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Abstract. Fine-grained sketch-based image retrieval (FG-SBIR) is a
newly emerged topic in computer vision. The problem is challenging
because in addition to bridging the sketch-photo domain gap, it also
asks for instance-level discrimination within object categories. Most prior
approaches focused on feature engineering and fine-grained ranking, yet
neglected an important and central problem: how to establish a fine-
grained cross-domain feature space to conduct retrieval. In this paper,
for the first time we formulate a cross-domain framework specifically
designed for the task of FG-SBIR that simultaneously conducts instance-
level retrieval and attribute prediction. Different to conventional photo-
text cross-domain frameworks that performs transfer on category-level
data, our joint multi-view space uniquely learns from the instance-level
pair-wise annotations of sketch and photo. More specifically, we propose
a joint view selection and attribute subspace learning algorithm to learn
domain projection matrices for photo and sketch, respectively. It fol-
lows that visual attributes can be extracted from such matrices through
projection to build a coupled semantic space to conduct retrieval. Experi-
mental results on two recently released fine-grained photo-sketch datasets
show that the proposed method is able to perform at a level close to those
of deep models, while removing the need for extensive manual annota-
tions.

Keywords: Fine-grained SBIR · Attribute supervision · Attribute pre-
diction · Multi-view domain adaptation

1 Introduction

Sketch-based image retrieval (SBIR) is traditionally casted into a classification
problem, and most prior art evaluates retrieval performance at category-level.
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[1,2,4,8,13,14,16,17,19,24], i.e. given a query sketch, the goal is to discover
photos with the same class label. However, it was recently argued [12,28] that
SBIR is more reasonable to be conducted at a fine-grained level, where instead
of conducting retrieval across object categories, it focuses on finding similar
photos to the query sketch within specific categories. By specifically exploring
the unique fine-grained visual characteristics captured in human sketches, fine-
grained SBIR is likely to transform the traditional landscape of image retrieval
by introducing a new form of user interaction that underpins the ubiquitous
commercial adoption of SBIR technology.

Shared with conventional category-level SBIR, the core problem of fine-
grained SBIR lies with that of cross-domain, that is sketches and photos are
from inherently heterogeneous domains. This domain difference can be summa-
rized into two main gaps: (i) the visual modality gap, i.e., sketches are coarse line
drawings with plain white background and photos are made of dense color pix-
els on textured background, and (ii) the semantic gap, i.e., free-hand sketches
are highly abstract and iconic, whereas photos are pixel-perfect depictions of
the visual world. The problem is further made difficult for fine-grained SBIR
since fine-grained correspondence between sketch and photo is difficult to estab-
lish especially given the abstract and iconic nature of free-hand sketches. It is
therefore important for any fine-grained SBIR framework to not only seek a
fine-grained metric, but also learn a joint semantic space to effectively model
the domain gap.

Prior work on fine-grained SBIR either focused on feature engineering [12]
or learning a fine-grained feature space [28]. There has been a largely neglected
problem of addressing the cross-domain gap per sa. Majority of work ease the
domain gap by first converting images to edgemaps, and conduct further com-
parisons by treating the extracted edgemaps as somewhat “good” sketches. For
example, Yu et al. employed Sketch-a-Net [29] that is specifically designed to
parse sketches for both photo and sketch branches in their triplet ranking net-
work. However, sketches and photos are fundamentally different: photos closely
follow natural image statistics and are taken by cameras, yet sketches are drawn
from visual memory and produced by hand. In this work, for the first time,
we explicitly model the cross-domain gap between photo and sketch by jointly
learning a coupled semantic embedding using fine-grained visual attributes.

Parallel to traversing the photo-sketch domain gap, the modality gap between
text and photo has been widely studied in recent years [6,9,10,15,18,26,27].
In essence, the goal of cross-modal techniques is to shorten the semantic gap
between text and photo through projecting the inherently different domains into
a common subspace and consequently perform matching. Although many were
shown to able to effectively traverse the cross-domain gap, they only conduct
transfer at category-level or domain-level, rendering them unsuitable for fine-
grained retrieval where instance-level differences are sought after instead. Our
cross-domain model on the other hand learns from instance-level sketch-photo
pairs, resulting in a subspace that is not only domain-independent, but also
fine-grained.



