
Formal Analysis of Vulnerabilities of Web
Applications Based on SQL Injection?

(Extended Version)

Federico De Meo1, Marco Rocchetto2, and Luca Viganò3

1 Dipartimento di Informatica, Università degli Studi di Verona, Italy
2 iTrust, Singapore University of Technology and Design, Singapore

3 Department of Informatics, King’s College London, UK

Abstract. We present a formal approach for the analysis of attacks that
exploit SQLi to violate security properties of web applications. We give a
formal representation of web applications and databases, and show that
our formalization effectively exploits SQLi attacks. We implemented our
approach in a prototype tool called SQLfast and we show its efficiency
on four real-world case studies, including the discovery of an attack on
Joomla! that no other tool can find.

1 Introduction

Motivations. According to OWASP (the Open Web Applications Security
Project [28]), SQL injection (SQLi) is the most critical threat for the security
of web applications (web apps, for short), and MITRE lists improper SQLi neu-
tralization as the most dangerous programming error [7]. SQLi was first defined
in [14] but, also due to the increasing complexity of web apps, SQLis can still be
very difficult to detect, especially by manual penetration testing (pentesting).

A number of SQLi scanners have thus been developed to search for injection
points and payloads, most notably sqlmap [34], which allows human pentesters
to find SQLi vulnerabilities by testing the web app with different payloads, and
sqlninja [35], which focuses on SQL server databases. The combination of the two
provides the pentester with a powerful tool suite for SQLi detection. However,
neither sqlmap nor sqlninjia (nor other state-of-the-art vulnerability scanners)
are able to detect vulnerabilities linked to logical flaws of web apps [12]. This
means that even if a scanner can concretely discover a SQLi, it can’t link SQLi
to logical flaws that lead to the violation of a generic security property, e.g., the
secrecy of data accessible only bypassing an authentication phase via a SQLi.

Moreover, determining that a web app is vulnerable to SQLi (and which
payload to exploit) might not be enough for the app’s overall security. Consider,
for instance, a web app that relies on legacy code (when an update is not feasible,
e.g., because the legacy code is a core part of the system). If a SQLi is found, an
investigation should be performed to understand when the SQLi can be exploited
? This work was carried out while Marco Rocchetto was at the Università di Verona.

ar
X

iv
:1

60
5.

00
35

8v
2

 [
cs

.C
R

]
 1

0
A

ug
 2

01
6

and whether this compromises security. This investigation is carried out manually
by the pentester in charge of identifying attack scenarios, thus potentially leading
to additional omissions, errors and oversights in the security analysis.

A number of formal approaches for the security analysis of web apps, based
on the Dolev-Yao (DY) intruder model [11], have been implemented recently,
e.g., [1,3,5,32,38]. However, the DY model is typically used to reason about
security protocols and the cryptographic operators they employ (e.g., for asym-
metric or symmetric cryptography, modular exponentiation or exclusive-or) but
abstracting away the contents of the payloads of the messages. As a consequence,
these approaches cannot properly identify or exploit new SQLi payloads since
reasoning about the contents of the messages is crucial to that end.

Contributions. In this paper, we present a formal approach for the analysis
of attacks that exploit SQLi to violate security properties of web apps. We define
how to formally represent web apps that interact with a database and how the
DY intruder model can be extended to deal with SQLi.

In order to show that our formalization can effectively be used to detect
security vulnerabilities linked to SQLi attacks, we have developed a prototype
tool called SQLfast (SQL Formal AnalysiS Tool) and we show its efficiency by
discussing four real-world case studies. Most notably, we use SQLfast to detect an
attack on Joomla! which, to the best of our knowledge, no state-of-the-art SQLi
scanner (e.g., sqlmap or sqlninja) can detect since they do not automatically link
different attacks in one attack trace (i.e., they do not find logical flaws linked to
SQLi attacks). Another key novel aspect of SQLfast is that it can detect complex
attacks in which a first SQLi attack provides data for a second subsequent attack.
We show that SQLfast allows us to exploit SQLi combining it with logical flaws
of web apps to report sophisticated attack traces in a few seconds and can also
deal with Second-Order SQLis, which are notoriously difficult to spot.

Note that we do not search for new SQLi payloads but rather we exploit
attacks related to SQLi. This allows us to analyze how an intruder can violate
a security property by exploiting one or more attacks related to a SQLi, e.g.,
credential bypass. Nevertheless, we also (automatically) test our attacks against
the web app under analysis and then we use state-of-the-art tools (i.e., sqlmap
and curl) to detect the actual payload of all the SQLis exploited.

Organization. In § 2, we discuss a concrete example that shows why we
can’t stop at the identification of a SQLi. In § 3, we give a categorization of SQLi
vulnerabilities to highlight the main aspects that characterize SQLi, based on
which, in § 4, we provide our formalization. In § 5, we discuss SQLfast and its
application real-world case studies. We discuss related work in § 6 and conclude
in § 7. The appendix contains a proof that the formalization of the database
correctly handles all the SQLis categorized in § 3, as well as full details on our
specifications and case studies.

2 Why can’t we stop at the identification of a SQLi? The
case of Joomla!

The identification of a SQLi entry point is generally considered as a satisfactory
finish line when dealing with SQLi in web apps. So, one could ask: why not
simply stop there (and why bother reading the rest of this paper)? The answer
is that a SQLi can be a serious threat only if it can be exploited and only if it
can be used for carrying out an attack. A full understanding of how a potential
SQLi vulnerability can afflict the security of a web app is essential in order to
implement proper countermeasures. For instance, consider Joomla! [23], a PHP-
based Content Management System that allows users to create web apps through
a web interface. Joomla! supports different databases, e.g., MySQL [27] and
PostgreSQL [31], and a recent assessment [20] has shown that versions ranging
from 3.2 to 3.4.4 suffer from a SQLi vulnerability [8].

The execution of a state-of-the-art scanner such as sqlmap on Joomla! can
correctly find the vulnerability. However, sqlmap (or any other scanner for SQLi)
cannot tell how that SQLi can be usefully exploited in order to carry out a con-
crete attack. A general description of the consequences of a SQLi attack is given
in [9,29] but, whenever a SQLi entry point is found, the penetration tester has to
manually investigate the kind of damages that SQLi might cause to the web app.
The researchers who discovered the vulnerability of Joomla! [20] also described
how it could be exploited in a real attack: it would allow an intruder to perform
a session hijack and thus steal someone’s session but would not allow him to
create his own account or modify arbitrary data on the database. The explo-
ration of different attack scenarios has been entirely performed manually since
no automatic tool shows the outcome of the exploitation of a SQLi vulnerability
on a specific web app. But who guarantees that a post-SQLi attack can actually
be performed and that all possible attacks based on the SQLi have been taken
into account by the penetration tester?

This is why we can’t stop at the identification of a SQLi and why we can’t
address the post-SQLi attacks with a manual analysis. Our approach addresses
this by automating the identification of attacks that exploit a SQLi.

3 SQL injections

Some general classifications based on the payloads of the SQLi (and the exploita-
tion scenarios) have been put forth, e.g., [16,28]. Based on these, we can divide
SQLi techniques into 6 different categories: (i) Boolean-Based, (ii) Time-Based,
(iii) Error-Based, (iv) UNION Query, (v) Second-Order and (vi) Stacked Queries.

Given that our formalization strictly depends on the attack that the intruder
wants to perform by using a particular type of SQLi, we now define the two
attacks that we have considered:4

4 Other possible attacks (e.g., by exploiting a Cross-Site Scripting (XSS) inside the
payload of some SQLi) are outside the scope of our approach for now, cf. § 7.

– Authentication bypass attack : the intruder bypasses an authentication check
that a web app performs by querying a database.

– Data extraction attack : the intruder obtains data from the database that he
should not be able to obtain.

Based on these attack definitions, we will now describe the main details of each
category, emphasizing those aspects that are relevant for our formalization. The
following table summarizes which attacks can be exploited by a SQLi technique
on a specific type of SQL query. Three remarks are in order: (1) since all state-
of-the-art DBMS are vulnerable to SQLi, we won’t distinguish between different
dialects of SQL and simply write “SQL query”; (2) for brevity, in the table we
write AB for authentication bypass and DE for data extraction; (3) a scenario in
which the intruder extracts information in order to bypass an authentication is
considered to be a data extraction attack.

BB TB EB UQ SO SQ
AB DE AB DE AB DE AB DE AB DE AB DE

SELECT X X X X X X X X X
UPDATE X X X X X X X X X
DELETE X X
INSERT X X X X

3.1 Boolean-Based SQLi (BB)

In a BB, an intruder inserts into an HTTP parameter, which is used by a
web app to write a SQL query, one or more valid SQL statements that make
the WHERE clause of the SQL query evaluate to true or false. By interacting with
the web app and comparing the responses, the intruder can understand whether
or not the injection was successful. In this way, an intruder can perform both
authentication bypass and data extraction attacks.

In an authentication bypass attack, the intruder injects a statement that
changes the truth value of a WHERE clause in a SQL SELECT query, creating a
tautology. If a web app performs an authentication check querying a database,
this attack will then trick the database into replying in an affirmative way even
when no (or wrong) authentication details have been presented by the intruder.

