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TSK Inference with Sparse Rule Bases

Jie Li, Yanpeng Qu, Hubert P. H. Shum, Longzhi Yang

Abstract The Mamdani and TSK fuzzy models are fuzzy inference engines which
have been most widely applied in real-world problems. Compared to the Mamdani
approach, the TSK approach is more convenient when the crisp outputs are required.
Common to both approaches, when a given observation does not overlap with any
rule antecedent in the rule base (which usually termed as a sparse rule base), no
rule can be fired, and thus no result can be generated. Fuzzy rule interpolation was
proposed to address such issue. Although a number of important fuzzy rule interpo-
lation approaches have been proposed in the literature, all of them were developed
for Mamdani inference approach, which leads to the fuzzy outputs. This paper ex-
tends the traditional TSK fuzzy inference approach to allow inferences on sparse
TSK fuzzy rule bases with crisp outputs directly generated. This extension firstly
calculates the similarity degrees between a given observation and every individual
rule in the rule base, such that the similarity degrees between the observation and
all rule antecedents are greater than 0 even when they do not overlap. Then the TSK
fuzzy model is extended using the generated matching degrees to derive crisp infer-
ence results. The experimentation shows the promising of the approach in enhancing
the TSK inference engine when the knowledge represented in the rule base is not
complete.
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1 Introduction

Fuzzy inference system is a mechanism that uses fuzzy logic and fuzzy set theory
to map inputs to outputs. Due to the simplicity and effectiveness in representing
and reasoning on human natural language, it has become to one of the most ad-
vanced technologies in control field. A typical fuzzy inference system consists of
mainly two parts, a rule base (or knowledge base) and an inference engine. A num-
ber of inference engines have been developed, with the Mamdani method [1] and
the TSK method [2] being the most widely used. Mamdani fuzzy inference method
is more intuitive and suitable for handling human natural language inputs, which is
an implementation of the extension principle [3]. As fuzzy outputs are usually led
by the Mamdani approach, a defuzzification approach, such as the centre of gravity
method [4], has to be employed to map fuzzy outputs to crisp values for general
system use. The TSK approach however uses polynomials to generate the inference
consequence, and it therefore is able to directly produce crisp values as outputs,
which is often more convenient to be employed when the crisp values are required.
Both of these traditional fuzzy inference approaches require a dense rule base by
which the entire input domain need to be fully covered; otherwise, no rule will be
fired when a given observation does not overlap with any rule antecedent.

Fuzzy rule interpolation (FRI), firstly proposed in [5], not only addresses the
above issue, but also helps in complexity reduction for complex fuzzy models.
When a given observation does not overlap with any rule antecedent value, fuzzy
rule interpolation is still able to obtain certain conclusion, and thus improves the
applicability of fuzzy models. FRI can also be used to reduce the complexity of
fuzzy models by removing those rules that can be approximated by their neighbour-
ing ones. A number of fuzzy rule interpolation methods have been developed in the
literature, including [6, 7, 8, 9, 10], and have been successfully employed to deal
with real world application, such as [11, 12]. However, all of existing FRI methods
were developed on (sparse) Mamdani rule bases which lead to fuzzy outputs.

This paper proposes a novel extension of traditional TSK fuzzy model, which is
not only able to deal with sparse TSK fuzzy rule bases, but also able to directly gen-
erate crisp outputs. To enable such extension, a new similarity degree measurement
is proposed first to calculate the similarity degrees between given observations and
each individual rule in the rule base. Dissimilar with the similarity measure used in
the existing TSK approach, the introduced one leads to similarity degrees between
the observation and others rule antecedents always greater than 0 even when they
do not overlap at all. Then the TSK fuzzy model is extended using this new match-
ing degree to obtain crisp inference results from sparse TSK fuzzy rule bases. The
experiments show comparable result, which demonstrates the promising of the ap-
proach in enhancing the traditional TSK model when the knowledge represented in
the rule base is not complete.

