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Abstract. We propose a novel hashing-based matching scheme, called Locally
Optimized Hashing (LOH), based on a state-of-the-art quantization algorithm
that can be used for efficient, large-scale search, recommendation, clustering, and
deduplication. We show that matching with LOH only requires set intersections
and summations to compute and so is easily implemented in generic distributed
computing systems. We further show application of LOH to: a) large-scale search
tasks where performance is on par with other state-of-the-art hashing approaches;
b) large-scale recommendation where queries consisting of thousands of images
can be used to generate accurate recommendations from collections of hundreds
of millions of images; and c) efficient clustering with a graph-based algorithm
that can be scaled to massive collections in a distributed environment or can be
used for deduplication for small collections, like search results, performing better
than traditional hashing approaches while only requiring a few milliseconds to
run. In this paper we experiment on datasets of up to 100 million images, but in
practice our system can scale to larger collections and can be used for other types
of data that have a vector representation in a Euclidean space.

1 Introduction

The rapid rise in the amount of visual multimedia created, shared, and consumed re-
quires the development of better large-scale methods for querying and mining large
data collections. Similarly, with increased volume of data comes a greater variety of
use cases, requiring simple and repurposeable pipelines that can flexibly adapt to grow-
ing data and changing requirements.

Recent advances in computer vision have shown a great deal of progress in analyz-
ing the content of very large image collections, pushing the state-of-the-art for classi-
fication [27], detection [7, 11] and visual similarity search [3, 20, 22, 31, 37]. Critically,
deep Convolutional Neural Networks (CNNs) [23] have allowed processing pipelines

‹ Work done while author was at Yahoo Labs.
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to become much simpler by reducing complex engineered systems to simpler systems
learned end-to-end and by providing powerful, generic visual representations that can
be used for a variety of downstream visual tasks. Recently it has been shown that such
deep features can be used to reduce visual search to nearest neighbor search in the deep
feature space [5]. Complimentary work has recently produced efficient algorithms for
approximate nearest neighbor search that can scale to billions of vectors [10, 17, 21].

In this paper, we present a novel matching signature, called Locally Optimized
Hashing (LOH). LOH extends LOPQ [21], a state-of-the-art nearest neighbor search
algorithm, by treating the quantization codes of LOPQ as outputs of hashing functions.
When applied to deep features, our algorithm provides a very flexible solution to a va-
riety of related large-scale search and data mining tasks, including fast visual search,
recommendation, clustering, and deduplication. Moreover, unlike [10, 17, 21], our sys-
tem does not necessarily require specialized resources (i.e. dedicated cluster nodes and
indexes for visual search) and is easily implemented in generic distributed computing
environments.

Our approach sacrifices precision for speed and generality as compared to more
exact quantization approaches, but it enables applications that wouldn’t be computa-
tionally feasible with more exact approaches. LOH can trivially cope with large multi-
image query sets. In practice, our approach allows datasets of hundreds of millions of
images to be efficiently searched with query sets of thousands of images. We are in fact
able to query with multiple large query sets, e.g. from Flickr groups, simultaneously
and get visual recommendations for all the sets in parallel. We are also able to cluster
web-scale datasets with MapReduce by simply thresholding LOH matches and running
a connected components algorithm. The same approach can be used for deduplication
of, e.g. search results.

Our contributions can be summarized as follows:

1. We propose Locally Optimized Hashing (LOH), a novel hashing-based match-
ing method that competes favorably with the state-of-the-art hashing methods for
search and allows approximate ordering of results.

2. We extend LOH to multiple image queries and provide a simple and scalable algo-
rithm that can provide visual recommendations in batch for query sets of thousands
of images.

3. We show that this same representation can be used to efficiently deduplicate image
search results and cluster collections of hundreds of millions of images.

Although in this paper we experiment on datasets of up to 100 million images (i.e.
using the YFCC100M dataset [29], the largest publicly available image dataset), in
practice our system is suited to web-scale multimedia search applications with billions
of images. In fact, on a Hadoop cluster with 1000 nodes, our approach can find and rank
similar images for millions of users from a search set of hundreds of millions of images
in a runtime on the order of one hour. The method can be adapted to other data types
that have vector representations in Euclidean space.
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2 Related Work

Large scale nearest neighbor search was traditionally based on hashing methods [6,26]
because they offer low memory footprints for index codes and fast search in Hamming
space [25]. However, even recent hashing approaches [19, 28, 33] suffer in terms of
performance compared to quantization-based approaches [16, 25] for the same amount
of memory. On the other hand, quantization-based approaches traditionally performed
worse in terms of search times, and it was only recently with the use of novel indexing
methods [4] that quantization-based search was able to achieve search times of a few
milliseconds in databases of billions of vectors [10, 21, 24].