In a data extraction attack, the intruder obtains data from the database. The
term “extraction” is used in standard terminology but it can be misleading. With
a BB, an intruder exploits the “Boolean behavior” of a web app inferring whether
the original query returned some tuples or not. When the intruder understands
how the web app behaves when some tuples or no tuples are returned, he can start
the “extraction”. In this case, the intruder asks whether a certain information is
stored in the database and, based on the behavior of the web app, he knows if
the information is actually inside the database.

As an example, consider a web app that presents a page p1 containing a
form. After the submission of the form, the web app creates a query for the
database searching for an entry that matches the instantiation of the form fields
submitted. Assume that the web app replies with p2 if a tuple is returned, p1
otherwise. If the intruder injects a payload such as or username=admin in one

of the fields of the form and is redirected to p2, then he will know that admin is
a valid value of the database.

3.2 Time-Based SQLi (TB)

TB is quite similar to BB: the only difference is that TB does not need the
web app to have a Boolean behavior. The intruder appends a timing function to
the validity value of a Boolean clause. Thus, after the submission of the query by
the web app, the database waits for a predefined amount of time for a tuple as
a response to the query; the intruder can then infer whether the Boolean value
of the query was true or false observing a delay in the response. As an example,
consider a web app that replies with a page p1 independent of whether a tuple is
returned by the database (e.g., a search page). The intruder can inject a payload
like or if(username=admin) wait 60s and, if admin is a valid entry for the
column username, the intruder will observe a delay of around 60 seconds before
receiving any answer. In real case scenarios, a BB is preferable as it is faster
than a TB. Timing is not part of our formalization (see § 4), so the abstract
attack traces generated by our tool will not distinguish between BB and TB.

3.3 Error-Based SQLi (EB)

When error pages are exposed to the Internet, some error messages of the
database could be exposed, thus giving an intruder the possibility of exploiting
an EB. In this type of injection, the intruder tricks the database into per-
forming operations that result in an error and then he extracts information
from the error messages produced by the database. EB is generally used to
perform a data extraction attack by inducing the generation of an error that
contains some information stored in the database. As an example, consider an
intruder who wants to find out the first username in the table usernames. He
can inject, in a login form, a payload that tricks the web app into evaluating
the query SELECT * FROM (SELECT username FROM usernames LIMIT 1) AS
tbl. The web app generates Error: table adminUsername unknown because
an invalid table is selected (resulting from the inner query SELECT username
FROM usernames LIMIT 1), where adminUsername is the first username found
in the user’s table.

3.4 UNION Query-Based SQLi (UQ)

UQ is a technique in which an intruder injects a SQL UNION operator to
join the original query with a malicious one. The aim is to overwrite the val-
ues of the original query and thus, in order to extract information, UQ re-
quires the web app to print the result of the query within the returned HTML
page. This behavior allows the intruder to actually extract information from the
database by reading it within the web app itself. As an example, consider the
query SELECT nickname FROM users WHERE id=$id. An intruder can inject $1
UNION ALL SELECT creditCardNumber FROM CreditCardTable as id and thus
obtain all the credit card numbers.

3.5 Second-Order SQLi (SO)

SO is an injection that has no direct effect when submitted but that is ex-
ploited in a second stage of the attack. In some cases, a web app may correctly
handle and store a SQL statement whose value depends on the user input. Af-
terwards, another part of the web app that doesn’t implement a control against
SQLi might use the previously stored SQL statement to execute a different query
and thus expose the web app to a SQLi. Automated scanners generally fail to
detect this type of SQLi (e.g., [34,35]) and may need to be manually instructed
to check for evidence that an injection has been attempted. As an example, con-
sider a web app in which there is a user with username admin (stored into the
database). If this web app has a registration page that allows special characters
in the username, an intruder can register a new user with username admin’#
(where we assume that # is the comment delimiter character) and log in as
admin’#. If the intruder changes the password of the user admin’#, a query like
UPDATE users SET password=’123’ WHERE username=’admin’#’ is executed.
The Database Management System (DBMS) will interpret the WHERE clause as
username=’admin’ (because everything after the # is considered a comment),
so that the intruder succeeds in changing the password of the admin user.

3.6 Stacked Queries SQLi (SQ)

With a SQ,
an intruder can execute an arbitrary query different from the original one.

The semicolon character ; enables the intruder to concatenate a different SQL
query to the original one. By doing so, the intruder can perform data extraction
attacks as well as execute whatever operation is allowed by the database. With a
SQ, an intruder can perform any of the SQLis described above. Thus, whenever
we refer to all the SQLis in our categorization, we exclude SQ as it is already
covered by the other ones.

Prevention techniques.Avoiding SQLi attacks is theoretically quite straight-
forward. In fact, developers can use sanitization functions or prepared state-
ments. Roughly speaking, the general idea is to not evaluate the injected string
as a SQL command.

A sanitization function takes the input provided by the user and removes
(i.e., escapes) all the special characters that could be used to perform a SQLi.
Sanitization functions are not the best option when dealing with SQLi because
they might not be properly implemented or do not consider some cases.

Prepared statements are the best option for preventing SQLis. They are
mainly used to execute the same query repeatedly maintaining efficiency. How-
ever, due to their inner execution principle (if properly implemented) they are
immune to SQLi attacks. The execution of a prepared statement consists mainly
in two steps: preparation and execution. In the preparation step, the query is
evaluated and compiled, waiting for the parameters for the instantiation. During
the execution step, the parameters are submitted to the prepared statement and
handled as data and thus they cannot be interpreted as SQL commands.

4 A Formalization of SQLi

We will now describe how we formally represent a web app that interacts with
a database using insecure SQL queries and/or a sanitized (i.e., secure) query. In
§ 4.1, we propose an extension of the DY model that can deal with SQLi.5 We
formalize the database in § 4.2, the web app in § 4.3, and the goals in § 4.4. For
brevity and readability, we omit many details and only give pseudo-code that
should be quite intuitive. See the appendix for full details and the ASLan++
code of our formalizations and case studies, along with a brief introduction to
ASLan++.

4.1 The DY web intruder

We extend the standard DY intruder model [11] for security protocol analysis.
Suppose that we want to search for an authentication bypass attack via BB (§ 3),
in which the intruder injects a statement that changes the truth value of a WHERE
clause in a SQL SELECT query, creating a tautology. To formalize this, we need
to extend the DY intruder by giving him the ability to send a concatenation
of Boolean formulas made of conjunctions and disjunctions. This characteristic
highlights an important difference between the classical DY intruder and the
enhanced version we are proposing: our web intruder works with abstract payloads
rather than messages. Due to technical details (e.g., implementation constraints
and non-termination problems), implementing such a modification is impractical.
We have thus allowed the intruder to concatenate the exact payload, or true,
and defined a Horn clause to model that whenever a formula has or true injected
by the intruder, it evaluates to true.

We can rephrase the same reasoning in the case of BB for data extraction
attacks, in which the intruder tricks the web app into asking to the database if a
particular information is present; for example, instead of or.true, the intruder
adds or username=admin. The DBMS will reply in an affirmative way only if
there is a tuple in the database with admin as username. To allow the intruder
to perform all the SQLis described in § 3, we thus extend the DY intruder with
one constant sqli that represents any SQLi payload (e.g., or.true).

4.2 The database

We give a general formalization of a database that can be used in any speci-
fication to exploit SQLi when searching for security flaws in a web app. Our
formalization aims to be both compact, to avoid state-space explosion prob-
lems, and general enough not to be tailored to a given technology (e.g., MySQL

5 This formal representation is intended to work with tools that perform symbolic
analysis. We don’t formalize the honest client behavior and we assume the DY in-
truder to be the only agent able to communicate with the web app. The DY intruder
will eventually perform honest interactions if needed to achieve a particular config-
uration of the system.

or PostgreSQL). Hence, we don’t represent the database content, the database
structure, the SQL syntax nor access policies specified by the DBMS. Rather, we
formalize messages sent and received and queries, and a database can be seen as
a network node that interacts only with the web app through a secure channel.6

Definition 1. Messages consist of variables V , constants c (sqli, etc.), con-
catenation M.M , function application f(M) of uninterpreted function symbols
f to messages M (e.g., tuple(M)), and encryption {M}M of messages with
public, private or symmetric keys that are themselves messages.7 We define that
M1 is a submessage of M2 as is standard (e.g., M1 is a submessage of M1.M3,
of f(M1) and of {M1}M4) and, abusing notation, write M1 ∈M2.

Definition 2. A query is valid (respectively, not valid) when, evaluated by a
database, it returns one or more (respectively, zero) tuples.

We formalize the validity of SQL queries by means of the Horn clause:
inDB(M.sqli) =⇒ true, where, in order to represent a SQLi attack, the pred-
icate inDB() holds for a message (which represents a SQL query) whenever it is
of the form M .sqli. This states that the intruder has injected a payload sqli
into the query parameters (expressed as a variable) M .

Incoming messages.We consider, as incoming messages, only SQL queries via
raw SQL and via sanitized queries. The parameters of queries are represented by
a generic variable SQLquery. In case of a raw SQL query, they are wrapped by
an uninterpreted function query(); if a sanitized query has been implemented
then we use another uninterpreted function sanitizedQuery(). These two un-
interpreted functions allow the modeler to “switch on/off” the possibility of a
SQLi in some point of the app.