The rest of the paper is structured as follows. Section 2 introduces the theoret-
ical underpinnings of TSK fuzzy inference model and measurement of similarity
degrees. Section 3 presents the proposed approach. Section 4 details a set of exper-
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iments for comparison and validation. Section 5 concludes the paper and suggests
probable future developments.

2 Background

In this section, the original TSK approach is briefly introduced, and the existing
similarity measures are briefly reviewed.

2.1 TSK Fuzzy Model

The TSK fuzzy model was proposed by Takagi, Sugeno, and Kang in 1985 [2], and
a typical fuzzy rule for the TSK model is of the following form:

IF u is A and v is B then w � fpu, vq , (1)

where A and B are fuzzy sets regarding antecedent variables x and y respectively,
and fpu, vq is a crisp function (usually polynomial), which determines the crisp
value of the consequent. For instance, assume that a rule base for TSK model is
comprised of two rules:

Ri : IF x is Ai and y is Bi THEN z � fipx, yq � aix� biy � ci

Rj : IF x is Aj and y is Bj THEN z � fjpx, yq � ajx� bjy � cj ,
(2)

where ai, aj , bi, bj , ci, and cj are constants in the polynomial equation in the conse-
quent part of the rule. The consequences of rules Ri and Rj deteriorate to constants
ciand cj when ai � aj � bi � bj � 0. TSK model is usually employed to crisp
inputs and outputs problems. Given an observation with singleton values as input
(x0, y0), the working progress of this approach is demonstrated in Fig. 1. The in-
ferred output from the given observation from rules Ri and Rj are fipx0, y0q and
fjpx0, y0q respectively. The overall output is then taken as the weighted average
of outputs from all rules, where the values of weights are the firing strengths of
corresponding rules. Suppose that µAi

px0q and µBi
py0q represent the matching de-

grees between input (x0, y0) and rules Ri and Rj , respectively. The firing strength
(weight) of rule Ri, αi, is calculated as:

αi � µAi
px0q ^ µBi

py0q, (3)

where^ is a t-norm, which usually implemented as a minimum operator. Obviously,
if a given input px1, y1q does not overlap with any rule antecedent, the matching
degree between this input and rules Ri and Rj are µAipx1q and µBipy1q are equal
to 0. Then no rule will be fired. Then, no consequence can be derived for such case.
As the final result of the consequent variable z is a crisp value, the defuzzification
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progress then can be saved, which in turn reduces the overall computational efforts.

 

min

Weighted Average

Ai Bi

Aj Bj

Fig. 1 Representation of TSK approach

2.2 Similarity Degree Measurement

Based on different measurement standards, various similarity measures have been
proposed in literature to calculate the degree of similarity between two fuzzy
sets, such as[13, 14, 15, 16]. Note that, in order to generate reasonable mea-
surement of similarity, the corresponding variable domain is required to be nor-
malised first. Given two triangle fuzzy sets on the variable with normalised domain,
A � pa1, a2, a3q and A1 � pa11, a

1
2, a

1
3q, where 0 ¤ a1 ¤ a2 ¤ a3 ¤ 1, and

0 ¤ a11 ¤ a12 ¤ a13 ¤ 1, the degree of similarity SpA,A1q between fuzzy sets A and
A1 can be calculated as follows [13]:

SpA,A1q � 1�

3̧

i�1

|ai � a1i|

3
. (4)

The larger value of SpA,A1q means that is the more similar between fuzzy sets A
and A1. This method is also the most wildly applied.

The above approach requires a normalisation progress for the concerned vari-
able domain. A graded mean integration representation distance-based similarity
degree measurement does not need such normalisation. This similarity measure is
summarised as [17]:
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SpA,A1q �
1

1� dpA,A1q
, (5)

where dpA,A1q � |P pAq � P pA1q|, P pAq and P pA1q are the graded mean integra-
tion representation of A and A1, respectively [17]. In particular, the graded mean
integration representation P pAq and P pA1q can be defined as:

P pAq �
a1 � 4a2 � a3

6
,

P pA1q �
a11 � 4a12 � a13

6
.