A benefit of quantization approaches is that, unlike classic hashing methods, they
provide a ranking for the retrieved points. Recently, approaches for binary code re-
ranking have been proposed in [32,36]; both papers propose a secondary, computation-
ally heavier re-ranking step that, although is performed on only the retrieved points,
makes search slower than state-of-the-art quantization-based approaches. In the ap-
proach presented here, we try to keep the best of both worlds by producing an ap-
proximate ordering of retrieved points without re-ranking. We argue that for use cases
involving multiple queries, this approximation can be tolerated since many ranked lists
are aggregated in this case.

A similar approach to ours, i.e. an approach that aims to produce multipurpose,
polysemous codes [8] is presented at the current ECCV conference. After training a
product quantizer, the authors then propose to optimize the so-called index assignment
of the centroids to binary codes, such that distances between similar centroids are small
in the Hamming space.

For multi-image queries, there are two broad categories based on the semantic con-
cepts that the query image set represents. The first is query sets that share the same
semantic concept or even the same specific object (i.e. a particular building in Ox-
ford) [1,9,31,38]. The second category is multi-image queries with multiple semantics.
This category has been recently studied [15] and the authors propose a Pareto-depth
approach on top Efficient Manifold Ranking [35] for such queries. Their approach is
however not scalable to very large databases and they limit query sets to just be image
pairs.

The current work uses visual features from a CNN trained for classification, thus
similarities in our visual space capture broader category-level semantics. We focus on
the first category of multi-image queries, i.e. multiple-image query sets with a single
semantic concept, and provide a simple and scalable approach which we apply to Flickr
group set expansion. However, it is straightforward to tackle the second category with
our approach by introducing a first step of (visual or multi-modal) clustering on the
query set with multiple semantics before proceeding with the LOH-based set expansion.

3 Locally Optimized Hashing

3.1 Background

Product quantization. A quantizer q maps a d-dimensional vector x P Rd to vector
qpxq P C, where C is a finite subset of Rd, of cardinality k. Each vector c P C is called
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a centroid, and C a codebook. Assuming that dimension d is a multiple of m, we may
write any vector x P Rd as a concatenation px1, . . . ,xmq of m sub-vectors, each of
dimension d{m. If C1, . . . , Cm are m sub-codebooks of k sub-centroids in subspace
Rd{m, a product quantizer [16] constrains C to be a Cartesian product

C “ C1 ˆ ¨ ¨ ¨ ˆ Cm, (1)

making it a codebook of km centroids of the form c “ pc1, . . . , cmq with each sub-
centroid cj P Cj for j P M “ t1, . . . ,mu. An optimal product quantizer q should
minimize distortion E “

ř

xPX }x ´ qpxq}2. as a function of C, subject to C being of
the form (1) [10]. This is typically done with a variant of k-means.

When codebook C is expressed as a Cartesian product, for each vector x P Rd, the
nearest centroid in C is

qpxq “ pq1px1q, . . . , qmpxmqq, (2)

where qjpxjq is the nearest sub-centroid of sub-vector xj in Cj , for j PM [10]. Hence
finding an optimal product quantizer q in d dimensions amounts to solving m optimal
sub-quantizer problems qj , j PM, each in d{m dimensions.

Given a new query vector y, the (squared) Euclidean distance to every point x P X
may be approximated by

δSDCpy,xq “
m
ÿ

j“1

}qjpyjq ´ qjpxjq}2, (3)

or

δADCpy,xq “
m
ÿ

j“1

}yj ´ qjpxjq}2, (4)

where qjpxjq P Cj “ tcj1, . . . , c
j
ku for j P M. The superscripts SDC and ADC

correspond to the symmetric and asymmetric distance computations of [16], respec-
tively. In the latter case the query vector is not quantized using the product quantizer,
distances }yj ´ cji }

2 are computed and stored for i P K and j P M prior to search,
so (4) amounts to only Opmq operations. Sacrificing distortion for speed, in this ap-
proach we are mostly exploring the symmetric approximation (3), where the query is
also in quantized form. In this case, sub-quantizer distances }cjl ´ cji }

2 can be pre-
computed and stored for all i, l P K and j P M and again only Opmq operations are
needed for distance computations.