Database responses. The tuple generated by the database as a response to
a raw SQL query is represented by an uninterpreted function tuple() over a
message representing a SQL query. Given that we do not model the content of
the database, this function represents any (and all) database data.

Whenever the database receives a SQL query query(SQLquery) from the web
app, the uninterpreted function tuple(SQLquery) is sent back to the web app to
express that a tuple, as a response to the query, has been found. This response is
returned only if inDB() holds; in all other cases, a constant no_tuple is returned
to represent that no tuples are returned in the responses of the database.

If the database receives a sanitized query, no injection is possible. Hence,
the database does not return any useful information to the web app; instead,
a constant no_tuple is returned. Since the intruder cannot perform a SQLi in
presence of a sanitized query, we also assume that a sanitized query can be
6 Nothing prevents us from relaxing this assumption but this would give the DY
intruder the possibility of performing attacks (e.g., man-in-the-middle attacks) that
are rare in web app scenarios.

7 In this paper we do not need to distinguish between the different kinds of encrypted
messages, but we could of course do by following standard practice.

executed only with legitimate parameters, i.e., as a function of tuple() (this is
because we are interested in modeling only SQLi scenarios).

The pseudo-code representing the database behavior is given in Listing 1.1,
where, here and in the following, we write DB for the database. DB is a network
node and we assume it to be always actively listening for incoming messages. It is
defined by two main, mutually exclusive, branches of an if-elseif statement: one
guard is in line 1 in which DB is waiting (expressed in Alice-and-Bob notation)
for a sanitized query and the other in line 3 in which it is waiting for a raw SQL
query. If a sanitized query is received, then there is no SQLi. Given that we only
consider dishonest interactions, the data sent back to the intruder will not in-
crease his knowledge. In other words, no SQLis are permitted and any permitted
query will just give to the intruder the possibility of continuing his execution
with the web app but won’t add any extra information to his knowledge.

Listing 1.1. Pseudo-code of a DBMS.
1 if(WebApp -> DB: sanitizedQuery(SQLquery)){
2 if(SQLquery == tuple (*)) DB -> WebApp: no_tuple;
3 }elseif(WebApp -> DB: query(SQLquery)){
4 if(inDB(SQLquery)) DB -> WebApp: tuple(SQLquery);
5 if(!(inDB(SQLquery))) DB -> WebApp: no_tuple ;}

One may argue that a valid query should indeed add extra information to
the intruder knowledge. However, we do not model the content of the database
and any information received by the intruder as a response to a sanitized query
is included in the action that the web app performs after this database response.
Thus, in our formalization, the query in SQLquery is not valid and then the
no_tuple constant is sent back in line 2. We also add a constraint in line 2
that any query received (SQLquery) must be of the form tuple(*), i.e., as a
function of the content of the database where * acts as a wildcard character
that matches any possible parameter. This is because, in the case of a sanitized
query, the intruder cannot perform a SQLi and we exclude the case in which the
DY intruder sends a random query just to continue the execution with the web
app. Instead, he has to either know a tuple of the database or data as functions
of a tuple of the database. In the case the intruder knows tuple(Query), he will
just receive no_tuple, i.e., correctly no data has been leaked to the intruder.

The second branch of the initial if-elseif statement (line 3) handles raw
queries. If a raw query is submitted, then there are two cases: the raw query
is not valid (line 5, where ! formalizes the negation) and then, as in the previous
case, no_tuple is sent back (line 5); the raw query is valid (line 4) and a tuple is
sent back (line 4). Given that all these queries are sent from the intruder, we can
assume they have a malicious intent. One may argue that, in a real case scenario,
the database is not actually returning a tuple but, given that an intruder could
repeatedly send a SQLi exploiting that injection point, it is fair to assume that
the database is sending all the tuples it contains, i.e., tuple(SQLquery).

4.3 The web app

As for the database, the web app is a node of the network that can send and
receive messages. The web app communicates with a client or with the database

(it can, potentially, also communicate with other apps but we do not consider
that explicitly here). We assume only one database is present because adding
other databases would not add any further useful information for finding attacks
based on SQLi. The proof is straightforward. Since we do not consider database
contents and structures, if we wanted to have two database models, then we
would have two exact copies of the formalization given in § 4.2. Since we have
assumed that there exists a long-lasting secure relation between the database
and the web app, no man-in-the-middle attacks are considered. Therefore, any
attack found that involves the communication with one of the two databases
could be found by considering the other database only.

A specification of a web app can be seen as a behavioral description of the
web app itself (along with its interaction with the database). A modeler can
define this specification from the design phase documentation of the engineering
process of the web app. A model can also be created in a black box way by just
looking at the HTTP messages exchanged from a client and the web app and
guessing the communication with the database.

We now consider the main aspects that allow for the modeling of a web app.

Sending and receiving messages. A web app can communicate with a client
and the database. We abstract away as many details as possible of the web pages
and thus any incoming message will only contain: (i) parameters of forms ex-
pressed as variables, e.g., Client -> WebApp: Username.Password, and (ii) the
web page itself expressed as a constant, e.g., WebApp -> Client: dashboard
where dashboard represents a web page. Note that, in any response of the
web app, if the content of the response is linked to a response of the database,
i.e., tuple(Query) (where the query is either SELECT, UPDATE or DELETE), then
tuple(Query) must be included in the response. Otherwise, we would end up
representing a scenario in which no content of the tuple received by the database
is included in, or linked to, the web page and thus no SQLi would be present.

Queries. The web app creates either a sanitized query or a raw query. Then,
the web app wraps the variables representing the query parameters with either
sanitizedQuery() or query(), both uninterpreted functions, and afterwards
sends the SQL query to the database. Note that we only need to represent the
parameters of a SQL query since we do not distinguish between different queries
in the database formalization. If the query does not depend on parameters sent
from a client, the intruder cannot exploit it to perform a SQLi. The SQL query
used to query the database is represented as a constant, resulting in the database
always replying with no_tuple (as inDB(), in this case, is never valid).

If statements. We use them mainly to decide, based on which kind of message
has been received, what the web app has to reply. For example, if the database
replies with a tuple tuple(Query), then the web app might return a specific
page along with tuple(Query) or might return a different page.

Assignments.A constant or a message can be assigned to a variable: Variable
:= constant|message. Assignments are, e.g., useful to save incoming messages.

4.4 Goals

Finally, we define the security properties we want the model to satisfy. As we
discussed in § 3, we consider two main attacks: authentication bypass and data
extraction. We give the formalization in Listing 1.2, where iknowledge is a pred-
icate that represents the knowledge of the intruder. By using the LTL “globally”
operator [], we can specify an authentication check by stating that the intruder
should not have access to a specific page (dashboard in Listing 1.2), whereas
data extraction is represented by specifying that the intruder should not increase
his knowledge with data from the database (i.e., as function of tuple()).

Listing 1.2. Authentication bypass and data extraction goals of the BB example.
[](!(iknowledge(dashboard))); %authentication bypass
[](!(iknowledge(tuple (*)))); %data extraction

5 SQLfast, Case Studies and Results

To show that our formalization can be used effectively to detect security flaws
linked to SQLi attacks, we have developed SQLfast, a prototype SQL Formal
AnalysiS Tool [33]. In [33] we also provide a friendly web-based user interface that
helps the modeler in creating the web-app model. SQLfast takes in input a spec-
ification written in ASLan++ [39], the modeling language of the AVANTSSAR
Platform for security protocol analysis [3], and, by using the ASLan++ trans-
lator, generates a transition system in the low-level language ASLan [4]. It then
calls the model checker CL-AtSe [37] and generates an Abstract Attack Trace
(AAT) as a MSC if an attack was found. SQLfast automatically detects which
type of SQLi has been exploited and, in an interactive way, generates the curl
or sqlmap [34] commands to concretize the attack reported.

As a concrete proof-of-concept, we have applied SQLfast to (i) WebGoat [30],
(ii) Damn Vulnerable Web Application (DVWA) [13], (iii) Joomla! 3.4.4, and (iv)
Yet Another Vulnerable Web Application (YAVWA), an ad-hoc testing environ-
ment that we have developed and that also includes a SO SQLi example. The
case studies provided by WebGoat and DVWA might sound limited but capture
all possible scenarios with respect to SQLi attack combinations considered in
this paper — recall that our formalization for SQLi attacks does not find SQLi
payloads, but focuses on vulnerabilities based on SQLi. We tested SQLfast in or-
der to show all the combinations that could be represented by considering SQLi
for (1) authentication bypass, (2) data extraction and (3) data extraction with
reuse of the extracted information. Our case studies are quite heterogenous, so
it should not be difficult to map other case studies to one of these scenarios we
have considered.

We have implemented the case studies in ASLan++ to be able to apply
the model checkers of the AVANTSSAR Platform (in particular, CL-AtSe), but
other model checkers implementing the Dolev-Yao intruder model could be used
as well, provided that their input language is expressive enough. For the sake of
brevity, we discuss here only the case studies Joomla!, YAVWA and SO, which

show how our formalization can find attacks linked to the logic of a web app that
is vulnerable to SQLi attacks. The type of attacks that SQLfast can detect and
concretize cannot be detected by state-of-the-art tools for SQLi such as sqlmap.