Instance-Level Coupled Subspace Learning for FG-SBIR 21

In this paper, we present a novel subspace learning method for FG-SBIR
based on attribute supervision and view selection. Our framework performs
joint attribute regressions for sketch and photo modalities, which is able to
select relevant and discriminative feature views from coupled sketch-photo spaces
simultaneously. The goal is to project sketch and photo features into coupled
attribute spaces. Meanwhile, such space is also capable of predicting attributes
by multiplying the learned projection matrices. Specifically, our objective func-
tion consists of three parts: (i) coupled supervised linear regression, (ii) coupled
group norms of all projection matrices, and (iii) a Frobenius norm regularization.
The coupled supervised linear regressions take advantage of the rich attribute
information to learn local feature-wise relationships at an abstract level. The
group norms of the projection matrices play the role of simultaneous and joint
view selection among multi-view features. The Frobenius norm regularization can
bridge the gap between sketch-photo attribute spaces. Accordingly, an efficient
algorithm is derived to solve the proposed optimization problem. Experimental
results on two fine-grained image-sketch datasets demonstrate that the proposed
method outperforms the state-of-the-art shallow approaches and its performance
is even close to the deep models.

The main contributions of our work are as follows:

1. We propose for the first time an unified cross-domain framework of FG-SBIR.
2. We study how fine-grained visual attributes can be useful to construct a fine-

grained and domain-independent joint feature space.
3. We introduce an efficient algorithm to solve the challenging non-smooth opti-

mization problem.
4. The proposed method outperforms state-of-the-art shallow models and offers

comparable performance against deep alternatives on two recently released
fine-grained photo-sketch datasets.

2 Related Work

SBIR vs. Fine-Grained SBIR. Traditional sketch-based retrieval tasks usu-
ally focus on global visual similarities and high-level semantics. As a result,
retrieval is often performed coarsely at category-level. In contrast, fine-grained
retrieval paradigms concentrate on subtle visual and semantic descriptions of
objects. As shown in Fig. 1, most SBIR work can be broadly summarized into
four categories according to the level of detail they operate on: (i) Category-level
retrieval aims to examine objects on category-level [4,8,19], e.g., shoes against
chairs; (ii) Subclass-level retrieval differentiate objects on within-class category
level, e.g., shoes are classified into three subcategories according to their general
usage; (iii) Part-level retrieval finds objects according to the subtle part prop-
erties [11], e.g. four high-heel shoes are marked out according to the properties
of heel and boot; (iv) For fine-grained instance-level retrieval [12,28], the sketch
shoe and two high-heel sandals become the nearest neighbors on the basis of
similarities on the heel, body, and toe. Our proposed fine-grained SBIR model is
able to generalize to all four variations, and we offer experimental comparisons
for each later in Sect. 4.
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Towards Fine-Grained SBIR. Li et al. [12] first proposed fine-grained SBIR
(FG-SBIR) but limited their study to pose variations only and the cross-domain
gap is only traversed holistically by matching coarse graph structures. Yu
et al. [28] further extended the definition of fine-grained and proposed a new
dataset of sketch-photo pairs with detailed triplet annotation. They developed
a deep triplet-ranking network to learn a fine-grained feature metric, however
avoided addressing the cross-domain gap by converting photos to edgemaps prior
to training and testing. The very recent work of Li et al. [11] remains the single
work that specifically tackled the cross-domain nature of the problem, where they
used three-view Canonical Correlation Analysis (CCA) to fuse fine-grained visual
attributes and low-level features. However, they did not learn a joint feature
space since CCA is only conducted independently on each domain. Moreover, it
required separately trained set of attribute detectors at testing time, making it
less generalizable to other datasets. In this paper, we follow Li et al. [11] in using
fine-grained attributes to traverse different domains, but explicitly learn a joint
fine-grained space to conduct retrieval. Once learned, this attribute-driven space
is also able to perform implicit attribute detection without additional training.