(6)

In this approach, the larger value of SpA,A1q means higher degree of similarity
between fuzzy sets A and A1.

The above two approaches may not provide correct similarity degrees in certain
situations, such as two generalised fuzzy sets (which are fuzzy sets may not be
normal), although they are usually able to produce acceptable results and widely
applied. A generalised triangle fuzzy set regarding variable x can be represented
as A � pa1, a2, a3, µpa2qq, where µpa2q (0   µpa2q ¤ 1) is the membership
of element a2, and µpa2q ¥ µpaq,@a P Dx, Dx is the domain of variable x, as
illustrated in Fig 2. If µpa2q � 1, the generalised triangle fuzzy set deteriorates
to normal a fuzzy set which is usually denoted as A � pa1, a2, a3q. A centre of
gravity method (COG) has been proposed to work with generalised fuzzy sets [15].
The process to calculate the COG-based similarity degree measure is summarised
as below.

Step 1: Determine the point of centre of gravity for each triangle fuzzy set. Given
a generalised triangle fuzzy set A, its COG Gpa�, µpa�qq is shown in Fig. 2, which
can be calculated by:

a� �
a1 � a2 � a3

3
, (7)

µpa�q �
µpa1q � µpa2q � µpa3q

3
. (8)

As µpa1q � µpa3q � 0, µpa�q can be simplified to:

µpa�q �
µpa2q

3
. (9)

Step 2: Calculate the similarity degree SpA,A1q between fuzzy sets A and A1

by:

SpA,A1q �

�
1�

3̧

i�1

|ai � a1i|

3

�
�
�
1� |a�A � a�A1 |

�BpSuppA,SuppA1 q

�
minpµpa�Aq, µpa

�
A1q

maxpµpa�Aq, µpa
�
A1q

,

(10)
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0

COG

A

Fig. 2 A example triangular fuzzy set and its COG

where a�A and a�A1 are calculated by Equation 7, µpa�Aq and µpa�A1q are obtained
from Equation 9, and BpSuppA, SuppA1q is defined as follow:

BpSuppA, SuppA1q �

$&
%

1, if SuppA � SuppA1 � 0

0, if SuppA � SuppA1 � 0 ,
(11)

where SuppA and SuppA1 are the supports of the fuzzy sets A and A1 respectively,
which in turn are calculated as:

SuppA � a3 � a1 ,

SuppA1 � a13 � a11 .
(12)

In the above equation, BpSuppA, SuppA1q is used to determine whether COG dis-
tance (1� |a�A � a�A1 |) needs to be considered. For instance, if fuzzy sets A and A1

both are the crisp values, (i.e., SuppA � SuppA1 � SuppA � SuppA1 � 0), the
COG distance will not be considered for the degree of similarity measure; other-
wise, the COG distance will be considered. In this measure, again the larger value
of SpA,A1q means that the two fuzzy sets A and A1 are more similar.

3 The Proposed Approach

The proposed fuzzy rule interpolation approach regarding TSK style of inference is
introduced in this section. In order to enable the extension, the existing measure of
similarity degree between two fuzzy sets as shown in Equation 10 is modified first
by introducing an extra monotone decreasing function of the geometric distances
between the two fuzzy sets. Given an observation, the similarity degree between
the given observation and each rule antecedent can then be calculated based on this
modified similarity degree measure, which always results a similarity degree greater
than 0 even when the two fuzzy sets are not overlapped. Then, a crisp inference re-
sult can be obtained by considering all the rules associated with their corresponding
matching degrees, based on underpinning principle of the original TSK inference.
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As the similarity degrees between the given observation and all the rule antecedents
are greater then 0, all the rules have firing strengths greater than 0, that is all rules
are used for interpolation. Consequently, a crisp result can still be generated even
when a given observation does not overlap with any rule antecedent.

