing parts of the two main
panels

4.2 Extensibility

In the case that OntoBench does not provide a test case required in a certain
situation, users can manually edit and extend the generated ontologies according
to their needs. Alternatively, they can edit the source code of OntoBench and add
the required test cases to the generator. The source code has an object-oriented
design: Each feature is described by a class which is derived from a superclass
containing helpers and providing access to the ontology. The feature can either
be modeled by directly accessing the OWL API or by using the provided helper
classes. Each feature has additionally a name and a token (for the URI) and is
assigned to a category for grouping in the user interface. The user interface is
automatically generated from the modeled features.

4.3 Limitations

Limitations in using and extending OntoBench result mainly from the OWL
API that OntoBench is using to create the OWL ontologies. For instance, the
OWL API makes use of the OWL functional syntax internally, which represents
the OWL constructs owl:AllDifferent and owl:differentFrom both by the
functional concept DifferentIndividuals. When having the OWL API out-
put an ontology in Turtle syntax, it will always use owl:AllDifferent and

128 V. Link et al.

never owl:differentFrom, both of which imply the same assertion with two
individuals.

5 Validation of the Generated Ontologies

It is not feasible to validate the correctness of the generated ontologies in all pos-
sible combinations, but we systematically checked a representative subset using
test classes and manual inspection. However, to some extent, we have to trust
the OWL API that is used by OntoBench for generating the ontologies. Since it
has “widespread usage in a variety of tools” [9] and intends to be a “reference
implementation for creating, manipulating and serializing OWL Ontologies”2,
it can be assumed that the generated ontologies are mostly correct in terms of
syntax and general structure.

Nevertheless, we applied syntax validators, such as the W3C RDF Valida-
tion Service [14], to the representative subset of generated ontologies. The tests
showed that all ontologies were valid RDF documents. To validate whether the
contents of the generated ontologies are correct, we tested the representative
subset by loading the ontologies into different tools, including ontology editors
like Protégé and reasoners like Pellet. These checks all showed that the generated
ontologies are correct and contain the test cases that were selected in the user
interface.

The presets matching OWL profiles were evaluated with the validators built
into the OWL API and further refined by manual inspection and comparison
with the OWL profiles specifications [3,17]. Some issues with the OWL API were
found during these validations and reported to the issue tracker of that project
on GitHub.3 They could be quickly fixed by the developers of the OWL API so
that we could finally include the corrected version of the API in OntoBench.

The scalability of OntoBench was tested by selecting different subsets of
test cases in the user interface and run the generator. The ontologies are not
cached but generated at runtime, which takes less than two seconds on the
public OntoBench instance we provide, even if all elements or a large subset of
them are selected. The resulting ontology can consist of more than 2000 lines in
Turtle syntax in those cases.

6 Application in a Visualization Use Case

During the development of the latest version of the ontology visualization tool
WebVOWL [11], we regularly used OntoBench to check whether WebVOWL dis-
plays all OWL language constructs according to the VOWL 2 specification [13].
Testing the generated ontologies with WebVOWL was very convenient, as we
only had to append their URIs to the URL of WebVOWL. Since we noticed that
a visualization like VOWL can help to better understand the generated ontolo-
gies, we integrated it into OntoBench by adding a button to the generator panel
that directly opens the WebVOWL visualization of each ontology (cf. Fig. 1).
2 http://owlapi.sourceforge.net.
3 https://github.com/owlcs/owlapi/issues/435.

http://owlapi.sourceforge.net
https://github.com/owlcs/owlapi/issues/435

OntoBench: Generating Custom OWL 2 Benchmark Ontologies 129

Fig. 2. Example issue found in the use case: while owl:minCardinality was shown in
the beta version of WebVOWL as expected, owl:maxCardinality was not shown at
all

In one of the test cases for WebVOWL, we generated an ontology with Onto-
Bench containing all OWL language constructs that are supported according to
the VOWL 2 specification [13]. We could uncover two issues this way: (1) The
VOWL 2 specification states that owl:Nothing should either be visualized the
same way as owl:Thing or should not be visualized at all, the latter being recom-
mended. However, when we visualized the generated ontology with a beta version
of WebVOWL, we discovered that owl:Nothing was incorrectly displayed as an
external class. (2) While inspecting the indicated cardinalities in the visualiza-
tion, we realized that in contrast to owl:minCardinality, owl:maxCardinality
was not displayed at all in the beta version of WebVOWL (cf. Fig. 2). As can
be seen in the figure, the generated names help to spot the concepts in the
visualization and to interpret them correctly.

OntoBench can be extended to also include cases for ABox testing, without
affecting the general approach. For instance, we added some specific test cases
for the WebVOWL tool, among others a test case generating 1000 instances
for a class. However, there is a high variety of such ABox test cases and its
systematic investigation constitutes a considerable research effort that would
warrant a separate project.

