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Abstract. Security of information flow is commonly understood as pre-
venting any information leakage, regardless of how grave or harmless
consequences the leakage can have. Even in models where each piece
of information is classified as either sensitive or insensitive, the classifi-
cation is “hardwired” and given as a parameter of the analysis, rather
than derived from more fundamental features of the system. In this work,
we suggest that information security is not a goal in itself, but rather a
means of preventing potential attackers from compromising the correct
behavior of the system. To formalize this, we first show how two informa-
tion flows can be compared by looking at the adversary’s ability to harm
the system. Then, we propose that the information flow in a system is
effectively information-secure if it does not allow for more harm than its
idealized variant based on the classical notion of noninterference.

1 Introduction

Information plays multiple roles in interaction between agents (be it humans or
artificial entities, e.g., software agents). First, it can be the commodity that the
agents compete for; in that case, it often defines the outcome of the “interaction
game”. Key exchange protocols are a good example here, as the involved honest
parties strive to learn the key of the other agent while at the same time pre-
venting any information leak to the intruder. Secondly, information can define
the semantic content of an action: typically, most actions specified in a security
protocol consist in transmitting or processing some information. Thirdly, infor-
mation can be a resource that enables actions and influences the outcome of the
game. This is because agents need information to construct and execute plans
that can be used to achieve their goals.

Most approaches to information flow security adopt the first perspective.
That is, information defines the ultimate goal of the interaction. Classical infor-
mation security properties specify what information must not leak, and how it
could possibly leak (i.e., what channels of information leakage are considered),
but they do not give account of why the information should not leak to the
intruder. For example, the property of noninterference [18] assumes that the
“low clearance” users cannot learn anything about the activities of the “high
clearance” users. In order to violate this, the “low” users can try to analyse
their observations and/or execute a sequence of explorative actions of their own.
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Nondeducibility on strategies [54] makes the same assumption about what should
not leak, but takes also into account covert channels that some “high” users can
use to send signals to the “low” agents according to a previously agreed code.
Anonymity in voting [10,16] captures that an observer cannot learn what candi-
date a particular has voted for by looking at the voter’s behavior, scanning the
web bulletin board, coercing the voter to hand in the vote receipt, etc.

As a consequence, the classical properties of information security can only
distinguish between relevant and irrelevant information leaks if the distinction is
given explicitly as a parameter, e.g., by classifying available actions into sensitive
and insensitive [18]. However, it is usually hard (if not impossible) to obtain such
a distinction based on the internal characteristics of the actions. We illustrate
the point below by means of a real-life example.

1.1 Motivating Example: Phone Banking

In some phone banking services, the maiden name of the user’s mother is used
as a part of authentication, e.g., to change the settings of the account. That is,
the user is typically asked to spell her name, birth-date, current address, and
her mother’s maiden name in order to change the credit limit in the account,
block/unblock ATM use in specified geographical areas, and so on. Note that
information about one’s birth-date and address is fairly easy to obtain in public
directories and/or repositories kept and marketed by various web services that
require the data for registration. So, the mother’s maiden name plays the role
of a ”strong test of identity” in this scenario.3 Consider now a user posting
an essay about some ancestor of hers on her blog, mentioning also the name
of the ancestor. If the essay is about the user’s mother, it reveals potentially
dangerous information. This is, among other things, because an intruder can
use the information to: (1) access the phone banking service, (2) authenticate
impersonating the user, (3) change (in the user’s profile) the telephone number
used for web banking password recovery and sms authentication of web banking
transactions, (4) change the web banking password of the user, and finally (5)
log in and transfer money from the user’s account.

On the other hand, if the post is about some other member of the user’s fam-
ily (father, grandmother, paternal grandfather, etc.) revealing the name of the
person is probably harmless. Note that it is impossible to distinguish between the
two pieces of information (say, the mother’s maiden name vs. the grandmother’s
maiden name) based on their internal features. Both have the same syntactic
structure of a single word (i.e., a string of characters with no blank spaces) and
the same semantic content (a family name of a person; more precisely, the fam-
ily name of the person at birth). The only difference lies in the context: the
first kind of information is used in some important social procedures, while the
second one is not.

3 This is a real-life example from the authors’ personal experience with BNP Paribas
in one of EU countries. For similar security questions, used by various phone or web
services, cf. e.g. [29].
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1.2 Information as Strategic Resource

In this paper, we claim that a broader perspective is needed to appropriately
model and analyse such scenarios. Agents compete for information not for its
own sake, but for reasons that go beyond purely epistemic advantages. An
intruder may want to know the password of a PayPal user in order to impersonate
the user and steal some real money by making a payment to his own benefit
(possibly via an account of a suitable “mule”). An industry player may need
encryption keys used in internal communication between employees of its main
competitor in order to find out about the competitor’s current business strategy.
A political activist needs the ability to learn the value of someone’s vote in order
to effectively coerce that person into voting for the candidate that the activist
is rallying for. Thus, in most security scenarios, information is a resource rather
than a commodity. More precisely, information is a commodity that the players
compete for in an “information security game” but the game is played in the
context of a “real” game where information is only a resource, enabling (some)
players to achieve their non-epistemic goals. As players obtain new information,
their uncertainty is reduced, and they increase their ability to choose a good
strategy in the real game.

What would a significant information leak be in this view? To answer the
question, we draw inspiration from the concept of the value of information from
decision theory [25]: a piece of information is worth as much as it increases the
expected payoff of the player. Similarly, an information leak is significant if it
increases the ability of the attacker to construct a damaging attack strategy in
the real game.

1.3 Main Idea and Contribution of the Paper

The main idea behind this paper can be summarized as follows. We consider
three research questions:

– How can we evaluate the ability of an adversary to harm the goal of the
system?

– How can we compare two systems with regard to the ability of attackers to
harm the goal of the system in them?

– How can we know whether the ability (or inability) of the attacker to harm
the goal of the system is because of some leakage of information to the
attacker or not?

The paper is structured to discuss these questions in order. First, we use the
concept of surely winning strategies from game theory to analyze the adversary’s
strategic ability to disrupt the correct behavior of the system. This can be a
functionality property, a security property, or a combination of the two kinds.
Also, it can arise from a goal of the “high clearance” agents or from an objective
assigned to the system by its designers and/or owners. Preventing the attacker
from having a winning attack strategy is what the designer of the system may
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want to achieve. We will see the effective security of the system as the attacker’s
inability to come up with such a strategy.

Secondly, we use the notion of effective security for comparing two systems
by looking at the strategic ability of an adversary to harm the goal of the system.

Thirdly, a successful attack strategy can exist due to flawed design of either
the control flow or the information flow in the system. Here, we are interested in
the latter. That is, we want to distinguish between vulnerabilities coming from
the control vs. the information flow, and single out systems where redesigning
the flow of information alone can make the system more secure. To this end,
we define the noninterferent idealized variant of the system, which has the same
control flow as the original system, but with the information reduced so that
the system satisfies noninterference. Then, we define the system to be effectively
information-secure if it is as good as its noninterfering idealized variant. As the
main technical result, we show that the concept is well defined, i.e., the maximal
noninterferent variant exists for every state-transition model.

We begin by presenting the preliminary concepts (models of interaction, non-
interference, strategies and their outcomes) in Section 3. In Section 4, we define
the generic concept of effective security. In Section 5, we look specifically at the
security of information flow, and show how it can be defined based on the relation
between the attacker’s observational capabilities and his ability to compromise
the goals of the system. In Section 6 we extend our results to models that are
not total on input. Finally, we summarize the work in Section 7.