5.1 Case Study: Authentication Bypass via Data Extraction

We now discuss two scenarios in which our approach detects attacks that state-
of-the-art tools, such as sqlmap, are not able to detect and exploit. In the first
scenario, the intruder exploits a recent SQLi vulnerability found (by manual
inspection only) in Joomla! [8]. The second scenario (YAVWA) is a variant of
the first and shows a concatenation of different attacks.

Joomla!. A recent assessment has shown that the Content History mod-
ule of Joomla! suffers from a SQLi vulnerability that allows a remote (non-
authenticated) user to execute arbitrary SQL commands [8]. The pseudo-code
in Listing 1.3 represents the following behavior: a remote user visits the Content
History component (line 1). The web app queries the database with the user
supplied data (2). If some tuples are generated (3), the web app sends to the
client the history page viewHistory along with the tuple() function (4). The
web app then has two possible ways of authenticating the user (5–9): by using
credentials or cookies. If username and password are provided (5), the web app
applies a non-invertible hash function hash() to the password, and queries the
database to verify the credentials (6).8 If the credentials are correct, the adminis-
tration panel is sent to the user (7). In case of a cookie session, the user provides
a cookie that the web app checks querying the database (8). If the cookie is
valid, the administration panel is sent back to the user (9).

Listing 1.3. Pseudo-code representing the Joomla! scenario.
1 User -> WebApp: com_contenthistory.history.Listselect;
2 WebApp ->DB: query(com_contenthistory.history.Listselect);
3 if(DB -> WebApp: tuple(SQLquery)){
4 WebApp -> User: viewHistory.tuple(SQLquery); }
5 if(User -> WebApp: Username.Password){
6 WebApp -> DB: sanitizedQuery(Username.hash(Password));
7 if(DB -> WebApp: no_tuple){ WebApp -> User: adminPanel; }}
8 if(User -> WebApp: Cookie){ WebApp -> DB: sanitizedQuery(Cookie);
9 if(DB -> WebApp: no_tuple){ WebApp -> User: adminPanel; }}

As goal, we check if there exists an execution in which the intruder can access
the administration panel represented by the constant adminPanel.

Listing 1.4. Authentication bypass for the Joomla! scenario.
[](!(iknowledge(adminPanel)));

SQLfast generates the AAT in Listing 1.5, which is an authentication bypass
attack where the intruder hijacks a user session by using a cookie instead of
login credentials. In fact, the web app applies a hash function to the password
before verifying the credentials submitted by the user. The hash function would
8 The web app applies a hash function to the password before checking whether cre-
dentials are correct because Joomla! stores the passwords hashed into the database.

not allow an intruder to blindly submit a password extracted from the database,
the only possibility is using a valid cookie value.9 The intruder performs a data
extraction and retrieves the information to access the administration panel (1–4),
and uses it to hijack a user session by submitting a valid cookie value (5–8).

Listing 1.5. Abstract attack trace that extracts data with a SQLi in order to bypass
the authentication of the Joomla! scenario.
1 i -> WebApp : com_contenthistory.history.sqli
2 WebApp -> DB : query(com_contenthistory.history.sqli)
3 DB -> WebApp : tuple(com_contenthistory.history.sqli)
4 WebApp -> i : viewHistory.tuple(com_contenthistory.history.sqli)
5 i ->WebApp : cookie.tuple(com_contenthistory.history.sqli)
6 WebApp -> DB : sanitizedQuery(tuple(com_contenthistory.history.sqli))
7 DB -> WebApp : no_tuple
8 WebApp -> i : adminPanel

YAVWA. We have designed a variant of Joomla! to show that a SQLi can be
exploited to compromise a part of a web app that does not directly depend on
databases. YAVWA provides an HTTP form login and a login by HTTP basic
authentication [19] configured with the .htaccess [2] file. The credentials used
for the HTTP basic authentication, which are stored in the .htpasswd file, are
the same as the ones employed by the users to login into the web app (i.e., the
same as the ones stored in the database).10 The intruder’s goal is to access the
area protected by the HTTP basic authentication login. Obviously, he cannot
perform a SQLi to bypass HTTP basic authentication since the login proce-
dure doesn’t use SQL. Bypassing the login page, without knowing the correct
credentials, doesn’t allow the intruder to gain access to the secure folder.

We have defined this scenario in the pseudo-code in Listing 1.6. The client
sends his personal credentials (Username.Password) to the web app (1). The web
app creates a query that it sends to the database (2) for verifying the submitted
credentials. If tuples are generated from the database (3), a dashboard page is
returned to the client along with the function tuple() (4), otherwise, the web
app redirects the user to the login page (5). At this point, the web app waits to
receive correct credentials that will allow the client to access the secure folder
secureFolder (6). Given that the credentials are the same as the ones stored in
the database, and the database content is represented with the function tuple(),
we can also represent credentials here with the function tuple().11

Listing 1.6. Pseudo-code representing the YAVWA scenario.
1 User -> WebApp: Username.Password;
2 WebApp -> DB: query(Username.Password);

9 We do not consider the possibility of brute forcing the hashed password, in accor-
dance with the perfect cryptography assumption of the DY model.

10 One might see this as a bad practice and thus consider this whole example to be
unrealistic. However, this scenario can easily be categorized as a security misconfigu-
ration (5th most critical security issue according to [28]). Moreover, recent events [15]
have shown, once again, how humans tend to reuse passwords across multiple logins.

11 We recall from § 4.2 that tuple() represents an abstraction of any data that can
be extracted from the database. This means that whenever a web app requires any
data in the domain of the database, we can write them as a function of tuple().

3 if(DB -> WebApp: tuple(SQLquery)){
4 WebApp -> User: dashboard.tuple(SQLquery);
5 }elseif(DB -> WebApp: no_tuple){ WebApp -> User: login; }
6 if(User -> WebApp: tuple (*)){ WebApp -> User: secureFolder; }

As goal, we check if the intruder can reach secureFolder. SQLfast generates the
AAT given in Listing 1.7, in which the intruder successfully retrieves information
from the database and uses such information to access a protected folder. The
intruder performs a data extraction attack using SQLi (1–4), which allows him to
retrieve information stored in the database, and then (5–6) submits the extracted
data and accesses the restricted folder secureFolder.

Listing 1.7. Abstract attack trace of the YAVWA case study.
1 User -> WebApp: Username (4).sqli
2 WebApp -> DB : query(Username (4).sqli)
3 DB -> WebApp : tuple(Username (4).sqli)
4 WebApp -> i : dashboard.tuple(Username (4).sqli)
5 i -> WebApp : tuple(Username (4).sqli)
6 WebApp -> i : secureFolder

5.2 Case Study: Second-Order SQLi (SO)

We now show that our formalization is flexible enough to represent SOs, which
are notoriously very difficult to detect and exploit.

This scenario is part of YAVWA and implements a web app that allows users
to register a new account. In the registration process, the web app executes an
(INSERT) SQL query that stores the user’s credentials into a database. The in-
truder can create an account submitting malicious credentials that don’t result
in a SQLi but will trigger an injection later on in the web app. After the regis-
tration phase, the user submits a request for accessing an internal page. The web
app performs another SQL query using the same parameters previously used in
the registration process (i.e., the registration credentials). At this point, a page
is showed together with the injection and the intruder can exploit a SO.

We have formalized this scenario in Listing 1.8: a client sends a registration
request along with his personal credentials (Username and Password) to the web
app (1). The web app sends a query containing the client’s credentials to the
database (2). The web app checks if it receives a response from the database
containing the data resulting from the execution of the query tuple(SQLquery)
submitted by the web app (3). The web app sends back to the client the page
registered (4). Here, the web app does not forward tuple() because the reg-
istration query is an INSERT (see § 4.2). The client asks for a page (5), which
makes the web app use previously submitted values of Username and Password
to execute a new SQL query (6). Here is where the SO takes place; the variables
embedded in the query in (6) will trigger a SO. The database executes the query
and sends back the results to the web app (7). Finally (8), the web app sends
(by using a SELECT query) to the client the requested page and the tuple().12

12 Recall that we don’t represent SQL syntax in our models, so we don’t explicitly
represent the type of the SQL according to the modeling guidelines in § 4.3.

Listing 1.8. Pseudo-code representing a web app vulnerable to a SO attack.
1 User -> WebApp: registrationRequest.Username.Password;
2 WebApp -> DB: query(Username.Password);
3 if(DB -> WebApp: tuple(SQLquery)){
4 WebApp -> User: registered;
5 User -> WebApp: requestPage;
6 WebApp -> DB: query(Username.Password);
7 DB -> WebApp: tuple(SQLquery);
8 WebApp -> User: page.tuple(SQLquery); }

As goal, we ask if the intruder can interact with the web app until he obtains data
from the database, i.e., with a data extraction attack, as in Listing 1.2. SQLfast
generates the AAT in Listing 1.9, in which the intruder performs the registration
process (1–4) by registering malicious credentials Username(4) and sqli. At the
end of the registration process (5), the intruder asks for requestPage that makes
the web app send to the database a SQL query with the same parameters the
intruder used in the registration (6–7). In (8), the intruder receives the requested
page and the result of the execution of the injected SQL query performing a SO.