Locally Optimized Product Quantization. In their recent paper [21], the authors fur-
ther extend product quantization by optimizing multiple product quantizers locally, af-
ter some initial, coarse quantization of the space. Similar to the IVFADC version of [16]
or multi-index [4], they adopt a two-stage quantization scheme, where local optimiza-
tion follows independently inside each cluster of a coarse quantizer Q, learnt on the
residual vectors with respect to the cluster’s centroid. They learn an optimized product
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quantizer [10] per cluster, jointly optimizing the subspace decomposition together with
the sub-quantizers. Constraint (1) of the codebook is relaxed to

C “ tRĉ : ĉ P C1 ˆ ¨ ¨ ¨ ˆ Cm, RTR “ Iu, (5)

where the dˆdmatrixR is orthogonal and allows for arbitrary rotation and permutation
of vector components.

Given the coarse quantizer Q and the associated codebook E “ te1, . . . , eKu of K
clusters, for i P K “ t1, . . . ,Ku we may define the set of residuals of all data points
x P Xi quantized to cluster i as Zi “ tx ´ ei : x P Xi, Qpxq “ eiu. Given a set
Z P tZ1, . . . ,ZKu, the problem of locally optimizing both space decomposition and
sub-quantizers can be expressed as minimizing distortion as a function of orthogonal
matrix R P Rdˆd and sub-codebooks C1, . . . , Cm Ă Rd{m per cell,

minimize
ÿ

zPZ
min
ĉPĈ

}z´Rĉ}2

subject to Ĉ “ C1 ˆ ¨ ¨ ¨ ˆ Cm

RTR “ I,

(6)

where |Cj | “ k for j P M “ t1, . . . ,mu. Assuming a d-dimensional, zero-mean
normal distribution N p0, Σq of residual data Z , we can efficiently solve the problem by
first aligning the data with PCA and then using the eigenvalue allocation [10] algorithm
to assign dimensions to subspaces.

To achieve the state-of-the-art results on a billion-scale dataset, the inverted multi-
index [4] is used with local optimization. In this setting, the original space is split into
two subspaces first and then LOPQ follows within each one of the two subspaces sepa-
rately, on the residual vectors.

Each data point now gets assigned in two clusters, one in each subspace. The inter-
section of two clusters gives a multi-index cell in the product space. However, as the
space overhead to locally optimize per cell is prohibitive, in [21] the authors separately
optimize per cluster in each of the two subspaces. They refer to this type of local op-
timization as product optimization and the complete algorithm as Multi-LOPQ, which
is the approach we also adopt for training. As was shown in [21], using local rotations
together with a single set of global sub-quantizers gave only a small drop in perfor-
mance. We therefore choose to have a global set of sub-quantizers qpxq defined as in
(2) and trained on the projected residual vectors x from (10). We will refer to the two
quantization stages as coarse and fine quantization, respectively.

3.2 Locally Optimized Hashing

The symmetric distance computation of (3) yields an approximation of the true dis-
tance in the quantized space. In pursuit of an even more scalable, fast and distributed-
computing friendly approach, we propose to treat the sub-quantizer centroid indices as
hash codes. This allows us to approximate the true distance via collisions without any
explicit numeric computations apart from a final summation. As we demonstrate below,
the proposed formulation further generalizes to querying with multiple vector queries,
and, in fact, can perform many such queries in parallel very efficiently.
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Lets begin by assuming a single coarse quantizer Q. The LOPQ model contains
local rotations Rc and global sub-quantizers qjc , j P M and c P K that operate on the
projected residuals. Let x,y P Zc be such residual vectors with respect to the same
centroid of cluster c of the coarse quantizer. The symmetric distance computation of (3)
is now given by

δSDC
c py,xq “ }qcpyq ´ qcpxq}

2 “

m
ÿ

j“1

}qjcpy
jq ´ qjcpx

jq}2, (7)

where qjc is the j-th sub-quantizer for cluster c, with c P K, j P M and x,y P Zc. A
residual vector x is mapped via qc to the corresponding sub-centroid indices icpxq “
picpxq

1, . . . , icpxq
mq. We may treat the indices as values of a set of hash functions

hc “ ph
1
c , . . . , h

m
c q, i.e. a mapping hc : Rd Ñ Zm such that hcpxq “ icpxq. We can

then estimate the similarity between residual vectors y,x using the function:

σhpy,xq “
m
ÿ

j“1

1rhcpyq
j “ hcpxq

js, (8)

where 1ra “ bs equals to 1, iff a “ b and 0 otherwise. Our hash functions are defined
locally, i.e. on residual vectors for a specific cluster, and therefore we call the proposed
matching scheme Locally Optimized Hashing or LOH.