2 Related Work

Various formalizations of information flow security have been proposed and stud-
ied. The classical concept here is noninterference [18] and its variations: nonde-
ducibility [49], noninference [37], restrictiveness [33], nondeducibility on strate-
gies [54], and strategic noninterference [26]. Although noninterference was orig-
inally introduced for finite transition systems, it was later redefined, generalized,
and extended in the framework of process algebras [3,43,41,42,45]. Noninterfer-
ence and its variants have been studied from different perspectives. Some works
dealt with composability of noninterference [33,56,47]. Another group of papers
studied the properties of intransitive noninterference [42,7,51,13] which is impor-
tant in systems with downgraders. Probabilistic noninterference and quantitative
noninterference have been investigated, e.g., in [21,54,34,38,31,48]. All the above
concepts assume that the information flow in the system is secure only when
no information ever flows from High to Low players. In this paper, we want to
discard irrelevant information leaks, and only look at the significant ones (in
the sense that the leaking information can be used to construct an attack on a
higher-order correctness property).

The problem of how to weaken noninterference to successfully capture secu-
rity guarantees for real systems has been also extensively studied. Most notably,
postulates and policies for declassification (called also information release) were
studied, cf. [46] for an introduction. This submission can be viewed as an at-
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tempt to determine what information is acceptable to declassify. In this sense,
our results can useful in proposing new declassification policies and evaluating
existing ones. We note, however, that the existing work on declassification are
mainly concerned by the question what information can be released, when, where,
and by whom. In contrast, we propose an argument for why it can be released.
Moreover, declassification is typically about intentional release of information,
whereas we do not distinguish between intentional and accidental information
flow. Finally, the research on declassification assumes that security is defined by
some given “secrets” to be protected. In our approach, no information is intrin-
sically secret, but the information flow is harmful if it enables the attacker to
gain more strategic ability against the goals of the system.

Parameterized noninterference [17] can be seen as a theoretical counterpart of
declassification, where security of information flow is parameterized by the ana-
lytic capabilities of the attacker. Again, that research does not answer why some
information must be kept secret while some other needs not, and in particular
it does not take strategic power of the attacker into account.

Economic and strategic analysis of security properties is a growing field
in general, cf. e.g. [6,36,12,9,55,27]. A number of papers have applied game-
theoretic concepts to define the security of information flow [32,23,24,11,15,26].
However, most of those papers [32,23,24,11] use games only in a narrow mathe-
matical sense to provide a proof system (called the game semantics) for deciding
security properties. We are aware of only a handful of papers that investigate
the impact of participants’ incentives and available strategies on the security of
information flow. In [2,22], economic interpretations of privacy-preserving be-
havior are proposed. [15] uses game-theoretic solution concepts (in particular,
Nash equilibrium) to prescribe the optimal defense strategy against attacks on
information security. In contrast, our approach is analytic rather than prescrip-
tive, as we do not propose how to manage information security. Moreover, in our
view, privacy is not the goal but rather the means to achieve some higher-level
objectives. Finally, [26] proposes a weaker variant of noninterference by allowing
the High players to select an appropriate strategy, while here we look at the
potential damage inflicted by adverse strategies of the Low users.

Our idea of looking at the unique most precise non-interfering variant of the
system is related on the technical level to [17]. There, attackers displaying dif-
ferent analytical capabilities are defined by abstract interpretation, which leads
to a lattice of noninterference variants with various strength. Attackers with
weakened observational powers were also studied in [57].

3 Preliminaries

We begin by presenting the main ingredients that we are going to use in our
proposal. First, we introduce simple models of interaction that slightly extend
the classical approach of Goguen and Meseguer. Then we recall Goguen and
Meseguer’s definition of noninterference that captures the property of secure
information flow from the “insider” agents to the “outsiders”. Finally, we present
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Fig. 1. A simple model for the phone banking example

some basic concepts from game theory (strategies, winning strategies) and theory
of temporal specification (temporal goals).

3.1 Simple Models of Interaction

Since we build our proposal around the standard notion of noninterference by
Goguen and Meseguer [18], we will use similar models to represent interaction
between actions of different agents. The system is modeled by a multi-agent
asynchronous transition network M = 〈St, s0,U,A, Obs, obs, do〉 where: St is
the set of states, s0 is the initial state, U is the set of agents (or users), A is
the set of actions (or commands), Obs is the set of possible observations (or
outputs); obs : St× U → Obs is the observation function. do : St× U × A → St
is the transition function that specifies the (deterministic) outcome do(s, u, a)
of action a executed by user u in state s. We will sometimes write [s]u instead
of obs(s, u). Also, we will call a pair (user, action) a personalized action. We
construct the multi-step transition function exec : St× (U × A)∗ → St so that,
for a finite string α ∈ (U × A)∗ of personalized actions, exec(s, α) denotes the

state resulting from execution of α from s on. We may sometimes write s
α
−→ t

instead of exec(s, α) = t, and exec(α) instead of exec(s0, α). The way models
are constructed is illustrated by the following example.

Example 1. Consider a simplified version of the phone banking scenario from
Section 1.1, where a client can access his/her account by correctly giving the
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maiden name of his/her mother. Figure 1 presents the simplest possible transi-
tion network for the scenario. Labels on transitions show the personalized actions
resulting in the transition, and the observations of users in each state are shown
beside the state. There are two users: H who has an account in the bank, and
L who may try to impersonate H . At the initial state, H enters her mother’s
maiden name when setting up her profile at the bank. To keep the graph sim-
ple, we include only two possibilities: action setMNameA fixes the name as “A”,
whereas action setMNameB sets the entry to “B”. Clearly, H can observe which
value she entered (different observations in states s1, s2). Moreover, L cannot
observe that, as L’s observations in s1, s2 are the same.

Any user can access H ’s bank account by mentioning the name correctly.
So, depending on the value that has been entered, doing either authA or authB

will grant the user with access to the bank account. Moreover, the user who
authenticated successfully can observe it, and the other user cannot even see
that the authentication took place. The user who has successfully logged in
to the account, can log out by executing the action exit. To make the graph
simpler, we also assume that giving the wrong name has no effect on the state
of the system.

Three remarks are in order. First, Goguen and Meseguer’s models define
agents’ observations based on states only, whereas it is often convenient to also
model the information flow due to observing each others’ actions. Secondly, the
models are fully asynchronous in the sense that if each user “submits” a sequence
of actions to be executed then every interleaving of the submitted sequences can
occur as the resulting behavior of the system. No synchronization is possible.
Thirdly, the models are “total on input” (each action label is available to every
user at every state), and hence no synchronization mechanism can be encoded
via availability of actions. Especially the last two features imply that models of
Goguen and Meseguer allow for representation of a very limited class of systems.

More expressive classes of models include various kinds of transition sys-
tems [53], concurrent programs [28], interpreted systems [14], reactive mod-
ules [4], multi-agent transition networks (a.k.a. concurrent game structures) [5],
and many more.

We start by using the purely asynchronous models of Goguen and Meseguer.
Then, in Section 6, we extend our results to a broader class of models by allowing
partial transition functions.

3.2 Noninterference

We now recall the standard notion of noninterference from [18]. Let U ⊆ U

and α ∈ (U × A)∗. By PurgeU (α) we mean the subsequence of α obtained by
eliminating all the pairs (u, a) with u ∈ U .

Definition 1 (Noninterference [18]). Let M be a transition network with sets
of “high clearance” agents H and “low clearance” agents L, such that H ∩ L =
∅, H ∪ L = U. We say that H is non-interfering with L iff for all α ∈ (U × A)∗
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Fig. 2. Transition network Ma in which the High player publishes her grandmother’s
maiden name on her blog. Only the observations of L are shown
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Fig. 3. Transition network Mb in which H publishes her mother’s maiden name

and all ul ∈ L, [exec(α)]ul
= [exec(PurgeH(α))]ul

. We denote the property by
NIM (H,L).