Cross-Modal Retrieval. Broadly speaking, cross-modal retrieval involves two
main tasks: measure of relevance and coupled feature selection [26]. The chal-
lenge of cross-modal matching is therefore finding a semantic feature space that
can withstand modal variation at an abstract level. Most cross-modal methods
can be classified into three main categories: probabilistic models [9,18], met-
ric learning approaches [15,27] and subspace learning methods [6,10]. Proba-
bilistic approaches aim to model the joint distribution of multi-modal data in
order to learn their correlation [18]. Metric learning methods set out to com-
pute appropriate distance metrics between different modalities [27]. Subspace
learning approaches map multi-modal data into a common subspace to con-
duct matching [26]. Among these categories of cross-modal techniques, sub-
space learning methods [3,20,22,26] have gained state-of-the-art results in recent
years. All aforementioned cross-domain models can not work with instance-level

Fig. 1. Retrievals based on different level of grains. The top arrow from right to left
denotes the enhanced semantic abstraction. The bottom arrow from left to right indi-
cates increasing fine-grained level.
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annotations (e.g., sketch-photo pairs), largely limiting their applicability for fine-
grained retrieval. Our proposed model is however specifically designed to mine
a joint subspace where cross-domain comparisons can be performed at a fine-
grained level.

3 Fine-Grained SBIR via Attribute Supervision and
View Selection

In this section, we introduce our framework for FG-SBIR based on attribute
supervision and view selection. An effective algorithm is also presented to solve
the proposed objective function.

3.1 Notations

Matrices and column vectors will be consistently denoted as bold uppercase
letters and bold lowercase letters, respectively. Given a matrix M ∈ R

m×n, we
express its i-th row as Mi and j-th column as Mj .

The Frobenius norm of the matrix M is defined as

‖M‖F =

√
√
√
√

m∑

i=1

‖Mi‖22 . (1)

The Group �1-norm (G1-norm) of the matrix M is defined as

‖M‖G1 =
n∑

i=1

k∑

j=1

‖mj
i‖2 , (2)

where mj
i is the j-th segment vector in the i-th column of M.

3.2 Problem Formulation

Suppose there are n pairs of photo and sketch, which are denoted as P =
[p1,p2, ...,pn] ∈ �dp×n and S = [s1, s2, ..., sn] ∈ �ds×n, respectively. As illus-
trated in Fig. 2, pi ∈ �dp

is formed by stacking features from all the kp views,
and the feature for each view j is a dp

j dimensional vector, i.e. dp =
∑kp

j=1 dp
j ,

similarly so for each element si in S. The features used for different views
can be low-level features (e.g., HOG), or those extracted from deep networks,
(e.g., [28]). Each photo-sketch pair {pi, si} represents the same object. Let Ap =
[ap

1,a
p
2, ...,a

p
n]T ∈ �n×u denotes the attribute label matrix of the photo samples

and u is the number of photo attribute. Similarly, As = [as
1,a

s
2, ...,a

s
n]T ∈ �n×v

denotes the attribute label matrix of the sketch samples and v is the number of
sketch attribute.

As previously discussed, SBIR and FG-SBIR generally belong to
the task of cross-modal retrieval. Recently, many cross-modal approaches
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Fig. 2. Illustration of the photo sample matrix, P.

[3,7,20,22,23,26,30] have achieved satisfying results on matching photo and text.
Yet, all of them evaluated retrieval results on category-level by calculating the
mean average precision (MAP) [21]. More specifically, given multi-modal sample
matrices Xa, Xb, and class label matrix Y, we can summarize a framework for
supervised cross-modal subspace learning:

min
Wa,Wb

‖XT
a Wa − Y‖2F + ‖XT

b Wb − Y‖2F + Ω, (3)

where Wa and Wb are the projection matrices and Ω is some form of constraint.
In this paper, we would like to conduct FG-SBIR in the visual attribute

spaces. It follows that Eq. (3) naturally inspires us to project sketch and photo
into a common attribute subspace as shown in Fig. 3(a). However, it would oth-
erwise be difficult to define or annotate a desired common space and give it
a clear semantic interpretation like the low dimensional class label matrix Y
used in usual cross-modal frameworks. Motivated by several unsupervised cross-
modal subspace learning methods [3,20,22,23], we propose to map sketch and
photo data into two intermediate and isomorphic spaces US and UP that have
a natural correspondence. This means that US and UP are approximation ver-
sions for each other in the ideal case. It follows that we can establish invertible
mappings as follows:

�dp � UP � US � �ds

. (4)

The photo attribute space �u itself can potentially be directly used as its
intermediate space UP as shown in Fig. 3(b). For constructing the intermediate
space of sketch US , the following can be adopted to approach UP :

UP ←− AsTs , UP ←− ApTp . (5)

where Ts and Tp are the transformation matrices for sketch sample attribute
matrix As and photo sample attribute matrix Ap, respectively. Mathematically,
we have min

Ts

‖Ap − AsTs‖2F , and min
Tp

‖Ap − ApTp‖2F .

An important point to note here is that as a result of the abstract nature
sketches, they are often harder to interpret, resulting in a higher degree of noise
in human attribute annotation when compared with photos. Hence the sketch
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sample attribute matrix As often loses information and is stuck in sparsity and
low rank. For these reasons, in practice, we opt to the following to approach UP :
min
Tp

‖Ap − ApTp‖2F , whose optimization process starts from Ap.

Fig. 3. Schematic comparison of conventional common-space learning (a), and the
proposed coupled space learning (b)

Our goal is to learn two projection matrices Wp and Ws jointly to map
the associated data pairs into coupled intermediate spaces denoted by the cor-
responding attribute labels, subject to that the distance should be small if they
belong to the same object. Therefore, the proposed objective function is formu-
lated as follows:

J = min
Wp,Ws,T

‖PTWp − Ap‖2F + ‖STWs − ApT‖2F
+ λ1(‖Wp‖G1 + ‖Ws‖G1) + λ2‖Ap − ApT‖2F ,

(6)

where Wp ∈ �dp×u and Ws ∈ �ds×u are the projection matrices for coupled
photo and sketch spaces, respectively. Wp is a matrix which consist of weights
for features from each individual view over u different attributes. And Wp can
be re-written as:

Wp =

⎡

⎢
⎢
⎢
⎣

(wp
1)

1 (wp
2)

1 · · · (wp
u)1

(wp
1)

2 (wp
2)

2 · · · (wp
u)2

...
...

. . .
...

(wp
1)

kp

(wp
2)

kp · · · (wp
u)kp

⎤

⎥
⎥
⎥
⎦

, (7)

where (wp
x)y ∈ �dp

y is a weighting vector contains the weights for all features in
the y-th view of p (photo) sample with respect to the x-th attribute. T ∈ �u×u

is a conversion matrix.
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Similarly:

Ws =

⎡

⎢
⎢
⎢
⎣

(ws
1)

1 (ws
2)

1 · · · (ws
v)1

(ws
1)

2 (ws
2)

2 · · · (ws
v)2

...
...

. . .
...

(ws
1)

ks

(ws
2)

ks · · · (ws
v)ks

⎤

⎥
⎥
⎥
⎦

. (8)

We want to present sketch data in an approximate space of the photo
attribute space. By minimizing the projected residuals with respect to attribute
information, we can preliminarily shorten the gap between the coupled inter-
mediate spaces. And we can minimize the term λ2‖Ap − ApT‖2F to learn the
relationship T between the coupled attribute intermediate spaces. T contains
the attribute mappings across US and UP .

Wp and Ws are able to learn the weight vector for each single view fea-
ture, such that the feature-wise importance corresponding to a certain attribute
in the intermediate spaces can be captured. However, the multi-view features
interactions are extremely complicated, i.e., inhibition, promotion or competi-
tion depending on differnet cases. To solve this problem, motivated by [25], a
Group �1-norm (G1-norm) is utilized, i.e., the second part of Eq. (6).