7 Conclusion

The application example illustrates how easy it is to test ontology tools like
WebVOWL with OntoBench. Instead of creating suitable test cases from scratch
with quite some effort, or searching for existing ontologies that contain those
or similar cases, OntoBench allows to quickly generate tailored and consistent
ontologies with only a few clicks.

References

1. Ontology alignment evaluation initiative. http://oaei.ontologymatching.org
2. Bao, J., Kendall, E.F., McGuinness, D.L., Patel-Schneider, P.F.: OWL 2 web ontol-

ogy language quick reference guide (2nd edn.) (2012). https://www.w3.org/TR/
owl2-quick-reference/

http://oaei.ontologymatching.org
https://www.w3.org/TR/owl2-quick-reference/
https://www.w3.org/TR/owl2-quick-reference/

130 V. Link et al.

3. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL web ontology language reference. In: W3C Rec-
ommendation (2004). http://www.w3.org/TR/2004/REC-owl-ref-20040210/

4. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semant. Web Inf.
Syst. 5(2), 1–24 (2009)

5. Carroll, J.J., Roo, J.D.: OWL web ontology language test cases (2004). http://
www.w3.org/TR/owl-test/

6. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
Web Semant. 3(2–3), 158–182 (2005)

7. Haag, F., Lohmann, S., Negru, S., Ertl, T.: OntoViBe: an ontology visualization
benchmark. In: International Workshop on Visualizations and User Interfaces for
Knowledge Engineering and Linked Data Analytics (VISUAL 2014), CEUR-WS,
vol. 1299, pp. 14–27 (2014)

8. Haag, F., Lohmann, S., Negru, S., Ertl, T.: OntoViBe 2: advancing the ontology
visualization benchmark. In: Lambrix, P., et al. (eds.) EKAW 2014. Lecture Notes
in Artificial Intelligence (LNAI), vol. 8982, pp. 83–98. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-17966-7 9

9. Horridge, M., Bechhofer, S.: The OWL API: a java API for OWL ontologies.
Semant. Web 2(1), 11–21 (2011)

10. Link, V., Lohmann, S., Haag, F.: OntoBench: ontology benchmark generator
(2016). http://ontobench.visualdataweb.org

11. Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: web-based visual-
ization of ontologies. In: Lambrix, P., et al. (eds.) EKAW 2014. Lecture Notes in
Artificial Intelligence (LNAI), vol. 8982, pp. 154–158. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-17966-7 21

12. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL
ontology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol.
4011, pp. 125–139. Springer, Heidelberg (2006). doi:10.1007/11762256 12

13. Negru, S., Lohmann, S., Haag, F.: VOWL: visual notation for OWL ontologies
(2014). http://purl.org/vowl/spec/v2/

14. Prud’hommeaux, E., Lee, R.: W3C RDF validation service (2004). http://www.
w3.org/RDF/Validator

15. Schmidt, M., Hornung, T., Meier, M., Pinkel, C., Lausen, G.: Sp2bench: a SPARQL
performance benchmark. In: Virgilio, R.D., Giunchiglia, F., Tanca, L. (eds.)
Semantic Web Information Management, pp. 371–393. Springer, Heidelberg (2009)

16. Smith, M., Horrocks, I., Krötzsch, M., Glimm, B.: OWL 2 web ontology language
conformance (2nd edn.) (2012). http://www.w3.org/TR/owl2-conformance/

17. W3C OWL Working Group: OWL 2 web ontology language profiles (2nd edn.)
(2012). https://www.w3.org/TR/owl2-profiles/

18. Wang, S.-Y., Guo, Y., Qasem, A., Heflin, J.: Rapid benchmarking for semantic web
knowledge base systems. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A.
(eds.) ISWC 2005. LNCS, vol. 3729, pp. 758–772. Springer, Heidelberg (2005).
doi:10.1007/11574620 54

http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/owl-test/
http://www.w3.org/TR/owl-test/
http://dx.doi.org/10.1007/978-3-319-17966-7_9
http://ontobench.visualdataweb.org
http://dx.doi.org/10.1007/978-3-319-17966-7_21
http://dx.doi.org/10.1007/11762256_12
http://purl.org/vowl/spec/v2/
http://www.w3.org/RDF/Validator
http://www.w3.org/RDF/Validator
http://www.w3.org/TR/owl2-conformance/
https://www.w3.org/TR/owl2-profiles/
http://dx.doi.org/10.1007/11574620_54

	OntoBench: Generating Custom OWL 2 Benchmark Ontologies
	1 Introduction
	2 Related Work
	3 Requirements and Design Considerations
	3.1 Requirements
	3.2 OWL Profiles and Specific Test Cases

	4 Implementation as a Web Application
	4.1 Graphical User Interface
	4.2 Extensibility
	4.3 Limitations

	5 Validation of the Generated Ontologies
	6 Application in a Visualization Use Case
	7 Conclusion
	References