Thus, NIM (H,L) expresses that L can neither observe nor deduce what ac-
tions of H have been executed – in fact, they have no clue whether any H ’s
action was executed at all.
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Example 2. Consider a simplified version of the phone banking scenario from
Section 1.1. There are two users: H who has an account in the bank, and L who
may try to impersonate H . H can access her account by correctly giving the
maiden name of her mother. Moreover, H runs a blog, and can publish some of
her personal information on it. We consider two alternative variants: one where
H publishes her grandmother’s maiden name on the blog (Figure 2), and one
where she publishes her mother’s maiden name (Figure 3). We assume that the
possible names are A and B in the former case, and C and D in the latter.
The observations of L are shown beside each state. The observations for H are
omitted, as they will be irrelevant for our analysis.

Each model begins by initialization of the relevant names, represented by
virtual actions of agent H . Then, H publishes an essay on her blog. In the first
variant, the essay mentions the maiden name of H ’s grandmother. In the second
variant, it mentions her mother’s maiden name. After H has published the essay,
L can check the blog (action chkWeb). The resulting observation of L depends
on what is published. Then, authentication proceeds like in Example 1: in order
to log in, a user must give the correct value of H ’s mother’s maiden name.

Note that, for mathematical completeness, we must define the outcome of
every user-action pair in every state. We assume that there are two “error states”
sHErr , sLErr in models Ma and Mb (not shown in the graphs). Any action of H
not depicted in the figure leads to sHErr , and any action of L not depicted in
the figure leads to sLErr . We will later use the error states in the definition of
the players’ goals, in such a way that L will always want to avoid sLErr and H
will want to avoid sHErr . This way we can (however imperfectly) simulate some
synchronization in the restricted framework of Goguen and Meseguer.

Neither Ma nor Mb satisfies noninterference from H to L. For instance, in the
model of Figure 2, if α = 〈(H, setMNameA), (H, setGNameD), (H, publish), (L, chkWeb)〉,
the observation of L after sequence α is GNameD , but the observation of L after
PurgeH(α) = 〈(L, chkWeb)〉 is noObs , which is clearly different. ⊓⊔

Again, two remarks are in order. First, noninterference focuses solely on
the information flow in the system. If L can detect any activity of H then
noninterference is lost, regardless of the nature of the activity and the possible
uses of the information. In real systems, the impact of information flow goes
well beyond the information itself. Information is sought and preserved for a
reason, not for its own sake. Typically, L want to obtain information about H
because they want to use it to achieve their goals more effectively (i.e., conclude
a business contract, submit a better bid in an auction, get unauthorised access
to a bank account etc.). On the other hand, H want to protect their private
information from L because their goals may be in conflict with the goals of L.
This is especially the case when the Low players are labeled as “attackers” or
“intruders”.

Secondly, detecting H ’s actions may require L to engage in “diagnostic”
activity, i.e., executing a sequence of actions whose only purpose is to determine if
H was active or not. This becomes an issue when we see information as a resource
used to obtain one’s goals, rather than the goal of the user’s activity. Then,
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obtaining more information about H can be in conflict with what L must do in
order to achieve their real goals. Thus, on one hand L need more information to
construct a better strategy for their goals, but on the other hand to acquire the
information they may have to depart from the successful strategy.

3.3 Strategies and Their Outcomes

Strategy is a game-theoretic concept which captures behavioral policies that an
agent can consciously follow in order to realize some objective [52,30]. We begin
with an abstract formulation, and mention the most representative examples of
strategy types in the next paragraph. Let T (M) be the tree unfolding of M . Also
if U ⊆ U is a subset of agents, let T ′ be a U -trimming of tree T iff T ′ is a subtree
of T starting from the same root and obtained by removing an arbitrary subset of
transitions labeled by actions of agents from U . For the moment, we assume that
each subset of agents U ⊆ U is assigned a set of available coalitional strategies
ΣU . The most important feature of a strategy σU ∈ ΣU is that it constrains
the possible behaviors of the system. We represent it formally by the outcome
function outM (σU ) that removes the executions of the system that strategy σU

would never choose. Therefore, for every σU ∈ ΣU , its outcome outM (σU ) is a
U -trimming of T (M).

Let h be a node in tree T corresponding to a particular finite history of
interaction. We denote the sequence of personalized actions leading to h by
act∗(h). Furthermore, act∗(T ) = {act∗(h) | h ∈ nodes(T )} is the set of finite
sequences of personalized actions that can occur in T .

Types of strategies. Strategies are usually constructed as mappings from pos-
sible situations that the player can recognize in the game, to actions of the player
(or subsets of actions if we allow for nondeterministic strategies). Two types of
such strategies are commonly used in the literature on game-like interaction:
positional strategies and perfect recall strategies. Positional strategies represent
conditional plans where the decision is solely based on what the agents see in the
current state of the system, while perfect recall strategies capture conditional
plans where the agents can base their decisions on the whole history of the game
until that moment.

Positional strategies represent conditional plans where the decision is solely
based on what the agents see in the current state of the system. Formally, for
u ∈ U, the set of individual positional strategies of u is Σpos

u = {σu : St →
P(A) \ {∅} | ∀q, q′ ∈ St · [q]u = [q′]u ⇒ σu(q) = σu(q

′)}, where P(X) denotes
the powerset of X . Notice the “uniformity” constraint which enforces that the
agent must specify the same action(s) in states with the same observations. Now,
coalitional positional strategies for a group of agents U ⊆ U are simply tuples
of individual strategies, i.e., Σpos

U = ×u∈U (Σ
pos
u ). The outcome of σU ∈ Σpos

U

in model M is the tree obtained from T (M) by removing all the branches that
begin from a node containing state q with a personalized action (u, a) ∈ U × A

such that a /∈ σU (q).
In this work we focus on adversaries playing perfect recall strategies.

10



Perfect recall strategies. Formally, the set of perfect recall strategies of agent
u is ΣRec

u = {σu : nodes(T (M)) → P(A) \ {∅} | obsu(h) = obsu(h
′) ⇒

σu(h) = σu(h
′)}, where obsu(h) denotes the accumulate observations collected

by agent u along history h. How to define obsu for sequences of states? For
asynchronous systems, this is typically defined as obsu(q) = [q]u, obsu(h ◦ q) =
obsu(h) if last(h) = q, and obsu(h◦q) = obsu(h)◦[q]u otherwise (where ◦ denotes
the concatenation operator). That is, what u has learned along h is equivalent
to the sequence of observations she has seen, modulo removal of “stuttering”
observations. Now, coalitional strategies of perfect recall for a group of agents
U ⊆ U are combinations of individual strategies, i.e., ΣRec

U = ×u∈U (Σ
Rec
u ).

The outcome of σU ∈ ΣRec
U in model M is the tree obtained from T (M) by

removing all the branches that begin from a node h with a personalized action
(u, a) ∈ U × A such that a /∈ σU (h).

3.4 Temporal Goals and Winning Strategies

A goal is a property that some agents may attempt to enforce by selecting their
behavior accordingly. In game-theoretic models, goals are typically phrased as
properties of the final state in the game. In our case, there is no final state – the
interaction can go on forever. Because of that, we understand goals as properties
of the full temporal trace that executes the sequence of actions selected by users.
We base our approach on the concepts of paths and path properties, used in tem-
poral specification and verification of systems [8,35]. Let paths(M) denote the
set of infinite sequences of states that can be obtained by subsequent transitions
in M . Additionally, we will use pathsM (σ) as a shorthand for paths(outM (σ)).

Definition 2 (Temporal goal [35]). A goal in M is any Γ ⊆ paths(M). Note
that paths(M) = paths(T (M)), so a goal can be equivalently seen as a subset of
paths in the tree unfolding of M .

Most common examples of such goals are safety and reachability goals.

Definition 3 (Safety and reachability goals [35]). Given a set of safe states
S ⊆ St, the safety goal ΓS is defined as ΓS = {λ ∈ paths(M) | ∀i.λ[i] ∈ S}.
Moreover, given a set of target states T ⊆ St, the reachability goal ΓT can be
defined as ΓT = {λ ∈ paths(M) | ∃i.λ[i] ∈ T}.