According to the effectiveness of paired Group �1-norms upon Wp and Ws,
inside each column of these two projection matrices, the weight vectors for multi-
view features are organized under the �1-norm framework. The view-wise rela-
tionships of �1-norm enforces the structured sparsity among different views. If
certain view of features does not own enough contribution or discrimination for
certain attribute, the corresponding weight vector of this view will be assigned
with zeros, and vice versa. Within each column inside photo or sketch modality,
the local interrelations among views are captured by Group �1-norm regularizer.

More importantly, our objective function optimizes the Group �1-norm reg-
ularizers of Wp and Ws simultaneously. Therefore, multi-modal data is fully
integrated and equally taken into account to complete more reasonable view
selection without unnecessary information loss. All the weight vectors for all
the views are organized under the �1-norm framework. Hence the global rela-
tionships among all the views are also captured by the coupled Group �1-norm
regularizers:

‖Wp‖G1 + ‖Ws‖G1 =
u∑

i=1

kp
∑

j=1

‖(wp)
j
i‖2 +

u∑

i=1

ks
∑

j=1

‖(ws)
j
i‖2

=
u∑

i=1

(
kp
∑

j=1

‖(wp)
j
i‖2 +

ks
∑

j=1

‖(ws)
j
i‖2) .

(9)

In summary, the residual terms based on the attribute labels use the semantic
information to preliminarily shorten the gaps between photo-sketch pairs across
the coupled intermediate spaces. Next the Group �1-norm terms captured the
local interrelations of multi-view features inside photo or sketch and the global
relationships of data pairs crossing photo and sketch modalities. Finally the
Frobenius norm term enforces the accuracy of attribute space transition.
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3.3 Solving for Non-smooth Optimization

The designed objective function contains the non-smooth regularization terms
of Group �1-norm, which is difficult to solve by general methods. The unknown
quantities of our objective function are Wp, Ws, and T. Fortunately, our objec-
tive function has no constraint conditions. We can use the variable separation
approach to derive an alternative iterative algorithm to solve it.

Take the derivative of the objective J with respect to (Wp)i (1 ≤ i ≤ u), we
have1

∂J

∂(Wp)i
= 2PPT (Wp)i − 2P(Ap)i + λ1Di

p(Wp)i , (10)

where Di
p is a block diagonal matrix with the j-th diagonal block as 1

2‖(Wp)
j
i‖2

Ij ,

Ij is an identity matrix with the same size as dp
j , (Wp)

j
i is the j-th segment of

(Wp)i and includes the weighting vector for the features in the j-th view of
photo sample matrix. Set ∂J

∂(Wp)i
= 0, we can get

(Wp)i = (2PPT + λ1Di
p)

−1(2P(Ap)i) . (11)

Similarly, we can obtain (Ws)i as

(Ws)i = (2SST + λ1Di
s)

−1(2SAP (T)i) . (12)

Take the derivative of the objective J with respect to (T)i (1 ≤ i ≤ u), and
set ∂J

∂(T)i
= 0, we can get

(T)i = (AT
p Ap + λ2AT

p Ap)−1(AT
p S

T (Ws)i + λ2AT
p (Ap)i) . (13)

Note that Di
p (1 ≤ i ≤ u) and Di

s (1 ≤ i ≤ u) are dependent on Wp

and Ws, respectively. We can optimize them alternatively and iteratively until
convergence. During each optimization step of Wp, Ws, and T, both of them
are obtained column by column.

The whole algorithm is summarized in Algorithm 1.

4 Experimental Results and Discussions

In this section, we describe how to apply the proposed approach for a fine-
grained sketch-based image retrieval task on two recently released fine-grained
image-sketch datasets [28].

1 When ‖(Wp)j
i‖2 = 0, (6) is not differentiable. Following [5], a small perturbation

can be introduced to smooth the j-th diagonal block of Di
p as 1

2
√

‖(Wp)
j
i‖2

2+ζ
Ij .