3.1 A Modified Similarity Measure

The similarity measure expressed by Equation 10 may fail in certain situations,
despite of its simplicity. For instance, if a large distance between two fuzzy sets
presents, those two fuzzy sets should not similar at all. However, by applying this
similarity measure, a big value of similarity degree, representing high similarity,
may still be generated, which will lead to an unexpected result. In order to address
this, the distance between fuzzy sets has been considered to extend this similarity
measure [15]. However, the introduction of linear distance parameter may still not
be sufficiently flexible to support various fuzzy models, as the sensitivity of sim-
ilarity degree to distance is fixed. In order to provide a similarity measure whose
sensitivity to distance is flexible and configurable to support fuzzy interpolation for
TSK model, the similarity measure introduced in [15] is extended. In particular,
the distance factor (DF ), which is an monotone decreasing function with an ad-
justable parameter, is proposed to replace the linear distance function of the existing
approach ([15]).

Suppose the variable domain has been normalised, and assume that there are
two generalised triangle fuzzy sets A and A

1

regarding this variable, where A �
pa1, a2, a3q, and A1 � pa11, a

1
2, a

1
3q. The degree of similarity SpA,A1q between

fuzzy sets A and A1 can be calculated as follows:

SpA,A1q �

�
1�

3̧

i�1

|ai � a1i|

3

�
� pDF q

rBpSuppA,SuppA1 q

�
minpµpa�Aq, µpa

�
A1qq

maxpµpa�Aq, µpa
�
A1qq

,

(13)

where DF , termed as distance factor, is a function of the distance between the
two concerned fuzzy sets. DF is in turn defined as:

DF � 1�
1

1� e�nd�5
, (14)

where n (n ¡ 0) is a sensitivity factor, and d represents the distance between the
two fuzzy sets usually defined as the distance of their COGs. Smaller value of n
leads to a similarity degree which is more sensitive to the distance of two fuzzy
sets, and vice versa. The value of this factor needs to be determined based on the
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specific problems. However, some early stage experimentation generally suggests
that 20 ¤ n ¤ 60. A further study of the automatic determination of DF remains
for the future work. It is worth to note that, there are two special situations where
the modified similarity measure and Equation 10 lead to the same result: 1) when
fuzzy sets A and A1 have the same COG, and 2) when A and A1 are two boundary
crisp values and the distance between them is 1.

Compared to the approach proposed in [15], the modified similarity measure be-
tween two given fuzzy sets preserves the same set of good properties, including 1)
The lager value is SpA,A1q, the more similar are between fuzzy sets A and A1, and
2) fuzzy set A and A1 are identical if and only if SpA,A1q � 1. The proposed ap-
proach also introduces one more important property, which is the similarity degree
between any two fuzzy sets (excluding the two boundary crisp values that distance
between them is 1) in the input domain will be always greater than 0. Without lose
generality, given two fuzzy sets A � pa1, a2, a3q and A1 � pa11, a

1
2, a

1
3q within a

normalised input domain. Suppose that fuzzy sets A and A1 are not the boundary
sets, where 0   a1 ¤ a2 ¤ a3   1, and 0   a11 ¤ a12 ¤ a13   1. Then,

|a1 � a11|   1 ,

|a2 � a12|   1 ,

|a3 � a13|   1 .

(15)

This is followed by:

1�

3̧

i�1

|ai � a1i|

3
¡ 0 .

(16)

Also, 0   DF   1 based on Equation 14, andminpµpa�Aq, µpa
�
A1qq ¡ 0. According

to Equation 13, the value of SpA,A1q must be greater than 0.