Definition 4 (Winning strategies). Given a transition network M , a set of
agents U ⊆ U with goal ΓU , and a set of strategies ΣRec

U , we say that U have
a (surely winning) strategy to achieve ΓU iff there exists a strategy σU ∈ ΣRec

U

such that pathsM (σU ) ⊆ ΓU .

Example 3. Consider the models in Figure 2 and Figure 3, and suppose that L
wants to access H ’s bank account. This can be expressed by the reachability goal
ΓT with T = {s15, s16} as the target states. In fact, L also wins if H executes
an out-of-place action (cf. Example 2 for detailed explanation). In consequence,
the winning states for L are T = {s15, s16, sHErr}. Note that L has no strategy
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that guarantees ΓT in model Ma (although information is theoretically leaking
to L as the model does not satisfy noninterference). Even performing the action
chkWeb does not help, because L cannot distinguish between states s11 and s13,
and there is no single action that succeeds for both s11, s13. Thus, L does not
know whether to use authA or authB to get access to H ’s bank account.

On the other hand, L has a winning strategy for ΓT in model Mb. The
strategy is to execute chkWeb after H publishes her mother’s maiden name, and
afterwards do authA in states s11, s12 (after observing MNameA) or authB if
the system gets to s13, s14 (i.e., after observing MNameB). ⊓⊔

In what follows, we will look at the L’s strategic ability to harm desirable
behavior of the system.

4 Security as Strategic Property

The property of noninterference looks for any leakage of any information. If
one can possibly happen in the system, then the system is deemed insecure. In
many cases, this view is too strong. There are lots of information pieces that
can leak out without bothering any interested party. Revealing the password to
your web banking account can clearly have much more disastrous effects than
revealing the price that you paid for metro tickets on your latest trip to Paris.
Moreover, the relevance of an information leak cannot in general be determined
by the type of the information. Think, again, of revealing the maiden name
of your mother vs. the maiden name of your grandmother. The former case is
potentially dangerous since the maiden name of one’s mother is often used to
grant access to manage banking services by telephone. Revealing the latter is
quite harmless to most ends and purposes. 4

In this paper, we suggest that the relevance of information leakage should
be judged by the extent of damage that the leak allows the attackers to inflict
on the goal of the system. Thus, as the first step, we define the security of the
system in terms of damaging abilities of the Low players.

In order to assess the relevance of information flow from High to Low, we
will look at the resulting strategic abilities of Low. For this, two design choices
have to be made. First, what type of strategies are Low supposed to use? Sec-
ondly, what is the goal that they are assumed to pursue? The second question is
especially important, because typically we do not know (and often do not care
about) the real goals of potential attackers. What we know, and what we want
to protect, is the objective that the system is built for.

We follow the game-theoretic tradition of looking at the worst case and as-
suming the opponents to be powerful and adversary. Thus, we assume L to use
perfect recall strategies. Moreover, we assume that the goal of L is to violate a
given goal of the system. The goal can be a functionality or a security require-
ment, or a combination of both. Moreover, it can originate from a private goal

4 Note, however, that revealing the maiden name of your maternal grandmother is
potentially dangerous to your mother if she enables banking by telephone.
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of the High players, an objective ascribed to the system by its designer (e.g.,
the designer of a contract signing protocol), or a combination of requirements
specified by the owner/main stakeholder in the system (for instance, a bank in
case of a web banking infrastructure).

Definition 5 (Effective security). Let M be a transition network with some
Low players L ⊆ U, and let Γ be the goal of the system. We say that M is
effectively secure for (L, Γ ) iff L does not have a strategy to enforce Γ , where
X denotes the complement of set X. That is, the system is effectively secure iff
the attackers do not have a strategy that ensures an execution violating the goal
of the system. We will use ES(M,L, Γ ) to refer to this property.

Besides judging the effective security of a system, we can also use the concept
to compare the security level of two models.

Definition 6 (Comparative effective security). Let M,M ′ be two models,
and Γ be a goal in M,M ′ (i.e., Γ ⊆ paths(M) ∪ paths(M ′)). We say that:

– M has strictly less effective security than M ′ for (L, Γ ), denoted M ≺L,Γ

M ′, iff ES(M ′, L, Γ ) but not ES(M,L, Γ ). That is, L can enforce a behavior
of the system that violates its goal in model M but not in M ′. We denote
the relationship by M ≺L,Γ M ′;

– M ′ is at least as effectively secure as M for (L, Γ ), denoted M �L,Γ M ′, iff
ES(M,L, Γ ) implies ES(M ′, L, Γ );

– M is effectively equivalent to M ′ for (L, Γ ), denoted M ≃L,Γ M ′, iff either
both ES(M,L, Γ ) and ES(M ′, L, Γ ) hold, or both do not hold.

Thus, if in one of the models L can construct a more harmful strategy then
the model displays lower effective security than the other model. Conversely, if
both models allow only for the same extent of damage then they have the same
level of effective security. This way, we can order different alternative designs of
the system according to the strategic power they give away to the attacker.

Example 4. Consider modelsMa,Mb from Figure 2 and Figure 3, and let the goal
Γ be to prevent L from accessingH ’s bank account. Thus, Γ is the safety goal ΓS

with S = St \ {s15, s16, sHErr}, and therefore Γ = ΓT with T = {s15, s16, sHErr}.
As we saw in Example 3, L has no strategy to guarantee Γ in Ma, but she has a
surely winning strategy for Γ in Mb. Thus, Mb is strictly less effectively secure
than Ma, i.e., Mb ≺L,Γ Ma.

We will further use the concept to compare security of alternative information
flows based on the same (or similar) action-transition structures.

5 Effective Information Security

We will now propose a scheme that allows to determine whether a given model
of interaction leaks relevant information or not. We use the idea of refinement
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checking from process algebras, where a process is assumed correct if and only if
it refines the ideal process [40]. A similar reasoning scheme is also used in analysis
of multi-party computation protocols (a protocol is correct iff it is equivalent to
the ideal model of the computation [20]).

To this end, we need a suitable notion of refinement or equivalence, and a
suitable definition of the ideal model. The former is straightforward: we will use
the ≃L,Γ relation. The latter is more involved. If the reference model ascribes
too much observational capabilities to the Low players then the concept will
be ill-defined (it will classify insecure systems as secure). If the reference model
assigns Low with too little information then the concept will be useless (no
realistic system will be ever classified as secure).

In what follows, we first explain and define the concept of an idealized variant
of a model. Then in Section 5.2 we do our first take on the idealized variant by
defining the blind variant of a model. In Section 5.3 we first define the non-
interfering idealized variant of a model.

5.1 Ability-Based Security of Information Flows

Definition 6 allows for comparing the effective security of two alternative infor-
mation flows. We will say two models differ only in their information flow if
they are transition equivalent :

Definition 7 (Transition-equivalent models). The action-transition frame
of a model M , which we denote by FM , is the network M minus the observation
functions obs(·). We will denote the set of models based on frame F by M(F ).
Two models are transition-equivalent iff they are based on the same frame.

Then , (F, obs) ≺ (F, obs′) says that the observation function obs leaks more
relevant information than obs′ in the transition-action frame F . However, we
usually do not want to compare several alternative information flows. Rather,
we want to determine if a single given model M reveals relevant information
or not. How can we achieve that? A natural idea is to compare the effective
security of M to an ideal model, i.e.a model that is transition equivalent to
the original model and moreover leaks no relevant information by construction.
Then, a model is effectively information-secure if it has the same level of effective
security as its idealized variant:

Definition 8 (Effective information security). Let M be a transition net-
work with some Low players L ⊆ U, and let Γ be the goal of the system. More-
over, let Ideal(M) be the idealized variant of M . We say that M is effectively
information-secure for (L, Γ ) iff M ≃L,Γ Ideal(M).