Listing 1.9. Abstract attack trace for the SO case study.
1 User -> WebApp: registrationRequest.Username (4).sqli
2 WebApp -> DB : query(Username (4).sqli)
3 DB -> WebApp : tuple(Username (4).sqli)
4 WebApp -> i : registered
5 i -> WebApp : requestPage
6 WebApp -> DB : query(Username (4).sqli)
7 DB -> WebApp : tuple(Username (4).sqli)
8 WebApp -> i : page.tuple(Username (4).sqli)

5.3 Concretization phase

We executed SQLfast on all our case studies using a standard laptop (Intel
i7 with 8G RAM). The execution time of the model-checking phase of SQLfast
ranges from 35 to 45 ms. The overall process (from translation to concretization)
takes a few seconds. In all the cases, we generated AATs violating the security
property we defined over the model (authentication bypass or data extraction
attack). Once the AAT has been generated, SQLfast interactively asks the user
to provide information such as the URL of the web app. Finally, if we are con-
cretizing a SQLi that exploits an authentication bypass attack a curl command
is showed, whereas sqlmap is used for data extraction SQLi. By executing the
traces generated by SQLfast, we exploited all the AATs over the real web app.

6 Related work

Many works have proposed new SQLi techniques and payloads (e.g., [36,22,10])
or formal approaches to detect SQLi (e.g., [26,24,17,25]). However, to the best
of our knowledge, ours is the first attempt to search for vulnerabilities based on
SQLi rather than to detect SQLi. There are, however, a number of works that
are closely related to ours and that are thus worth discussing.

SPaCiTE is a model-based security testing tool for web apps that relies on
mutation testing [5]. SPaCiTE starts from a secure ASLan++ specification of

a web app and automatically introduces flaws by mutating the specification.
The strength of this approach is the concretization phase. Starting from an
AAT, generated from the mutated specification using a model-checking phase,
SPaCiTE concretizes and tests the attack trace on the real web app. The major
differences with respect to our approach reside in how we model web apps and in
particular those aspects that strictly characterize SQLi aspects. The main goal
of the approach in [5] is to find SQLi entry points and concretize them, our main
goal is to consider SQLi aspects that can be exploited to attack a web app.

Another formal approach that uses ASLan++ and the DY intruder model for
the security analysis of web apps is [32]. In this work, the authors model a web
app searching for CSRF and they do not consider databases or extensions to the
DY model. However, the idea and the representation of web apps is close to ours
and we envision some potentially useful interaction between the two approaches.

In [6], the authors describe the “Chained Attack” approach, which considers
multiple attacks to compromise a web app. The idea is close to ours, but: (i) they
consider a new kind of web intruder, whereas we stick with the DY intruder; (ii)
we analyzed the most common SQLi techniques and proposed a formalization of
a vulnerable database, they only consider the behavior of the web app.

In [1], the authors present a model-based method for the security verification
of web apps. They propose a methodology for modeling web apps and model 5
case studies in Alloy [21]. Even if the idea is similar to our approach, they have
defined three different intruder models that should find web attacks, whereas
we have used (and extended) the standard DY one. Their AATs are difficult to
interpret because no MSCs are given but state configurations. They have also
considered a number of HTTP details that we have instead abstracted away in
favor of an easier modeling phase. In contrast, we display AAT as MSCs and we
proposed a concretization phase to obtain the concrete payloads of SQLi.

7 Conclusions and future work

We have presented a formal approach for the representation of SQLi and attacks
that exploit SQLi in order to violate security properties of web apps. We have
formally defined web apps that interact with a database (that properly replies
to queries containing SQLi) and an extended DY intruder able to deal with
authentication bypass and data extraction attacks related to SQLi. We have
shown the efficiency of our prototype tool SQLfast on four real-world case studies
. SQLfast handles SO and detects multi-stage attacks and logical flaws that, to
the best of our knowledge, no other tool can handle together, and hardly ever
even individually, including the discovery of an attack on Joomla!.

As future work, we plan to extend the database formalization in order to
consider SQLi that would modify the database state leading to more complex
SQLi exploitations. We also plan to analyze other web app vulnerabilities such as
stored/reflected XSS and broken session management, and investigate synergies
between our approach and the one of [32] on CSRF. We will extend our approach
to detect (i) complex concatenations of vulnerabilities (similar to, and more

complex than, [18]) that lead to concatenations of attacks, and (ii) articulated
paths to vulnerabilities that would hardly ever be discovered by manual analysis.

References

1. D. Akhawe, A. Barth, P. Lam, J. Mitchell, and D. Song. Towards a Formal Foun-
dation of Web Security. In CSF, pages 290–304. IEEE, 2010.

2. Apache software foundation. Apache HTTP Server Tutorial: .htaccess files. https:
//httpd.apache.org/docs/current/howto/htaccess.html.

3. A. Armando et al. The AVANTSSAR Platform for the Automated Validation
of Trust and Security of Service-Oriented Architectures. In TACAS 2012, LNCS
7214, pages 267–282. Springer, 2012.

4. AVANTSSAR. Deliverable 2.3 (update): ASLan++ specification and tutorial,
2011. http://www.avantssar.eu.

5. M. Büchler, J. Oudinet, and A. Pretschner. Semi-automatic security testing of web
applications from a secure model. In SERE, pages 253–262, 2012.

6. A. Calvi and L. Viganò. An Automated Approach for Testing the Security of Web
Applications Against Chained Attacks. In ACM/SIGAPP SAC. ACM Press, 2016.

7. S. Christey. The 2009 CWE/SANS Top 25 Most Dangerous Programming Errors.
http://cwe.mitre.org/top25.

8. CVE-2015-7857. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-7857.

9. CWE. CWE-89: Improper Neutralization of Special Elements used in an SQL Com-
mand (‘SQL Injection’). https://cwe.mitre.org/data/definitions/89.html.

10. B. Damele and A. Guimarães. Advanced SQL injection to operating system full
control. In BlackHat EU, 2009.

11. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Trans.
Inf. Theory, 29(2):198–208, 1983.

12. A. Doupé, M. Cova, and G. Vigna. Why Johnny Can’t Pentest: An Analysis of
Black-Box Web Vulnerability Scanners. In DIMVA, LNCS 6201, pages 111–131.
Springer, 2010.

13. Damn Vulnerable Web Application (DVWA). http://www.dvwa.co.uk.
14. J. Forristal. ODBC and MS SQL server 6.5. Phrack, 8(54), 1998.
15. The Hacker News. http://thehackernews.com/2016/06/oculus-brendan-iribe.

html.
16. W. G. Halfond, J. Viegas, and A. Orso. A Classification of SQL-Injection Attacks

and Countermeasures. In SIGSOFT ’06/FSE-14, 2006.
17. W. G. J. Halfond and A. Orso. AMNESIA: Analysis and Monitoring for NEutral-

izing SQL-injection Attacks. In ASE, pages 174–183. IEEE, 2005.
18. E. Homakov. How I hacked Github again, 2014. http://homakov.blogspot.it/

2014/02/how-i-hacked-github-again.html.
19. Internet Engineering Task Force (IETF). HTTP Authentication: Basic and Digest

Access Authentication, 1999. https://www.ietf.org/rfc/rfc2617.txt.
20. iSpiderLabs. Joomla SQL Injection Vulnerability Exploit Results in Full Admin-

istrative Access, 2015. https://www.trustwave.com/Resources/SpiderLabs-
Blog/Joomla-SQL-Injection-Vulnerability-Exploit-Results-in-Full-
Administrative-Access/?page=1&year=0&month=0.

21. D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Pr., 2012.
22. O. M. Jayathissa. SQL Injection in Insert, Update and Delete Statements.

https://httpd.apache.org/docs/current/howto/htaccess.html
https://httpd.apache.org/docs/current/howto/htaccess.html
http://www.avantssar.eu
http://cwe.mitre.org/top25
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7857
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7857
https://cwe.mitre.org/data/definitions/89.html
http://www.dvwa.co.uk
http://thehackernews.com/2016/06/oculus-brendan-iribe.html
http://thehackernews.com/2016/06/oculus-brendan-iribe.html
http://homakov.blogspot.it/2014/02/how-i-hacked-github-again.html
http://homakov.blogspot.it/2014/02/how-i-hacked-github-again.html
https://www.ietf.org/rfc/rfc2617.txt
https://www.trustwave.com/Resources/SpiderLabs-Blog/Joomla-SQL-Injection-Vulnerability-Exploit-Results-in-Full-Administrative-Access/?page=1&year=0&month=0
https://www.trustwave.com/Resources/SpiderLabs-Blog/Joomla-SQL-Injection-Vulnerability-Exploit-Results-in-Full-Administrative-Access/?page=1&year=0&month=0
https://www.trustwave.com/Resources/SpiderLabs-Blog/Joomla-SQL-Injection-Vulnerability-Exploit-Results-in-Full-Administrative-Access/?page=1&year=0&month=0

23. Joomla! https://www.joomla.org.
24. A. Kieżun, P. J. Guo, K. Jayaraman, and M. D. Ernst. Automatic creation of SQL

injection and cross-site scripting attacks. In ICSE, pages 199–209. IEEE, 2009.
25. V. B. Livshits and M. S. Lam. Finding Security Vulnerabilities in Java Applications

with Static Analysis. In USENIX, pages 18–18, 2005.
26. M. Martin and M. S. Lam. Automatic Generation of XSS and SQL Injection

Attacks with Goal-Directed Model Checking. In USENIX, pages 31–43, 2008.
27. MySQL. https://www.mysql.com.
28. OWASP. Owasp top 10 for 2013. https://www.owasp.org/index.php/Category:

OWASP_Top_Ten_Project.
29. OWASP. SQL Injection. https://www.owasp.org/index.php/SQL_Injection.
30. OWASP. WebGoat Project. https://www.owasp.org/index.php/Category:

OWASP_WebGoat_Project.
31. PostgreSQL. http://www.postgresql.org.
32. M. Rocchetto, M. Ochoa, and M. Torabi Dashti. Model-Based Detection of CSRF.