Similarly, when ‖(Ws)
j
i‖2 = 0, the j-th diagonal block of Di

s can be regularized as
1

2
√

‖(Ws)
j
i‖2

2+ζ
Ij . We set ζ = 1.0000e − 8 in our following experiments.
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Algorithm 1. An efficient iterative algorithm to solve the optimization problem
in Eq. (6).

Input: P = [p1,p2, ...,pn] ∈ �dp×n, S = [s1, s2, ..., sn] ∈ �ds×n,
Ap = [ap

1,a
p
2, ..., a

p
n]T ∈ �n×u.

1.Set t = 0.
Initialize (Wp)t, (Ws)t by solving minWp‖P T Wp − Ap‖2

F and minWs‖ST Ws −
ApT‖2

F respectively.
Initialize (T )t.
while not converge do

2.Calculate the block diagonal matrices (Di
p)t+1 (1 � i � u) and (Di

s)t+1 (1 �
i � u),

where the j-th diagonal block of (Di
p)t+1 is 1

2‖((Wp)
j
i )t‖2

Ij

and the j-th diagonal block of (Di
s)t+1 is 1

2‖((Ws)
j
i )t‖2

Ij .

3.For each (Wp)i (1 � i � u),
((Wp)i)t+1 ← (2PP T + λ1(D

i
p)t+1)

−1(2P (Ap)i).
4.For each (Ws)i (1 � i � u),
((Ws)i)t+1 ← (2SST + λ1(D

i
s)t+1)

−1(2SAp(Ti)t).
5.For each (T )i (1 � i � u),
(Ti)t+1 ← (AT

p Ap + λ2A
T
p Ap)−1(AT

p ST ((Ws)i)t+1 + λ2A
T
p (Ap)i).

6.t ← t + 1.
end while

Output: Wp ∈ �dp×u, Ws ∈ �ds×u, and T ∈ �u×u.

4.1 Experimental Settings

Datasets: In the experiment, two newly released fine-grained SBIR dataset [28]
for shoe and chair are utilized. Specifically, there are 419 pairs of photo-sketch
samples in the shoe dataset, and 297 pairs of photo-sketch instances in the chair
dataset. Attribute annotations are also available for both categories. Taking shoe
for example, each shoe is divided into several parts, i.e., toe cap, body, vamp,
hell, etc. For each shoe part, a list of part-specific binary attributes are defined.
For example, the 1st dimension of shoe attribute denotes whether the toe cap is
round or not. For a full list of attributes, please refer to [28] instead. It however
worth noting that although visual attributes are shared semantic concepts (i.e.,
toe cap, shoe heel, chair arm, etc.), corresponding photo and sketch attributes for
the same shoe do not necessarily agree. This is due to (i) attribute annotations
for photos and sketches were conducted independently, and (ii) sketches are often
too abstract and iconic to vividly depict certain attributes.
Features: HOG and fc7 Deep [28] are served as features in our experiments. The
dimension of HOG is reduced to 210 and 160 for shoe and chair via Principal
Component Analysis (PCA), respectively. fc7 Deep is obtained by using the well
trained modal provided by [28]. We ran the FG-SBIR experiments for 30 times,
and for each time we randomly selected 304/200 pairs of shoe/chair samples for
training and took the rest samples for testing.
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Evaluation Metric: We follow the same metric used in [11,28] for evaluation,
i.e., given a query sketch, “acc.@K”, which is the percentage of relevant photos
ranked in the top K results offered by our proposed method.

4.2 Influence of Visual Attributes

To investigate the effect of visual attributes on retrieval result, we choose dif-
ferent sets of attributes as labels for training. More specifically, (i) we divide
shoe/chair datasets into three/six subclasses, respectively, (ii) we then select
10d, 15d, 21d from the original shoe attribute to form new supervision labels;
for the chair dataset, the selected dimensions are 5d, 10d, and 15d, and finally
(iii) we evaluate the retrieval performances on instance-level. Here, two-view
feature via concatenating HOG and fc7 deep features is used.