How do we construct the idealized variant of M? The idea is to “blur” obser-
vations of Low so that we obtain a variant of the system where the observational
capabilities of the attackers are minimal. What observational capabilities are
“minimal”? We start with the following, rather naive definition of idealization.
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5.2 Blinding the Low Players: First Attempt

By using the idealized model, we intend to distinguish to what extent the dam-
aging abilities of Low are due to the “hard” actions available in the system, and
to what extent they are due to the available information flow. In other words,
we want to see how far one can minimize the strategic ability of the Low players
by reducing their observational abilities in the model.

The first take to define an idealized model is to assume that L never sees
anything. To this end, we simply assume that obs(s, L) is the same in all states
s ∈ St.

Definition 9 (Idealized model, first take). Having a transition network M
based on frame F , and a set of players L, we define the blind variant of M as
M ′ = (F, obs′) such that obs′(q, l) = obs(q′, l) for every q, q′ ∈ St and l ∈ L.

In many scenarios this is too much. In particular, a Low agent may have
access to perfectly legitimate observations that are inherent to maintaining their
private affairs, such as checking the balance of their bank account, listing the
files stored on in their private file space, etc.

5.3 Idealized Models Based on Noninterference

Below we propose a weaker form of “blinding” that will be used to single out the
damaging abilities that are due to Low observing High’s actions, rather than due
to any observations that Low can happen to make. We begin by recalling the
notion of term unification which is a fundamental concept in automated theorem
proving and logic programming [39]. Given two terms t1, t2, their unification
(t1 ≡ t2) can be understood as a declaration that, from now on, both terms refer
to exactly the same underlying object. In our case the terms are observation
labels from the set Obs. A unification can be seen as an equivalence relation on
observation labels, or equivalently as a partitioning of the labels into equivalence
classes. The application of the unification to a model yields a similar model where
the equivalent observations are “blurred”.

Definition 10 (Unification of observations). Given a set of observation la-
bels Obs, a unification on Obs is any equivalence relation U ⊆ Obs× Obs.

Given a model M = 〈St, s0,U,A, do, Obs, obs〉 and a unification U ⊆ Obs ×
Obs, the application of U to M is the model U(M) = 〈St, s0,U,A, do, Obs′, obs′〉,
where: Obs′ = {[o]U | o ∈ Obs} replaces Obs by the set of equivalence classes
defined by U , and obs′(q, u) = [obs(q, u)]U replaces the original observation in q
with its equivalence class for any u ∈ U.

Example 5. Figure 4 depicts the model obtained from Mb by unifying observa-
tions MNameA and MNameB into {MNameA,MNameB}, observations init and
noObs into {init , noObs}, and observation accessL into {accessL}.

Our reference model for M will be the variant of M where noninterference
is obtained by the minimal necessary “blurring” of L’s observations.
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Fig. 4. An example of unification of observations.

Definition 11 (Noninterferent idealized model). Having a transition net-
work M and a set of “low” players L, we define the noninterfering idealized
variant of M as U(M) such that:

(i) NIU(M)(H,L), and
(ii) for every U ′ ( U it is not the case that NIU ′(M)(H,L).

We need to show that the concept of noninterferent idealized model is well
defined. The proof is constructive, i.e., given a model M , we first show how one
can build its idealized variant, and then show that it is unique.

Theorem 1. For every transition network M , there is always a unique unifica-
tion U satisfying properties (i) and (ii) from Definition 11.

The proof of Theorem 1 needs some preliminary steps. As the first step, we
recall and adapt the concept of unwinding relations [19,44,50]. Unwinding is
constructed analogously to the standard notion of bisimulation, and requires
Low’s uncertainty to be a fixpoint of an appropriate relation transformer. Un-
winding relations are important because they characterize noninterference in
purely structural terms. Moreover, existence of an unwinding relation is usually
easier to verify than proving noninterference directly. We then use the concept
of unwinding relation to define relation R∗

M on the states of a transition network
M . We use this relation to construct and prove the uniqueness of the idealized
variant of M .

Definition 12 (Unwinding for Noninterference [50]). Let M be a tran-
sition network, H a set of High agents, and L a set of Low agents. Then,
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∼NIL ⊆ St × St is an unwinding relation iff it is an equivalence relation sat-
isfying the conditions of output consistency (OC), step consistency (SC), and
local respect (LR). That is, for all states s, t ∈ St:

(OC) If s ∼NIL
t then [s]L = [t]L;

(SC) If s ∼NILt, u ∈ L, and a ∈ A then do(s, u, a) ∼NIL
do(t, u, a);

(LR) If u ∈ H and a ∈ A then s ∼NIL
do(s, u, a).

Proposition 1 ([50]). NIM (H,L) iff there exist an unwinding relation ∼NIL

on the states of M that satisfies (OC), (SC) and (LR).

Next we define R∗
M on the states of a transition network M . The definition

goes as follows: first we relate any two states of M ′ if one of them can be reached
from the other one by a sequence of High personalized actions. Then in each step
we relate the pair of states that are reached by a similar Low personalized action
from any two states that are already related. Also, we enforce transitivity on the
set. We continue adding related states until the relation becomes stable. The
mathematical definition of R∗

M is as follows:

Definition 13 (Relation R∗
M for a transition network M). Given a model

M = 〈St, s0,U,A, do, Obs, obs〉 and sets of High players H and Low players L,
we define the relation R∗

M ⊆ St×St as the least fixpoint of the following function
F , transforming relations on St:

F (R) = R0 ∪

{(t1, t2) | ∃(s1, s2) ∈ R, l ∈ L, a ∈ A.do(s1, l, a) = t1, do(s2, l, a) = t2} ∪

{(t1, t2) | ∃s ∈ St.(t1, s) ∈ R&(s, t2) ∈ R},

where (s1, s2) ∈ R0 iff for some sequence of personalized actions of High players

α, either s1,
α
−→ s2, or s2

α
−→ s1.

It is straightforward to see that R∗
M is an equivalence relation (for reflexivity,

notice that for any s ∈ St, s
α
−→ s for α = 〈〉, and therefore (s, s) ∈ R0). We will

now show that if M satisfies noninterference then R∗
M is the smallest unwinding

relation. Conversely, if M does not satisfy noninterference then R∗
M indicates

pairs of states that must bear the same observations for Low if we want to
make the model M non-interferent. We will later show that it is sufficient to
unify Low’s observations in states connected by R∗

M in order to obtain a non-
interferent variant of M . In consequence, R∗

M generates the minimal unification
that achieves the task.

The following proposition shows that if M satisfies the noninterference prop-
erty, then R∗

M is a subset of any unwinding relations on the states of M .

Proposition 2. Given a model M and sets of players H and L, if ∼NIL
is an

unwinding relation on the states of M and relation R∗
M is defined as in Definition

13, then R∗
M ⊆ ∼NIL .

Proof. See the Appendix.
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Now we show that if the model M , L players have the same observations at
any two states related by R∗

M , then M satisfies noninterference.

Lemma 1. In a model M with sets of players H and L, if for any l ∈ L,
s1, s2 ∈ St it is the case that (s1, s2) ∈ R∗

M implies obs(s1, l) = obs(s2, l),
then R∗ is an unwinding relation on the states of M and therefore it holds that
NIM (H,L).

Proof. We prove this by showing that R∗
M satisfies the conditions of Definition

12: The relation R∗
M is an equivalence relation, condition (OC) follows from

the assumption of this lemma, and conditions (SC) and (LR) follow from the
definition of the relation R∗

M . Therefore it holds that NIM (H,L).

And as the last step before introducing the unification of function U∗
M , we

show that if M satisfies noninterference, then R∗
M is an unwinding relation on

its states (and by Proposition 2 it is in fact the smallest unwinding relation).