In IFIP SEC, pages 30–43. Springer, 2014.
33. SQLfast: SQL Formal AnalisyS Tool, 2015. http://sqlfast.altervista.com.
34. sqlmap: Automatic SQL injection and database takeover tool, 2013. http:

//sqlmap.org.
35. sqlninja: a SQL Server injection & takeover tool, 2013. http://sqlninja.

sourceforge.net.
36. M. Stampar. Data Retrieval over DNS in SQL Injection Attacks. http://arxiv.

org/abs/1303.3047, 2013.
37. M. Turuani. The CL-AtSe Protocol Analyser. In RTA, LNCS 4098, pages 277–286,

2006.
38. L. Viganò. The SPaCIoS Project: Secure Provision and Consumption in the Inter-

net of Services. In ICST, pages 497–498, 2013.
39. D. von Oheimb and S. Mödersheim. ASLan++ — a formal security specification

language for distributed systems. In FMCO, LNCS 6957, pages 1–22. Springer,
2010.

A Correctness of the database formalization

In this section, we prove that the formalization of the database correctly handles
all the SQLis categorized in § 3. We remark that tool, specification and guidelines
show that it is concretely possible to exploit these SQLis.

Theorem 1. Let i represent our extension of the DY intruder (cf. § 4.1) and
db represent the database. For any message Q such that sqli is a submessage
of Q (i.e., sqli ∈ Q), we have:

if i→ db : sanitizedQuery(Q) or
i→ db : query(Q)

then db → i : Response

where i → db : f(M) means that i sends to db a message M through the web
app, which creates a query from the message M either using a raw query if
f = query, and a sanitized query otherwise, and Response is (according to
the formalization proposed in § 4.2) a variable such that its instantiation is
either no_tuple if sanitizedQuery has been used, or tuple(Q) otherwise, with
tuple(Q) representing the exploitation of a SQLi s ∈ Q.

https://www.joomla.org
https://www.mysql.com
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
http://www.postgresql.org
http://sqlfast.altervista.com
http://sqlmap.org
http://sqlmap.org
http://sqlninja.sourceforge.net
http://sqlninja.sourceforge.net
http://arxiv.org/abs/1303.3047
http://arxiv.org/abs/1303.3047

Proof. We have extended the DY intruder with sqli to represent the payload
that the intruder can use to send a SQLi to the web app and then to the database.

Given that sqli ∈ Q, we only have two subcases: the query Q is either (i) a
sanitized query or (ii) a raw query.

(i) Line 1 of the database (whenever in the proof we refer to a line of the
database we are referring to Listing 1.1) accepts the incoming message and
returns the constant no_tuple ifQ contains only a tuple of the database (line
2). In this case, SQLquery!=tuple(*) because contains sqli and nothing is
returned (i.e., a SQLi is detected). Correctly, no SQLi can be performed in
this case.

(ii) Line 3 of the database accepts the incoming message and, given that the
message contains a SQLi, the predicate inDB(Q.sqli) is true (due to the
Horn clause inDB(M.sqli) =⇒ true, defined in § 4.2), and the guard in
line 4 is also true. The database then replies with tuple(Q.sqli) and a
SQLi has been exploited.

B ASLan++ formalization

Although in the body of the paper we have shown only intuitive pseudo-code,
we have actually implemented our formalizations using ASLan++. In § B.1, we
give a brief overview of ASLan++ [39] and ASLan [4], which are used by the
AVANTSSAR Platform [3] and the SPaCIoS Tool [38] for the formal and au-
tomated analysis at design-time and validation at run-time of security-sensitive
protocols and web apps and their security goals. We focus on the aspects that
we use for modeling our case studies of § 5. In § B.2, we describe an ASLan++
specification skeleton that encapsulates all the aspects considered in § 4 and then
expand this to full specifications of the case studies in § C.

B.1 ASLan++ and ASLan

ASLan++ is a formal and typed security protocol specification language, whose
semantics is defined in terms of ASLan, which we describe below. Similar to
object-oriented languages, an ASLan++ specification consists in a hierarchy of
entity declarations, which are similar to Java classes.

The top-level entity is usually called Environment (similar to the “main”
procedure of a program) and it typically contains the definition of a Session
entity, which in turn contains a number of subentities (and their instantiations,
i.e., new subentity(<parameters>);) that define the main principals involved
in the system (e.g., web app, database). Each subentity defines the internal
behavior of the component it models and the interaction with other entities. We
won’t go into the full details of the ASLan++ language [4], but in the following
we discuss in itemized form the main aspects that we use to give the ASLan++
code of our formalizations.

– ASLan++ supports variables (capital letter symbols), constants (lower case
symbols), functions and predicates that can be distinguished by the return
type, message and fact (described afterwards) respectively.

– An entity is composed by two main sections:
• symbols, in which types of local symbols are declared and instantiations

are given of all the variables and constants used in the entity, and
• body, where the behavior of the entity is defined. The instantiation of

an entity must be done in the body of the parent-entity using the new
keyword as follows: new subentity(<params>).

Inside the body of an entity we use three different types of statements: assign-
ments, message send and message receive. The assignment Var:=fresh() as-
signs to the variable Var a new constant of the proper type, while Var:=Var’
is the usual assignment.

– Sending and receiving of messages are expressed in Alice-and-Bob notation:
A -> B: M;, where A and B are entities and M a message. More formally,
a message send statement, Snd -> Rcv: M, is composed by two variables
Snd and Rcv representing sender and receiver, respectively, and a message
M exchanged between the two parties. In message receive, Snd and Rcv are
swapped and usually, in order to assign a value to the variable M, a ? precedes
the message M, i.e., Snd -> Rcv: ?M. However, in ASLan++, the Actor
keyword refers to the entity itself (similar to “this” or “self” in object-oriented
languages) and thus we actually write the send and receive statements as
Actor -> Rcv: M and Snd -> Actor: ?M respectively. Note that ? acts as
a wildcard if it is not followed by any variable (e.g., Snd -> Actor: ?) since
no specific pattern of the receiving message is expected.

– It is possible to use different kinds of channels: ->, *->, ->* and *->*, which
define insecure, authentic, confidential and secure channels, respectively. In
ASLan++, there are different types of channel models but we only use the
Cryptographic Channel Model (CCM).

– A section clauses defines Horn clauses of the form: HCname: head :- body.
– In the goals section, one can specify LTL goals like []predicate(Var)

stating that a particular predicate must always hold over a variable Var.
– The two statements if(<guard>){positive branch} else {negative branch}

and select{on:{<guard>}} {positive branch} are equivalent but select-
on does not provide the negative branch.

– while(<guard>) loops in ASLan++ are used to define processes waiting for
incoming messages (e.g., our database formalization).

– Assignments are of the form M:=m where M is a variable and m is a constant.
– There are various types in ASLan++, e.g.: agent for entities involved in the

communication, message for anything that can pass through the network,
text for atomic messages (i.e., messages that do not contain concatenations,
whereas message can contain a concatenation of texts), and the Boolean
type fact used for predicates. ASLan++ supports also functions and sets
whose types can be anything but fact.

– The main ASLan++ keywords are: Actor, ?, iknows(), which is a predicate
that represents the intruder knowledge (it stands for intruder knows), and

fresh(), which is a function that generates a fresh constant value that one
can assign to a variable by M:=fresh().

– Finally, we describe here the only type of ASLan++ goal we have used in
our examples, i.e., [](!iknows(M)) where [] is the globally LTL (Linear
Temporal Logic) operator, ! expresses a negation, iknows is as above and
M (in our examples) is a constant or the tuple() function. Informally, the
goal states that, in a safe ASLan++ specification, M will never be known by
the intruder, otherwise an attack is found.

An ASLan++ specification can be automatically translated (see [3]) into a
more low-level ASLan specification, which ultimately defines a transition system
M = 〈S, I,→〉, where S is the set of states, I ⊆ S is the set of initial states,
and →⊆ S× S is the (reflexive) transition relation. The structure of an ASLan
specification is composed by six different sections: signature of the predicates,
types of variables and constants, initial state, Horn clauses, transition rules of→
and protocol goals. The content of the sections is intuitively described by their
names. In particular, an initial state I ∈ I is composed by the concatenation of
all the predicates that hold before running any rule (e.g., the agent names and
the intruder’s own keys). The transition relation → is defined as follows. For all
S ∈ S, S → S′ iff there exist a rule such that

PP.NP&PC&NC =[V]⇒ R

(where PP and NP are sets of positive and negative predicates, PC and NC
conjunctions of positive and negative atomic conditions) and a substitution γ :
{v1, . . . , vn} → TΣ where v1, . . . , vn are the variables that occur in PP and PC
such that: (1) PPγ ⊆ dSeH , where dSeH is the closure of S with respect to the
set of clauses H, (2) PCγ holds, (3) NPγγ′ ∩ dSeH = ∅ for all substitutions γ′
such that NPγγ′ is ground, (4) NCγγ′ holds for all substitutions γ′ such that
NCγγ′ is ground and (5) S′ = (S \ PPγ) ∪Rγγ′′, where γ′′ is any substitution
such that for all v ∈ V , vγ′′ does not occur in S.