3.2 Extending the TSK Model

For simplicity, this work only considers problems with two inputs and one output.
A typical fuzzy rule for the original TSK fuzzy model is of the following form:

Ri : IF x is Ai and y is Bi THEN z � fipx, yq, (17)

where Ai, and Bi are fuzzy sets regarding input variable x and y, and fipx, yq is a
crisp function which determines the consequence. For a given observation, the orig-
inal TSK approach first determines those rules whose antecedents overlap with the
given observation, and then obtains the firing strength (αi) of the overlapped rules
by integrating the matching degrees between observation terms and rule antecedent
terms. From this, the sub-consequence from each fired rule is computed using the
consequent function. And finally, a crisp value of output (fipx, yq) is aggregated
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by calculating the weighted average of the sub-consequences, as introduced in Sec-
tion 2.1. If a given observation does not overlap with any rule antecedent, no rule
will be fired, and thus no inference can be made.

The above issue can be addressed by extending the original TSK approach using
the similarity measure proposed in Section 3.1. Assume that a sparse rule base is
comprised of n rules, which is:

R1 : IF x is A1 and y is B1 THEN z � f1px, yq � a1x� b1y � c1,

... ...

Ri : IF x is Ai and y is Bi THEN z � fipx, yq � aix� biy � ci,

... ...

Rn : IF x is An and y is Bn THEN z � fnpx, yq � anx� bny � cn,

(18)

where ai, bi, and ci (1 ¤ i ¤ n) are constants of polynomials in rule consequences.
When a input OpA�, B�q, alternatively termed as observation, is given, a crisp out-
put can be generated by the following steps.

Step 1: Determine the matching degrees SpA�, Ai) and SpB�, Biq between the
input values (A� and B�) and rule antecedents (Ai and Bi) for each rule using
Equation 13.

Step 2: Calculate the firing degree of each rule by integrating the matching de-
grees of its antecedents and the given inputs:

αi � SpA�, Aiq ^ SpB�, Biq , (19)

where ^ is a t-norm, usually implemented by minimum operator in TSK inference
model.

Step 3: Calculate the sub-consequence of the final result from each rule based on
the given input OpA�, B�q and the polynomial in consequent.

fipA
�, B�q � ai � COGpA

�q � bi � COGpB
�q � ci . (20)

Step 4: Integrate the sub-consequences to get the final output:

z �

ņ

i�1

αifipA
�, B�q

ņ

i�1

αi

. (21)

As discussed earlier, the similarity degree between any two fuzzy sets (excludes
the two boundary sets) in the input domain is always greater than 0. Therefore,
different from traditional TSK method, which only considers those rules overlapped
with the given observation, the proposed approach takes account all rules in the rule
base to aggregate a crisp result. As a result, even if the given observation does not
overlap with any rule antecedent in the rule base, certain inference result is still able
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to be generated, which significantly improves the applicability of the original TSK
approach.

4 Experimentation

In order to validate and evaluate the proposed approach, a non-linear function, which
has been considered in [18], is re-considered in this section to demonstrate the func-
tionality of proposed system. The problem is to model the non-linear function given
below:

fpx, yq � sin
�x
π

	
sin

� y
π

	
. (22)

The fuzzy model takes two inputs, x (x P r�10, 10s) and y (y P r10, 10s), and
produces a single output z (z P r�1, 1s), as illustrated in Fig. 3. In order to enable
the employment of the revised TSK style fuzzy rule interpolation, the input domains
are normalised first. The normalisation maps any value x0 of variable x to x10 by:

x10 �
x0 �maxx

maxx�minx
, (23)

where minx is the minimum value in the domain of variable x, and maxx is the
maximum value in the domain of variable x.

−10
−5

0
5

10

−10

−5

0

5

10
−1

−0.5

0

0.5

1

Input x

Original Problem Model

Input y

O
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pu
t z

Fig. 3 Surface view of the model

In order to generate a optimal sparse TSK rule base for the model, a dense rule
base is generated first. Then some of the less important rules are removed manually
to demonstrate the working of the proposed TSK style fuzzy rule interpolation ap-
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proach. The evaluation of the proposed approach based on incomplete data remains
as active work.