Experiments on each setting are repeated for 30 times, where training and
testing data are selected randomly each time. The average retrieval results are
reported in Tables 1 and 2, where we provide retrieval accuracies of @ K =
1, 5, 10. Corresponding plots are also provided in the Fig. 4.

From results on the shoe dataset, we can observe that accuracy on subclass
labels is the lowest as expected. The reason is that the subclass labels are a coarse
semantic concept and they can not sufficiently capture discriminative visual cues.
Furthermore, we discover that attributes with varying dimensions influence the
retrieval results dramatically: the more attributes used, the better the results.
However, for results on chair (Table 2 and Fig. 4(b)), it is observed that the
performance of 5d attribute is worse than that of subclass label. The reason is
two-fold: (i) the chair attributes introduced by [28] are not overly discriminative
(as we also conclude later in Sect. 4.3), and (ii) the dimensionality of 5d is too
low to form a discriminative feature representation.

In summary, we can conclude that: (i) attribute labels can be effectively used
as supervision information in FG-SBIR; (ii) the dimensionality of the attribute is
strongly connected to the capacity of the fine-grained space and has clear effect
on retrieval accuracy.

Table 1. Instance-level retrieval accuracies using various attributes on the shoe dataset.

Subclass label 10d attribute 15d attribute 21d attribute

@ K = 1 10.23 % 19.71 % 26.12 % 34.78 %

@ K = 5 35.65 % 46.06 % 57.74 % 64.49 %

@ K = 10 53.07 % 65.30 % 74.20 % 79.41 %

4.3 Results of FG-SBIR

Competitors: We mainly benchmark against the very recent deep triplet model
proposed in [28]. In addition, we also introduce two shallow variants of our model
for comparison:
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Table 2. Instance-level retrieval accuracies using various attributes on the chair
dataset.

Subclass label 5d attribute 10d attribute 15d attribute

@ K = 1 14.78 % 14.12 % 27.04 % 36.40 %

@ K = 5 44.57 % 38.42 % 59.76 % 66.01 %

@ K = 10 63.78 % 52.37 % 75.81 % 84.54 %

Fig. 4. Instance-level accuracies. The bold lines colored red, green, and blue denote the
retrieval accuracies @ K = 1, 5, 10 respectively. In (a), the boxes colored black, green,
blue, and red denote the results obtained by different supervision labels: subclass, 10d
attribute, 15d attribute, 21d attribute. In (b), the boxes colored black, green, blue, and
red denote the results obtained by different supervision labels: subclass, 5d attribute,
10d attribute, 15d attribute. For each box, the central mark is the median. The top and
bottom edges of the box are the 75th and 25th percentiles, respectively. The outliers
are marked individually. (Color figure online)

Deep triplet-ranking: Representing current state-of-the-art for FB-SBIR, the
authors [28] develop a deep triplet ranking network with a data augmentation
and staged pre-training strategy to address the problem of insufficient training
data. We use it for comparison on both the shoe and chair dataset.

As model: In Sect. 3, we have illustrated that sketch sample attribute matrix
As is usually excessively sparse and low-rank. This is likely to lead to inaccurate
computation results, and exactly optimizing for AsTs that approximate Ap

might not be feasible. In order to verify this, we design the following model for
verification and comparison:

J2 = min
Wp,Ws,Ts

‖PTWp − Ap‖2F + ‖STWs − AsTs‖2F
+ λ1(‖Wp‖G1 + ‖Ws‖G1) + λ2‖Ap − AsTs‖2F ,

(14)

where Ts is the transformation matrices for sketch sample attribute matrix As.
In the following experiments, we denote this method as “As model”.
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F model: In order to verify the benefits of multi-view features, we introduce
models using single-view features for comparison. In Eq. (6), the physical sig-
nificance of the Group norm terms is view selection. If we set the coefficients
of Group norms in Eq. (6) as zero when we use single-view features, and the
projection matrices Wp and Ws will lose all the constraints. In this case, our
model can be adjusted as:

J3 = min
Wp,Ws,T

‖PTWp − Ap‖2F + ‖STWs − ApT‖2F
+λ1(‖Wp‖F + ‖Ws‖F ) + λ2‖Ap − ApT‖2F .