We now define the translation of the ASLan++ constructs we have considered
here. Every ASLan++ entity is translated into a new state predicate and added
to the section signature. This predicate is parametrized with respect to a step
label (that uniquely identifies every instance) and it mainly keeps track of the
local state of an instance (current values of whose variables) and expresses the
control flow of the entity by means of step labels. As an example, if we have the
ASLan++ entity
entity Snd(Actor , Rcv: agent){
symbols

Var: message;
}

then the predicate stateSnd is added to the section signature and, supposing an
instantiation of the entity new Snd(snd, rcv), the new predicate state_Snd(snd,
iid, sl_0, rcv, dummy_message) is used in transition rules to store all the in-
formations of an entity, where the ID iid identifies a particular instance, sl_0
is the step label, the parameters Actor, Rcv are replaced with constants snd

and rcv, respectively, and the message variable Var is initially instantiated with
dummy_message.

Given that an ASLan++ is a hierarchy of entities, when an entity is trans-
lated into ASLan, this hierarchy is preserved by a child(id_1, id_0) predicate
that states id_0 is the parent entity of id_1 and both id_0 and id_1 are entity
IDs.

A variable assignment statement is translated into a transition rule inside
the rules section. As an example, if in the body of the entity Snd defined above
there is an assignment Var := constant; where constant is of the same type
of Var, then we obtain the following transition rule:
state_Snd(Actor ,IID ,sl,Rcv ,Var)
=>
state_Snd(Actor ,IID ,succ(sl),Rcv ,constant)

In the case of assignments to fresh(), the variable Var is assigned to a new
variable.

In the case of a message exchange (sending or receiving statements), the
iknows(message) predicate is added to the right-hand side of the corresponding
ASLan rule. This states that the message message has been sent over the network
and iknows is used because, as is usual, the Dolev-Yao intruder is identified with
the network itself.

The last point we describe is the translation of goals focusing only on the
LTL goal we have used in our case studies. Goals are translated into attack states
containing the negation of the argument of the LTL operator:
attack_state authorization :=

iknows(M)

More information on ASLan, ASLan++ and the AVANTSSAR Platform can
be found in [4,3].

B.2 ASLan++ skeleton

We now present a general ASLan++ specification that contains all the aspects
described in § 4. We start by describing the first part of the skeleton given in List-
ing 1.10, where we specify agents, variables, constants, facts and uninterpreted
functions used in the overall specification (i.e., the entity Environment).

Listing 1.10. ASLan++ code of the symbols used in the skeleton of the web app.
1 specification SpecificationSkeleton
2 channel_model CCM
3 entity Environment {
4 symbols
5 %entities involved in the communication
6 webapp , database: agent;
7 %DBMS
8 nonpublic inDB(message): fact;
9 nonpublic sanitizedQuery(message):message;

10 nonpublic query(message): message;
11 nonpublic tuple(message): message;
12 nonpublic no_tuple: text;
13 %sql injection payload
14 sqli: text;

15 nonpublic dashboard: text;
16 nonpublic secureFolder: text;
17 clauses
18 db_hc_ev(M): inDB(M.sqli);

Lines 1–3 begin the specification by stating a name (in this case, SpecificationSkeleton)
and the channel model used (CCM), and by introducing the outermost entity
(Environment). The symbols section of the environment begins in line 4, where
we define the constants representing agents involved in the specification (line 6).
We only need to represent the web app and the database but no client as we
defined in § 4. In lines 8–12, we define predicates, uninterpreted functions and
constants as described in § 4.2. They are defined as nonpublic to exclude them
from the initial knowledge of the DY intruder. In line 14, we define the payload of
§ 4.1 that the DY intruder can use to perform SQLi. The constant sqli is public
in order to add it to the DY intruder initial knowledge. In lines 15–16, we define
two constants representing two recurring components of web apps: dashboard,
which represents a user administration page, secureFolder, which represents
any secure folder (or page) in a web app. In line 17, the keyword clauses opens
the Horn clauses section in which the Horn clause in line 18 represents db_hc_ev
of § 4.2.

Our skeleton considers two main subentities, defining the web app (List-
ing 1.11) and the database (Listing 1.12). These two entities are subentities of
Session as showed in line 1 of Listing 1.11, but we will come back to the session
entity later in this section.

Listing 1.11. ASLan++ code of the web app entity.
1 entity Session(Webapp , Database:agent){
2 entity Webapp(Actor , Database:agent){
3 symbols
4 %all the symbols used in the body of this
5 %entity in the body below
6 body{ %write the behavior of the web app.
7 %Every time a message M is sent to the
8 %database do not forget to add a nonce
9 %to avoid spurious replay attacks ,

10 %e.g., Actor *->* database: M.nonce;
11 %the same for message received ,
12 %e.g., database *->* Actor: ?M.?Nonce }}

The Webapp entity has an empty body as it has no fixed structure and depends
on the particular app one is modeling; we add it with comments to help the
modeling phase. As in any other ASLan++ entity, the symbols section collects
the type definition of variables, constants and eventually functions or predicate
used in section body, where the behavior of the web app must be specified
following the formalization in § 4.3.

The Database entity follows (almost verbatim) the pseudo-code in List-
ing 1.1. The while loop in line 6 wraps the entire body content. This defines
that the database is listening for incoming communications that match one of
the guards of the two select-on in lines 9 and 14. The other two main differences
are the usage of select-on instead of an if statement and the introduction of
nonces. The first is due to technical reasons: when the ASLan++ specification
is translated into a transition system, the semantics of select-on with respect

to an if statement saves one or more transitions (thanks to the absence of the
negative branch). The introduction of nonces in any in/out-going message is use-
ful to avoid spurious man-in-the-middle attacks between the web app and the
database in accordance with § 4.3.

Listing 1.12. ASLan++ code of the database entity.
1 entity Database(WebApp , Actor: agent){
2 symbols
3 NonceWA ,NonceDB: text;
4 SQLquery: message;
5 body{
6 while(true){
7 select{
8 on(WebApp *->* Actor: ?NonceWA.sanitizedQuery (? SQLquery)):{
9 select{on(SQLquery = tuple (?)):{

10 NonceDB := fresh();
11 Actor *->* WebApp: no_tuple.NonceDB; } } }
12 on(WebApp *->* Actor:
13 ?NonceWA.query(? SQLquery)):{
14 select{
15 on(inDB(SQLquery)):{
16 NonceDB := fresh();
17 Actor *->* WebApp: tuple(SQLquery).NonceDB; }
18 on(!(inDB(SQLquery))):{
19 NonceDB := fresh();
20 Actor *->* WebApp: no_tuple.NonceDB; }}}}}}}

As we mentioned, both the web app and the database are subentities of
the session entity. In our skeleton, the only meaning of the session entity is to
instantiate its subentities with the proper constants (defined in Listing 1.10) as
showed in Listing 1.13.

Listing 1.13. ASLan++ code of the Session body.
1 body{ new Webapp(webapp , database);
2 new Database(webapp , database); }

Goals (i.e., security properties that we want to check) are defined in List-
ing 1.14. They are a verbatim copy of the ones described in § 4.4 but we use
iknows instead of iknowledge.

Listing 1.14. ASLan++ code for authentication and data extraction attacks.
1 goals
2 authentication: [](!(iknows(dashboard)));
3 data_extraction: [](!(iknows(tuple (?))));

At the end of the specification, the Environment entity is instantiated as in
Listing 1.15.

Listing 1.15. ASLan++ code of the Environment body.
body{ new Session(webapp , database); }

C ASlan++ Case Studies

In this section, we give the ASLan++ code that implements the behavior of the
case studies presented in § 5 long with two case studies coming from WebGoat.
The ASLan++ of this section will fill the empty spaces of the ASLan++ skeleton
of § B.2.

C.1 Authentication Bypass (WebGoat)

We used Lesson Stage 1: String SQL injection from WebGoat which implements
a common login scenario for authenticating users through username and pass-
word. The web app receives credentials (Employeeid and Password) along with
the IP address of the client (1). A nonce NonceWA is generated (2) to ensure a
fresh communication (avoiding spurious replay attacks) with the database and
then a query with the provided credentials is sent to the database entity (3).
The web app waits to receive an answer from the database (5-6) and, if some
tuples are received (6), the users list page (usersList) is returned to the client
along with the tuple() function (7). If no tuples are generated (10), then the
login page is shown (11).

Listing 1.16. ASLan++ code representing the WebGoat Stage 1 scenario, where Actor
refers to the web application.
1 ? ->* Actor: ?IP.? Employeeid .? Password;
2 NonceWA := fresh();
3 Actor *->* Database: NonceWA.query(Employeeid.Password);
4
5 select{
6 on(Database *->* Actor: tuple (? SQLquery).? NonceDB):{
7 Actor ->* IP: usersList.tuple(SQLquery);
8 }
9

10 on(DB *->* Actor: no_tuple):{
11 Actor ->* IP : login;
12 }}

As goal (Listing 1.17), we check if there exists an execution in which the
intruder can obtain access to the usersList constant (representing the users
list page) without knowing the correct credentials.