4.1 TSK Rule Base Generation

A dense TSK fuzzy rule base was generated based on the given model first, by which
the entire input domain is fully covered. In order to do so, a training data set com-
prised of 500 data points have been randomly generated from Equation 22. Then,
a linear regression-based Matlab TSK rule base generation approach [19] was em-
ployed to derive a normal TSK fuzzy rule base that partitions each antecedent vari-
able domain by 7 fuzzy sets. The surface view of fuzzy partition of TSK model is
also illustrated in Fig. 5. As there are two input variables, this leads to 49 fuzzy rules
in total, as listed in Table 1 and shown in Fig. 4. Briefly, the employed data-driven
approach first grid partitions the given input domain into sub-regions. Then, for each
sub-region, a linear regression approach, the least-squares approach, is employed to
represent the data in an initial fuzzy rule. After that, linear quadratic estimation
(Kalman Filter) algorithm is used to fine tune the rules’ parameters until the satis-
factory solution is found. The data-driven approach for TSK rule base generation
is beyond the scope of this paper, and thus details are omitted here, however, more
information can be found in [20].

0

x

 

1

0.5 1

A1 A2 A3 A4 A5 A6 A7

0.167 0.333 0.667 0.833

(a) Normalised Input x

0

y

 

1

0.5 1

B1 B2 B3 B4 B5 B6 B7

0.167 0.333 0.667 0.833

(b) Normalised Input y

Fig. 4 Fuzzy partition of domain of input

4.2 Sparse TSK Rule Base Generation

The TSK rule base was then simplified to sparse rule base, by which some obser-
vations may not be covered by any rule antecedents in the rule base, to enable the
evaluation of the proposed system. In this initial work, this progress was performed
manually by removing some less important one, however, the study on sparse rule
base generation or rule base simplification was left as future work. In particular, the
size of the TSK rule base has been manually reduced 67%, which is comprised of
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Fig. 5 Fuzzy partition for TSK modelling

Table 1 Generated TSK Rule Base
IF THEN IF THEN

i x y z i x y z
1 A1 B1 0.315x� 0.249y � 0.501 26 A4 B5 1.967x� 0.164y � 0.472
2 A1 B2 1.589x� 0.112y � 0.494 27 A4 B6 1.165x� 0.098y � 0.087

3 A1 B3 1.366x� 0.075y � 0.543 28 A4 B7 �0.270x� 0.220y � 0.414

4 A1 B4 �0.296x� 0.139y � 0.566 29 A5 B1 0.064x� 1.463y � 0.442
5 A1 B5 �1.181x� 0.058y � 0.524 30 A5 B2 �0.605x� 0.437y � 0.526

6 A1 B6 �0.727x� 0.373y � 0.180 31 A5 B3 �0.486� 1.347y � 0.010

7 A1 B7 0.491x� 0.551y � 0.033 32 A5 B4 0.327x� 2.060y � 0.629
8 A2 B1 0.188x� 1.693y � 0.485 33 A5 B5 0.720x� 0.930y � 0.116

9 A2 B2 0.568x� 0.757y � 0.710 34 A5 B6 0.607x� 0.492y � 0.841
10 A2 B3 0.571x� 0.859y � 1.052 35 A5 B7 0.374x� 0.750y � 0.802

11 A2 B4 �0.044x� 1.379y � 1.099 36 A6 B1 0.283x� 1.098y � 0.260

12 A2 B5 �0.252x� 0.400y � 0.337 37 A6 B2 0.879x� 0.361y � 0.468
13 A2 B6 �0.283x� 0.630y � 0.305 38 A6 B3 0.723x� 0.840y � 0.634