Proposition 3. In a model M with sets of players H and L, if NIM (H,L) then
R∗

M is an unwinding relation on states of M .

Proof. See the Appendix.

Now, by using relation R∗
M , we define the unification of observations U∗

M that
will provide the noninterferent idealized variant of M .

Definition 14 (Unification for noninterference U∗
M). We define the uni-

fication of observations U∗
M ⊆ Obs × Obs as follows. For any o1, o2 ∈ Obs, we

have (o1, o2) ∈ U∗
M iff there exist s1, s2, t1, t2 ∈ St and l ∈ L such that:

(a) obs(s1, l) = o1,
(b) obs(s2, l) = o2,
(c) (s1, t1) ∈ R∗

M ,
(d) (s2, t2) ∈ R∗

M , and
(e) obs(t1, l) = obs(t2, l).

It then holds that U∗
M (M) satisfies the noninterference property (Proposi-

tion 4) and no refinement of U∗
M achieves that (Proposition 5). The following

lemma states that if two states are related by R∗
M , then their observations are

unified by U∗
M .

Lemma 2. In a model M , for any s1, s2 ∈ St and l ∈ L, if (s1, s2) ∈ R∗
M then

(obs(s1, l), obs(s2, l)) ∈ U∗
M .

Proof. See the Appendix.

As the next step, we show that U∗
M (M) satisfies the noninterference property.

Proposition 4. Given a model M , and U∗
M (M) = 〈St, s0,U,A, do, Obs∗, obs∗〉

defined as in Definition 14 on M , it holds that NIU∗

M
(M)(H,L).

Proof. See the Appendix.
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Fig. 5. The noninterfering idealized variant of the banking model Mb

As the last step before proving Theorem 1, we show that U∗
M is the minimal

unification that makes the model M noninterfering.

Proposition 5. Given a model M , and sets of players H and L, for any unifica-
tion of observations U where U(M) = 〈St, s0,U,A, do, Obs′, obs′〉, if NIU(M)(H,L)
then U∗

M ⊆ U .

We can now complete the proof of Theorem 1.

Proof (of Theorem 1). We want to prove that, given a model M , set of players
H and L, and any unification of observations U , if U(M) is a noninterfering
idealized variant of M , then U = U∗

M . Assume that U(M) is a noninterfering
idealized variant ofM . By property (i) of Definition 11 and Proposition 5 we infer
that U∗

M ⊆ U . Also, by Proposition 4, we have that NIU∗

M
(M)(H,L). Therefore

by property (ii) of Definition 11 it holds that U = U∗
M .

From now on, we assume that Ideal (M) refers to the noninterfering idealized
variant of M .

Example 6. Consider models Ma,Mb in Figure 2 and Figure 2. We recall that
both models are not noninterferent. In the noninterferent idealized variant of
Ma, observations noObs , MnameC , and MNameD of L are unified and re-
placed by the equivalence class {noObs,MNameD ,MNameD}. The idealized
variant of Mb is constructed analogously by unification of noObs, MnameA,
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and MNameB . Figure 5 shows the idealized variant Ideal(Mb) of Mb. Clearly,
L has no surely winning strategy to guarantee Γ = ΓT for T = {s15, s16, sHErr}
in both Ideal (Ma) and Ideal (Mb).

Recall from Example 4 that L has no winning strategy for Γ in Ma, but she
has one in Mb. So, Ma ≃L,Γ Ideal (Ma), but Mb 6≃L,Γ Ideal(Mb). Thus, Ma is
effectively information-secure for (L, Γ ), but Mb is not. ⊓⊔

It is important to notice that noninterferent variants are indeed idealizations:

Proposition 6. For every M , L, and Γ , we have that M �L,Γ Ideal(M).

Proof. Note that because M and Ideal (M) differ only in their observation func-
tions. Also we have that for any pair of states s1, s2 ∈ St, if [s1]

M
L = [s2]

M
L then

[s1]
Ideal(M)
L = [s2]

Ideal(M)
L . Therefore all the strategies of L in Ideal(M) are also

L’s strategies in M . Thus for any for any goal Γ ⊆ paths(M), if L have a surely
winning strategy to enforce Γ in Ideal (M) then they also have a surely winning
strategy for Γ in M , ⊓⊔

.

Finally, note that the concept of noninterference in our construction of effec-
tive security can be in principle replaced by an arbitrary constraint of informa-
tion leakage. The same reasoning scheme could be applied to noninference, nond-
educibility, strategic noninterference, and so on. The pattern does not change:
given a “classical” property P of information security, we define the idealized
variant of M through the minimal unification U such that that U(M) satisfies
P . Then, M is effectively secure in the context of property P iff it is strategically
equivalent to U(M).

We leave the investigation of which information security properties have
unique minimal unifications for future work.

6 Extending the Results to a Broader Class of Models

As mentioned before, the models of Goguen and Meseguer are “total on in-
put,” i.e., each action label is available to every user at every state. This makes
modeling actual systems very cumbersome. We have seen that in the previ-
ous examples where spurious states had to be added to the analysis to allow
for some synchronization between actions of different agents. In this section, we
consider a broader class of models, and show how our results carry over to the
more expressive setting. That is, we consider partial transition networks (PTS)
M = 〈St, s0,U,A, Obs, obs, do〉 which are defined as in Section 3.1, except that
the transition function do : St × U × A ⇀ St can be a partial function. By
do(s, u, a) = undef we denote that action a is unavailable to user u in state
s; additionally, we define act(s, u) = {a ∈ A | do(s, u, a) 6= undef } as the set of
actions available to u in s. Moreover, we assume that players are aware of their
available actions, and hence can distinguish states with different repertoires of
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choices – formally, for any u ∈ U, s1, s2 ∈ St, if obs(s1, u) = obs(s2, u) then
act(s1, u) = act(s2, u).

We begin by a suitable update of the definition of noninterference:

Definition 15 (Noninterference for partial transition networks). Given
a PTS M and sets of agents H,L, such that H ∪L = U, H ∩L = ∅, we say that
H is non-interfering with L iff for all α ∈ (U×A)∗ and all ul ∈ L, if exec(α) 6=
undef then [exec(α)]ul

= [exec(PurgeH(α))]ul
. We denote the property also by

NIM (H,L), thus slightly overloading the notation.

Note that Definition 1 is a special case of Definition 15. We now define the
noninterferent idealized variant based on the total extension of a PTS.

Definition 16 (U-total extension). Given a PTS M = 〈St, s0,U,A, Obs, obs, do〉
and a subset of users U ⊆ U, we define the U -total variant of M as totalU (M) =
〈St, s0,U,A, Obs, obs, do′〉 where the transition function do′(.) is defined as fol-
lows: for every s ∈ St, v ∈ U and a ∈ A, do′(s, v, a) = s if for some u ∈ U we
have v = u and do(s, u, a) = undef , otherwise do′(s, v, a) = do(s, v, a).

Definition 17 (Noninterferent idealized model for PTN). Given a partial
transition network M and a set of “low” players L, we define the noninterferent
idealized variant of M as U(totalL(M)) such that:

(i) NIU(totalL(M))(H,L), and
(ii) for every U ′ ( U it is not the case that NIU ′(totalL(M))(H,L).

The uniqueness theorem is then stated similar to Theorem 1:

Theorem 2. For every partial transition network M , there is always a unique
unification U satisfying properties (i) and (ii) from Definition 17.