Listing 1.17. Authentication goal.
[](!(iknows(usersList)));

C.2 Data Extraction (WebGoat)

Consider again the WebGoat lesson specified in § C.1. We can use it again to show
how to represent a data extraction attack. The behavior of the web application
does not change and is the same given in Listing 1.16. As goal (Listing 1.18), we
check if there is a way for the intruder to gain knowledge of something which is
function on tuple().

The AAT obtained is identical to the one already given in Listing 1.16 for
authentication bypass. Not surprising, whenever there is an injection point, the
intruder can modify the behavior of the SQL query by using different payloads to
obtain different results. In our model, we do not consider concrete payloads and
then the attack execution is the same. What allows us to distinguish between
the two cases is the goal itself, which gives us information about the intruder’s
intention.

Listing 1.18. Data extraction goal
[](!(iknows(tuple (?)));

C.3 Authentication bypass via Data Extraction

The ASlan++ model representing the Joomla! case study in § 5.1 is given in List-
ing 1.19. A remote user, browsing the web app, visits the Content History com-
ponent (line 1). The web app generates the nonce NonceWA (2) to ensure a fresh
communication (avoiding spurious replay attacks) with the database and then
sends a query with the user supplied data (3). The web application waits for
a response from the database (5). If some tuples are generated (5), the web
application sends back to the client the history page along with the tuple()
function (6). The web application then has two possible ways of authenticating
the user (9–27): by using credentials or cookies. If username and password (12)
are provided, the web application applies a non-invertible hash function hash()
to the password, and queries the database to verify the credentials (13). If the
credentials are correct (14), the administration panel is sent to the user (15). In
case of a cookie session (20), the user provides a cookie that the web application
checks querying the database (21). If the cookie is valid (22), the administration
panel is sent back to the user (23).

Listing 1.19. ASLan++ code representing the Joomla! scenario, where Actor refers
to the web application.
1 ? ->* Actor: ?IP.(com_contenthistory.history).? Listselect;
2 NonceWA := fresh();
3 Actor *->* Database: NonceWA.query((com_contenthistory.history).Listselect

);
4
5 select{on(Database *->* Actor: tuple(? SQLquery).? NonceDB):{
6 Actor ->* IP: viewHistory.tuple(SQLquery);
7 }}
8
9 % attempt to access a restricted area

10 select{
11 % we are providing correct credentials
12 on(IP ->* Actor: username .? Username.password .? Password):{
13 Actor *->* Database: NonceWA.sanitizedQuery(Username.hash(Password));
14 select{on(Database *->* Actor: no_tuple .? NonceDB):{
15 Actor ->* IP: adminPanel;
16 }
17 }
18 }
19 % we are providing a valid session
20 on(IP ->* Actor: cookie .? Cookie):{
21 Actor *->* Database: NonceWA.sanitizedQuery(Cookie);
22 select{on(Database *->* Actor: no_tuple .? NonceDB):{
23 Actor ->* IP: adminPanel;
24 }
25 }}
26
27 }%end select
28 }%end body

As goal (Listing 1.20), we check if there exists an execution in which the in-
truder can access the administration panel represented by the constant adminPanel.

Listing 1.20. Authentication bypass for the Joomla! scenario.
[](!(iknows(adminPanel)));

YAVWA The ASlan++ model representing the YAVWA case study in § 5.1 is
given in Listing 1.21. The client sends his personal credentials (Username and
Password) along with his IP address (IP) to the web application (1). The web
application generates the nonce NonceWA (2) to ensure a fresh communication
(avoiding spurious replay attacks) with the database and then creates a query
that it sends to the database (3). The web application waits for a response of
the database with a tuple (4–5). If tuples are generated from the database (5), a
dashboard page is returned to the client along with the tuple (6). If no tuples are
generated (7), the web application redirects the user to the login page (8). At
this point, the web application waits to receive correct credentials (11) for the
HTTP basic authentication that will allow the client to access the secure folder
secureFolder (12). Given that the credentials are the same as the ones stored
in the database, we can model them as a function of tuple(). We recall, as
discussed in § 4.2, that tuple() represents an abstraction of any data that can
be extracted from the database. This means that whenever a web application
requires any data that is in the domain of the database, we can write them as a
function of tuple().

Listing 1.21. ASLan++ code representing the YAVWA scenario, where Actor refers
to the web application.
1 ? ->* Actor: ?IP.? Username .? Password;
2 NonceWA := fresh();
3 Actor *->* Database: NonceWA.query(Username.Password);
4 select{
5 on(Database *->* Actor: tuple (? SQLquery).? NonceDB):{
6 Actor ->* IP:dashboard.tuple(SQLquery);
7 on(Database *->* Actor: no_tuple .? NonceDB){
8 Actor ->* IP: login;
9 }

10 }}
11 select{on(IP ->* Actor: tuple (?)):{
12 Actor ->* IP: secureFolder;
13 }}

As a goal (Listing 1.22), we ask if there is an execution in which the intruder
reaches secureFolder.

Listing 1.22. Authorization goal
[](!(iknows(secureFolder)));

C.4 Second-Order SQLi (SO)

The ASlan++ model representing the case study in § 5.2 is given in Listing 1.23.
The client sends a registration request together with his IP address (IP) and his
personal credentials (Username and Password) to the web application (1). The
web application generates a nonce NonceWA (2) to ensure a fresh communication
with the database (to avoid spurious replay attacks) and sends a query contain-
ing the client’s credentials along with the nonce to the database (3). The web
application waits until it receives a response from the database containing the
data resulting from the execution of the query tuple(?SQLquery) submitted by
the web application (5). The registration process is now completed and the web

application sends back to the client the page registered (6). Here, the web
application does not forward tuple() back to the client because the registration
query is an INSERT (see § 4.2). The client asks for a page (8) and the web appli-
cation uses previously submitted values of Username and Password to execute
a new SQL query (9). Here is where the SO takes place; in fact, the variables
embedded in the query in (9) will trigger a SO. The database executes the query
and sends back the results to the web application (11). Finally, (12), the web
application sends to the client the requested page and the tuple() (the query
submitted by the web application is a SELECT).

Listing 1.23. ASLan++ code representing a web application vulnerable to a SO attack
where Actor refers to the web application.
1 ? ->* Actor: registrationRequest .?IP.? Username .? Password;
2 NonceWA := fresh();
3 Actor *->* Database: NonceWA.query(Username.Password);
4
5 select{ on(Database *->* Actor: tuple(? SQLquery).? NonceDB):{
6 Actor ->* IP: registered;
7
8 IP *->* Actor: requestPage;
9 Actor *->* Database: NonceWA.query(Username.Password);

10
11 Database *->* Actor: tuple(? SQLquery).? NonceDB;
12 Actor ->* IP: page.tuple(SQLquery);
13 }}

As goal (Listing 1.24), we ask if there is an execution in which the intruder
can interact with the web application until he obtains data from the database,
i.e.

Listing 1.24. Database data leakage goal.
[](!(iknows(tuple (?))));

C.5 Concretization phase

We give the the output provided by SQLfast with respect to the Joomla! case
study in Listing 1.25.

Listing 1.25. Concretization of the SQLi in the AAT Listing 1.5.
1 Just a couple of questions.
2 What ’s the name of the web app in the ASLan ++ specification? [DEFAULT

webapplication , hit enter twice for default]
3
4 What ’s the name of the database in the ASLan++ specification? [DEFAULT

database , hit enter twice for default]
5
6 Can you give me the URI of the web page under test corresponding to:
7 i -> WebApp: i.Username (4).sqli
8 0 - <?> ->* webapplication : com_contenthistory.history.sqli
9 \protect\vrule width0pt\protect\href{http :// target.com/joomla3 .4.4/ index.

php?list[select]=?}{ http :// target.com/joomla3 .4.4/ index.php?list[
select]=?}& view=history&option=com_contenthistory

10 ----------------
11 0 - <?> ->* webapplication : com_contenthistory.history.sqli
12 \protect\vrule width0pt\protect\href{http :// target.com/joomla3 .4.4/ index.

php?list[select]=?}{ http :// target.com/joomla3 .4.4/ index.php?list[
select]=?}& view=history&option=com_contenthistory

13
14 Data extraction command
15 Are there any POST parameters (key=value)? [optional , press enter to skip]
16
17 sqlmap.py -u "https ://157.27.244.25/ joomla3 .4.4/ index.php?list[select]=?&

view=history&option=com_contenthistory" -a
18 ----------------

SQLfast first asks to the modeler the names of the ASLan++ entities repre-
senting the web application and the database (1-5). Then, SQLfast automatically
detects the SQLi in the AAT and asks for the URL corresponding to the message
in the attack trace (lines 6-9). Once provided, SQLfast asks whether there are
any POST parameters for performing the request to the give URL (15-16) and
finally generates the appropriate command that need to be executed (17).

	 Formal Analysis of Vulnerabilities of Web Applications Based on SQL Injection (Extended Version)