(15)

In the following experiments, we denote this method as “F model”. As model
and F model qualify for shallow model baselines, which are derived from some
state-of-the-art shallow cross-modal subspace learning methods elaborated for
image-text matching.

Results and Discussion: Results are shown in Table 3. Overall, it can be
observed that, on the shoe dataset, our model using concatenation of HOG and
fc7 deep feature offers the best among all the shallow variants and closely resem-
bles the performance of deep triplet-ranking [28], i.e. 34.78% vs 39.13% for top
1 and 84.54% vs 87.83% for top 10. It is promising to notice that shallow cross-
modal method tailored for FG-SBIR is able to deliver retrieval performances
close to that of deep models where ample training data and extensive user anno-
tations are required. However, on chairs, our model performed considerably worse
than [28], scoring only 36.40% vs 69.07% for top 1 and 84.54% vs 97.04% for
top 10. This phenomenon is largely explained by the lack of discriminative power
of chair attributes, which was also highlighted as part of previous set of exper-
iments (Sect. 4.2). We believe redesigning a better set of attributes for chairs
would help to boost retrieval performance, but would leave as future work.

In addition, results also show that our model is better than using the single-
view feature by “F model”, i.e. F model (HOG) and F model (fc7 Deep), and
deep feature fc7 Deep is proven to be better than HOG on the FG-SBIR task. It
is interesting that when CCA is applied to fuse HOG and fc7 Deep, i.e. F model
(HOG&fc7 Deep+2View-CCA), it leads to worse performance when compared
against single-view models. The reason is that CCA might result in information
loss when fusing features from different modalities. In contrast, our model is
capable of keep the properties of the original multi-view features as much as
possible via joint view selection. Moreover, in Table 3, we can observe that the
experimental results of “As model (HOG&fc7 Deep)” on the shoe and the chair
datasets are much worse than “Our model (HOG&fc7 Deep)”. It indicates that it
is more reasonable to use the photo attribute space as the coupled intermediate
space for both photo and sketch. In other words, sketch attribute space might
suffer from data sparsity and low-rank of attribute matrix As, which leads to
inefficiency of the model.

Computational Complexity: Average running time of our Matlab code on a
3.30 GHz Desktop PC with 16 GB RAM, across 30 experiments conducted on
the shoe/chair datasets, are 0.87 s and 0.39 s, respectively.
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Table 3. Experimental results comparisons.

Shoe Chair

acc.@1 acc.@10 acc.@1 acc.@10

Deep triplet-ranking (fc7 Deep) [28] 39.13 % 87.83 % 69.07 % 97.04 %

F model (HOG) 3.04 % 31.33 % 7.22 % 42.92 %

F model (fc7 Deep) 30.43 % 77.91 % 35.77 % 80.98 %

F model (HOG&fc7 Deep+2View-CCA) 6.96 % 28.19 % 29.00 % 70.15 %

As model (HOG&fc7 Deep) 7.48 % 56.52 % 24.99 % 74.64 %

Our model (HOG&fc7 Deep) 34.78 % 79.41 % 36.40 % 84.54 %

5 Conclusion

In this paper, for the first time, we proposed an unified cross-domain frame-
work for fine-grained sketch-based image retrieval. Our model not only learns
a domain-independent subspace to conduct retrieval, but also ensures effective
fine-grained comparisons at the same time. Different to traditional text-photo
cross-domain methods that works only on category-level, it uniquely learns
from pair-wise sketch-photo data, therefore constructing a coupled space that
is fitting for fine-grained retrieval. Once learned the model can also be used to
predict attributes without the need for explicit training of attribute classifiers.
Experiments on the latest fine-grained sketch-photo datasets demonstrated the
effectiveness of the proposed method. For future work, we will investigate how
the design of visual attributes affects quality of the learned coupled subspace,
with the immediate hope to further improve retrieval performance on the chair
dataset.
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