The proof is similar to the proof of Theorem 1, with the difference that we
use R∗

totalL(M) instead of R∗
M for constructing the idealized variant. However, as

we use the concept of unwiding relation as the basis for using the R∗ relation
for constructing the idealized variant, we first need to modify the definition
of the unwinding relation in Definition 12 and its corresponding proposition,
Proposition 1 to adapt them to the new model:

Definition 18 (Unwinding for Noninterference in PTN). Let M be a
transition network, H a set of High agents, and L a set of Low agents. Then,
∼NIL ⊆ St × St is an unwinding relation iff it is an equivalence relation sat-
isfying the conditions of output consistency (OC), step consistency (SC), and
local respect (LR). That is, for all states s, t ∈ St:

(OC) If s ∼NIL
t then [s]L = [t]L;

(SC) If s ∼NIL
t, u ∈ L, and a ∈ A then a ∈ act(s, u) implies do(s, u, a) ∼NIL

do(t, u, a);
(LR) If u ∈ H and a ∈ A then a ∈ act(s, u) implies s ∼NILdo(s, u, a).

Proposition 7. NIM (H,L) iff there exist an unwinding relation ∼NIL
on the

states of M that satisfies (OC), (SC) and (LR).
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The rest of the proof of Theorem 2 follows analogously.

Example 7. With PTS, the scenario from Example 2 can be modeled directly,
without spurious states that ruled out illegal transitions. Thus, our models
Ma,Mb for the two variants of the scenario are now exactly depicted in Fig-
ures 2 and 3.

The noninterferent idealized variants of Ma (resp. Mb) is again obtained by
the unification of observations noObs, MnameC , and MNameD (resp. noObs ,
MnameA, andMNameB). Clearly, L has no surely winning strategy to guarantee
Γ = ΓT for T = {s15, s16} in Ma, Ideal (Ma), and Ideal(Mb). Moreover, he has
a surely winning strategy in Mb. In consequence, Ma is effectively information-
secure for (L, Γ ), but Mb is not. ⊓⊔

The noninterferent variant was indeed an idealization in simple transition net-
works of Goguen and Mesguer. Is it still the case in partial transition networks?
That is, is it always the case that L has no more abilities in Ideal(M) than in
M? In general, no. On one hand, L’s observational capabilities are more limited
in Ideal(M), and in consequence some strategies in M are no longer uniform in
Ideal(M). On the other hand, unification U∗ possibly adds new transitions to
M , that can be used by L in Ideal(M) to construct new strategies. However, un-
der some reasonable assumptions, Ideal(M) does provide idealization, as shown
in the two propositions below.

Proposition 8. Let M be a PTN such that for every state s in M there is
at least one player u /∈ L with act(s, u) 6= ∅. Then, for any Γ , we have that
M �L,Γ Ideal(M).

Proposition 9. For any PTN M and safety goal Γ , we have M �L,Γ Ideal(M).

7 Conclusions

In this paper, we introduce the novel concept of effective information security.
The idea is aimed at assessing the relevance of information leakage in a system,
based on how much the leakage enables an adversary to harm the correct behav-
ior of the system. This contrasts with the common approach to information flow
security where revealing any information is seen as being intrinsically harmful.
We say that two information flows are effectively equivalent if the strategic abil-
ity of the adversary is similar in both of them. Moreover, one of them is less
effectively secure than the other one if the amount of information leaked to the
adversary in it increases the damaging ability of the adversary.

In order to determine how critical the information leakage is in a given sys-
tem, we compare the damaging ability of the adversary to his ability in the
idealized variant of the model. We define idealized models based on noninterfer-
ence, and show that the construction is well defined. We prove this first for the
deterministic, fully asynchronous transition networks of Goguen and Meseguer,
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and then extend the results to structures that allow for a more flexible mod-
eling of interaction. The construction includes an algorithm that computes the
idealized variant of each model in polynomial time wrt the size of the model.

Note that the concept of noninterference in our construction of effective se-
curity can be in principle replaced by an arbitrary property of information flow.
The same reasoning scheme could be applied to noninference, nondeducibility,
strategic noninterference, and so on. The pattern does not change: given a prop-
erty P , we define the idealized variant of M through the minimal unification
U such that U(M) satisfies P . Then, M is effectively information-secure in the
context of property P iff it is strategically equivalent to U(M). We leave the
investigation of which information security properties have unique minimal uni-
fications for future work. Moreover, we are currently working on a more refined
version of effective information security based on coalitional effectivity func-
tions [1], in which the strategic ability of the adversary is not only compared at
the initial state of the system, but across the whole state space.
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9. Ahto Buldas and Triinu Mägi. Practical security analysis of e-voting systems. In
Proceedings of IWSEC, volume 4752 of Lecture Notes in Computer Science, pages
320–335. Springer, 2007.

10. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24:84–90, 1981.

11. A.S. Dimovski. Ensuring secure non-interference of programs by game semantics.
In Security and Trust Management, pages 81–96. Springer, 2014.

12. Y. Dodis and T. Rabin. Cryptography and game theory. In Algorithmic Game
Theory, chapter 8, pages 181–208. 2007.

13. Kai Engelhardt, Ron van der Meyden, and Chenyi Zhang. Intransitive noninter-
ference in nondeterministic systems. In Proceedings of CCS, pages 869–880. ACM,
2012.

23



14. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, 1995.

15. A. Fielder, E. Panaousis, P. Malacaria, C. Hankin, and F. Smeraldi. Game the-
ory meets information security management. IFIP Advances in Information and
Communication Technology, 428:15–29, 2014.

16. A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large
scale elections. In Proceedings of AUSCRYPT, pages 244–251, 1992.

17. R. Giacobazzi and I. Mastroeni. Abstract non-interference: parameterizing non-
interference by abstract interpretation. In Proceedings of POPL, pages 186–197.
ACM, 2004.
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Appendix

This appendix contains the proofs of some of the propositions and lemmas in
the paper.

Proof (Proof of Proposition 2). As the relation R∗
M is constructed by adding

related states in several steps, we do the proof by induction on these steps. We
show that firstly R0 ⊆ ∼NIL , and secondly all related pair of states added in
each step also is in ∼NIL

.
Induction base: If (s1, s2) ∈ R0, then for some sequence of personalized actions

of High players α, either s1,
α
−→ s2, or s2

α
−→ s1, hence by property (LR) , and

transitivity of the unwinding relation it holds that (s1, s2) ∈ ∼NIL
. Therefore

R0 ⊆ ∼NIL .
Induction step: We show that if Ri ⊆ ∼NIL

, then F (Ri) ⊆ ∼NIL
holds.

F (Ri) is constructed by union of three sets. We show that all these three sets
are subsets of ∼NIL

:
i- Ri ∈ ∼NIL

by the induction step assumption.

ii- If (s1, s2) ∈ Ri then by induction step assumption (s1, s2) ∈ ∼NIL . So for
any t1, t2 ∈ St, a ∈ A and l ∈ L such that do′(s1, l, a) = t1 and do′(s2, l, a) = t2,
by property (SC) of unwinding relation it holds that (t1, t2) ∈ ∼NIL

. Therefore:

{(t1, t2) | ∃(s1, s2) ∈ R, l ∈ L, a ∈ A·

do′(s1, l, a) = t1, do
′(s2, l, a) = t2}

⊆ ∼NIL .

iii- If (t1, s) ∈ Ri and (s, t2) ∈ Ri, then by induction step assumption it holds
that (t1, s) ∈ ∼NIL

and (t2, s) ∈ ∼NIL
. Therefore by transitivity of ∼NIL

it
entails that (t1, t2) ∈ ∼NIL

, hence:

{(t1, t2) | ∃s ∈ St · (t1, s) ∈ R and (s, t2) ∈ R}

⊆ ∼NIL
.

By i, ii, and iii we infer that F (Ri) ⊆ ∼NIL
, and therefore by induction base

and induction step we have that R∗
M ⊆ ∼NIL

.