14 A2 B7 0.237x� 0.595y � 0.048 39 A6 B4 0.066x� 1.217y � 0.088

15 A3 B1 0.020x� 1.385y � 0.508 40 A6 B5 �0.832x� 0.785y � 1.012
16 A3 B2 �1.100x� 0.531y � 1.136 41 A6 B6 �0.115x� 0.073y � 0.889

17 A3 B3 �0.849x� 0.848y � 1.373 42 A6 B7 0.408x� 0.100y � 0.127

18 A3 B4 0.361x� 1.323y � 0.956 43 A7 B1 0.333x� 0.342y � 0.179
19 A3 B5 1.409x� 0.460y � 0.049 44 A7 B2 1.093x� 0.063y � 0.404

20 A3 B6 0.654x� 0.663y � 0.529 45 A7 B3 0.697x� 0.396y � 0.102
21 A3 B7 �0.375x� 0.741y � 0.037 46 A7 B4 �0.308x� 0.351y � 0.554

22 A4 B1 �0.009x� 0.280y � 0.504 47 A7 B5 �0.586x� 0.322y � 0.676
23 A4 B2 �1.736x� 0.004y � 1.262 48 A7 B6 �0.021x� 0.264y � 0.163
24 A4 B3 �1.341x� 0.359y � 0.958 49 A7 B7 0.232x� 0.112y � 0.229

25 A4 B4 0.502x� 0.384y � 0.084
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23 rules: Ri, (i � t1, 3, 5, 7, 10, 11, 14, 17, 19, 21, 23, 25, 27, 30, 32, 34, 35, 39, 41,
43, 45, 47, 49u).

4.3 TSK Inference with Sparse Rule Base

To facilitate the comparison between the proposed approach and the approach pro-
posed in [18], 36 testing data points were randomly generated by Equation 22 for
testing and evaluation purpose. Note that although the considered problem in [18]
was solved by Mamdani fuzzy model, it does not affect the result of the comparison
as crisp results have been derived in this work using the defuzzification process.

To better illustrate the proposed approach, one randomly generated testing data
point OpA� � 0.299, B� � 0.441q was used as an example below to demonstrate
the working progress of the proposed approach. The distance factor in this exper-
imentation is implemented as:

DF � 1�
1

1� e�20d�5
. (24)

From the given observation Op0.299, 0.441q, and the sparse rule base gen-
erated in Section 4.2, the proposed approach first calculated the similarity de-
gree between the given input and rule antecedents (SpA�, Aiq, SpB

�, Biq) (i �
t1, 3, 5, 7, 10, 11, 14, 17, 19, 21, 23, 25, 27, 30, 32, 34, 35, 39, 41, 43, 45, 47, 49u) us-
ing Equation 13, with the results shown in the second and third columns of Table 2.

Based on the calculated similarity degree, the firing strength (FS) of each rule
was calculated according to Equation 19, as shown in the fourth column of Table 2.
From this, the sub consequence of the given observation from each rule was cal-
culated by applying the observation to the linear function of rule consequence, as
shown in the fifth column. The final result of variable (z) was then calculated by
Equation 20, 21, which is z � 0.566 in this demonstration. Note that the ground
truth of the consequence for the given observation is 0.478, then the error is 0.088.
Using the same approach, the errors for other 35 testing points were also calcu-
lated. The reconstructed model based on the sparse TSK rule base with 23 rules
(and DF � 40) is demonstrated in Fig. 6 for comparison.

4.4 Result Analysis

By following the testing design and error representation of work [18], the sum of
errors for the 36 randomly generated testing data points with different parameters
have been summarised in Table 3. Also, to enable comparison, experiments based
on sparse rule bases with 41,39,36,23 rules have also been conducted, with the re-
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Table 2 The Calculation of Similarity Degree

i SpA�, Aiq SpB�, Biq FSpA�, B�q Consequence
1 0.404 0.038 0.038 0.027
3 0.404 0.806 0.404 0.370
5 0.404 0.480 0.404 0.059
7 0.404 0.003 0.003 0.001