Proof (Proof of Proposition 3). If NIM (H,L) then by Proposition 1 there is
an unwinding relation ∼NIL

on the states of M . By Proposition 2 R∗
M ⊆ ∼NIL

and therefore for any l ∈ L, s1, s2 ∈ St such that (s1, s2) ∈ R∗
M it is the case

that (s1, s2) ∈ ∼NIL
and therefore obs(s1, l) = obs(s2, l). Hence by Lemma 1

R∗
M is an unwinding relation on the states of M .
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Proof (Proof of Lemma 2). Assume (s1, s2) ∈ R∗
M and l ∈ L. For proving

that (obs(s1, l), obs(s2, l)) ∈ U∗
M we verify the conditions in Definition 14. By

taking obs(s1, l) = obs1 and obs(s2, l) = obs2, conditions (a) and (b) are sat-
isfied trivially. If we take t1 := s2 and t2 := s2, then (s1, t1) ∈ R∗

M by the
proposition assumption and (s2, t2) ∈ R∗

M by reflexivity of R∗
M . These prove

conditions (c) and (d). Condition (e) is also satisfied because t1 = t2. Therefore
(obs(s1, l), obs(s2, l)) ∈ U∗

M .

Proof (Proof of Proposition 4). For the proof, we are going to use Lemma 1
and show that for any two states s1, s2 and l ∈ L, if (s1, s2) ∈ R∗

U∗

M
(M) then

obs∗(s1, l) = obs∗(s2, l). First notice that R∗
M = R∗

U∗

M
(M), because M and

U∗
M (M) differ only in their observation functions and the definition of R∗ re-

lation does not depend on the observation function of the model. So for any
(s1, s2) ∈ R∗

U∗

M
(M) and l ∈ L we have that (s1, s2) ∈ R∗

M , and by Lemma 2 it

follows that (obs(s1, l), obs(s2, l)) ∈ U∗
M , and therefore obs∗(s1, l) = obs∗(s2, l).

Hence by Lemma 1 it holds thatR∗

U∗

M
(M) is an unwinding relation for U∗

M (M)’and

therefore NIU∗

M
(M)(H,L).

Proof (Proof of Proposition 5). Assume U is a unification of observations
for model M such that NIU(M)(H,L) and assume (obs1, obs2) ∈ U∗

M . We show
that (obs1, obs2) ∈ U and hence U∗

M ⊆ U . By the definition of U∗
M , there ex-

ists s1, s2, t1, t2 ∈ St, l ∈ L such that obs(s1, l) = obs1, obs(s2, l) = obs2,
(s1, t1) ∈ R∗

M , (s2, t2) ∈ R∗
M and obs(t1, l) = obs(t2, l). By NIU(M)(H,L) and

Proposition 3 we have that R∗

U(M) is an unwinding relation for U(M). So as

R∗
M = R∗

U(M), R
∗
M is also an unwinding relation for U(M). Therefore by prop-

erty (OC) of unwinding relation, from (s1, t1) ∈ R∗
M and (s2, t2) ∈ R∗

M we entail
that obs′(s1, l) = obs′(t1, l) and obs′(s2, l) = obs′(t2, l). Using the definition of
obs′(.) we have that (obs(s1, l), obs(t1, l)) ∈ U and (obs(s2, l), obs(t2, l)) ∈ U .
So, as obs(t1, l) = obs(t2, l) and by transitivity property of U , we infer that
(obs(s1), obs(s2)) ∈ U , and it follows that (obs1, obs2) ∈ U . Therefore U∗

M ⊆ U .

Proof (Proof of Proposition 7). “⇐⇐⇐” Suppose that there exists an unwinding

relation ∼NIL satisfying (OC), (SC) and (LR). We show for all α ∈ (U × A)∗

and ul ∈ L, if exec(α) 6= undef then [exec(α)]ul
= [exec(PurgeH(α))]ul

. We
prove by induction on the size of α.
Induction base: α = 〈〉. In this case PurgeH(α) = 〈〉, and therefore exec(α) =
exec(PurgeH(α)) = s0. By the reflexivity of ∼NIL

we have that exec(α) ∼NIL
exec(PurgeH(α)).

Induction step: Suppose for some α ∈ (U × A)∗, exec(α) 6= undef implies
exec(α) ∼NILexec(PurgeH(α)). We show that for all a ∈ A and u ∈ U it holds
that exec(α ◦ (u, a)) 6= undef implies exec(α ◦ (u, a)) ∼NIL

exec(PurgeH(α ◦
(u, a))) (where ◦ denotes the concatenation operator). We consider three cases:
i) If exec(α ◦ (u, a)) = undef then it holds that exec(α ◦ (u, a)) 6= undef implies
exec(α ◦ (u, a)) ∼NILexec(PurgeH(α ◦ (u, a))).
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ii) If exec(α ◦ (u, a)) 6= undef and u ∈ L then firstly notice that exec(Purge(α ◦
(u, a)) 6= undef . Because by induction step assumption and (OC) it holds that
obs(exec(α), u) = obs(exec(PurgeH(α)), u) and so because a ∈ act(exec(α), u),
by our model restrictions it holds that a ∈ act(exec(PurgeH(α), u)). Therefore
by exec(α) ∼NIL

exec(PurgeH(α)) (induction step assumption), u ∈ L, and (SC)
we have exec(α ◦ (u, a)) ∼NIL

exec(PurgeH(α ◦ (u, a))).
iii) If exec(α ◦ (u, a)) 6= undef and u ∈ H then by (LR) property of ∼NIL

,
exec(α) ∼NIL

exec(α◦(u, a)). By this, induction step assumption and PurgeH(α) =
PurgeH(α ◦ (u, a)) we infer that exec(α ◦ (u, a)) ∼NILexec(PurgeH(α ◦ (u, a))).

“⇒⇒⇒” Suppose that NIM (H,L), we show there exists an unwinding relation on
the states of M . Consider the relation ∼ defined as follows: for any s, t ∈ St,
s ∼ t if for all α ∈ (U×A)∗ and uL ∈ L, it holds that if exec(s, α) 6= undef and
exec(t, α) 6= undef , then [exec(s, α)]uL

= [exec(t, α))]uL
. It can easily be seen

that ∼ is an equivalence relation, we prove that it satisfies (OC), (SC) and (LR)
properties.
(OC): If s ∼ t and we take α = 〈〉, by [exec(s, α)]uL

= [exec(s, α)]uL
it holds

that [s]uL
= [t]uL

and therefore ∼ satisfies (OC).
(SC): Suppose that for some s, t ∈ St, u ∈ L and a ∈ A such that s ∼ t, it holds
that do(s, u, a) 6= undef and do(s, u, a) 6∼ do(t, u, a). Then there exists α ∈ (U×
A)∗, uL ∈ L such that exec(do(s, u, a), α) 6= undef , exec(do(t, u, a), α) 6= undef ,
and [exec(do(s, u, a), α)]uL

6= [exec(do(t, u, a), α))]uL
. Therefore [exec(s, ((u, a) ◦ α)]uL

6=
[exec(t, ((u, a) ◦ α)]uL

, which contradicts s ∼ t.
(LR): Suppose that for some s ∈ St, u ∈ H and a ∈ A, it holds that do(s, u, a) 6=
undef and s 6∼ do(s, u, a). Then there exists α ∈ (U × A)∗, uL ∈ L such
that exec(do(s, u, a), α) 6= undef , exec(s, α) 6= undef , and [exec(s, α)]uL

6=
[exec(do(s, u, a), α))]uL

. Because s is reachable, we have that s = exec(β) for
some β ∈ (U×A)∗. Therefore [exec(β ◦ α)]uL

6= [exec(β ◦ (u, a) ◦ α))]uL
. But this

is a contradiction because by NIM (H,L) it holds that [exec(β ◦ (u, a) ◦ α))]uL
=

[exec(PurgeH(β ◦ (u, a) ◦ α)))]uL
and [exec(β ◦ α))]uL

= [exec(PurgeH(β ◦ α)))]uL

and we have that PurgeH(β ◦ (u, a) ◦ α) = PurgeH(β ◦ α).
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