10 0.772 0.806 0.772 0.652
11 0.772 0.850 0.772 0.369
14 0.772 0.003 0.003 0.001
17 0.866 0.806 0.806 0.601
19 0.866 0.480 0.480 0.082
21 0.866 0.003 0.003 0.082
23 0.581 0.246 0.246 0.0008
25 0.581 0.850 0.581 0.205
27 0.581 0.033 0.033 0.013
30 0.055 0.276 0.055 0.008
32 0.055 0.850 0.055 0.021
34 0.055 0.033 0.055 0.027
35 0.055 0.003 0.055 0.002
39 0.002 0.850 0.002 0.0007
41 0.002 0.033 0.002 0.001
43 0.001 0.038 0.001 0.0005
45 0.001 0.806 0.001 0.0002
47 0.001 0.480 0.001 0.0008
49 0.001 0.003 0.001 0.0005

sults also shown in Table 3. From this table, it is clear that the proposed system
outperforms the system proposed in [18].

The experimentation results suggest that sparser rule bases always lead to large
errors, which is consistent with the intuitive expectation. It also can be seen from
the result table that the sensitivity factor (n) in distance factor indeed affects the
accuracy of the inference results. Based on the initial investigation through this ex-
perimentation, the system performs the best when the sensitivity factor is set to 40.

Table 3 Experimentation Results for Comparison

Numbers
of Rules

Proposed Approach Approach in [18]
n=20 n=40 n=60

41 3.27 2.25 2.41 2.1
39 3.24 2.28 2.41 3.1
36 3.29 2.29 2.42 5.5
23 3.36 2.96 2.99 6.0
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Fig. 6 Surface view of results based on 23 rules

4.5 Discussion

Although many FRI approaches have been proposed to enable fuzzy inference with
sparse rule bases, they were all developed on the Mamdani fuzzy model. The pro-
posed approach is the first attempt to extend this idea to TSK fuzzy inference such
that inference can be performed based on sparse rule bases. This will therefore pro-
vide an additional alternative solution for those existing applications of FRI, such
as [21] and in the same time to enjoy the advantages of TSK fuzzy inference. This
will also enables extensions of existing FRI, such as the experience-based rule base
generation and adaptation approach [21] to work with TSK inferences targeting a
wider range of applications.

The rule base for traditional TSK fuzzy model, which used in this initial work,
was generated by the linear regression algorithm, based on a randomly generated
data set. Note that a recent development on sparse rule base updating and generat-
ing has been reported[22]. Although this approach was implemented on the Mam-
dani inference, the underpinning principle can be used to generate sparse TSK rule
base. In particular, given a training data set, a sparse TSK rule base can be gen-
erated directly from data by strategically locating the important regions for fuzzy
modelling [22], thus to boost the applicability of the proposed approach.
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5 Conclusion

This paper presented a novel approach to extend TSK inference to work with sparse
rule bases. This is enabled by generating a crisp inference result based on all the
rules in the rule base rather than only those whose antecedents overlap with obser-
vations. In particular, the paper firstly proposed a new similarity degree measure by
considering an extra distance factor to obtain the similarity degree between the
given observation and the corresponding rule antecedent of each rule. Then, based
on the calculated degrees of similarity, all rules in the rule base will be considered
with different firing strengths to generate a final crisp result. The experimentation
shows that the proposed approach is not only able to deal with sparse TSK fuzzy
rule bases, but is also able to generate competitive results in reference to the existing
approach.

Although promising, the work can be further extended in the following areas.
Firstly, the value of sensitivity factor n in distance factor was arbitrarily given in
this work based on some initial experimentation, and thus it would be worthwhile
to further study how this parameter can be automatically determined or learned.
Secondly, it is interesting to study if the curvature-based sparse rule base generation
approach [22] can be used to support TSK rule base generation. Finally, it may be
worthwhile, in further research, to investigate how the proposed approach can work
with experience-based rule base generation [21].
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