The LOH approach can be extended to work on top of a multi-LOPQ [21] model.
Instead of having a single coarse quantizer, we learn two subspace quantizers Q1, Q2

ofK centroids, with associated codebooks Ej “ tej1, . . . , e
j
Ku for j “ 1, 2 in a product

quantization fashion.
Each data point x̃ “ px̃1, x̃2q P X is quantized using the two coarse quantizers into

the tuple
pc1, c2q “ pargmin

i
}x̃1 ´ e1i }, argmin

i
}x̃2 ´ e2i }q, (9)

with cj P r1,Ks referring to the indices of the nearest clusters for the two subspaces
j “ 1, 2. We will refer to the tuple cpx̃q “ pc1, c2q as the coarse codes of a data point.
Following LOPQ, the residual vector x “ px1,x2q of point x̃ is equal to:

x “ pR1
c1px̃

1 ´ e1c1q, R
2
c2px̃

2 ´ e2c2qq, (10)

where Rj
i correspond to the local rotation of cluster i in subspace j. We can split

the concatenated vector x into m subvectors x “ px1, . . . ,xmq and use the global
sub-quantizers for encoding into m codes. Therefore, given sub-quantizer qpxq with
codebooks c “ pc1, . . . , cmq and each sub-centroid cj P Cj “ tcj1, . . . , c

j
ku for

j PM “ t1, . . . ,mu, we can compute

fj “ argmin
i
}xj ´ cji }, (11)

for all j P M and get the sub-quantizer indices for the m subspaces in set fpxq “
pf1, . . . , fmq. We will refer to this set as the fine codes of a data point. An overview of
the encoding process is shown in Algorithm 1.
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Algorithm 1: Data encoding for the multi-index case
input : data point x̃ P X , number of subspaces m, coarse quantizer codebooks Ej , local

rotations Rj
i where i “ 1, . . . ,K and j “ 1, 2 and sub-quantizer codebooks

c “ pc1, . . . , cmq.
output: sets of coarse and fine codes

// calculate coarse codes
1 pc1, c2q “ pargmini }x̃

1
´ e1

i }, argmini }x̃
2
´ e2

i }q

// calculate locally projected residuals
2 x “ pR1

c1px̃
1
´ e1

c1q, R
2
c2px̃

2
´ e2

c2qq

// split residual to m subvectors
3 x “ px1, . . . ,xm

q

// calculate fine codes
4 pf1, . . . , fmq “ pargmini }x

1
´ c1i }, . . . , argmini }x

m
´ cmi }q

Now, given residual vectors x,y with respect to the same set of coarse codes, and
their sets of fine codes fpxq, fpyq, the similarity function of (8) can be expressed as

σhpy,xq “
m
ÿ

i“1

1rfipyq “ fipxqs (12)

i.e. the sum of similarities for them subspaces. We should note that since fine codes are
calculated on residuals, i.e. given a coarse centroid, they are comparable only for points
that share at least one of the coarse codes. If two points, for example share only the first
coarse code of the two, only the first half of the fine codes are comparable.

3.3 Ranking with LOH

After we encode all database points using the approach summarized in Algorithm 1,
each one will be assigned to the cell of the multi-index that corresponds to the pair of
coarse codes of each data point. For indexing, an inverted list Lc is kept for each cell
c “ cij “ pci, cjq of the multi-index, giving K2 inverted lists in total.

For search one visits the inverted lists of multiple cells. The query vector is there-
fore not projected to just the closest coarse cluster for each of the coarse quantizers,
but to multiple, and cells are visited in a sequence dictated by the multi-sequence algo-
rithm [4]. As we are only counting collisions of fine codes within a coarse cluster, we
need a way of incorporating the distance of the query to the centroid for each cell vis-
ited to further rank points across cells. The multi-sequence algorithm provides us with
an (approximate) distance dc for each cell which we use to extend the similarity func-
tion presented in the previous section. We introduce a weight wc for each cell c visited
that encodes the similarity of the query’s residual to that cell’s centroid, and modify the
similarity function to be:

σwpy,xq “ wc ` σhpy,xq “ wc `

m
ÿ

i“1

1rfipyq “ fipxqs (13)
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Algorithm 2: Pseudo-code for batch search in PIG
input : queries, documents: flattened query and database files. Each row contains some id

and a triplet of a fine code, its position in the ordered set and its corresponding
coarse code.

output: scores: list of documents sorted by LOH similarity to the query set

// load flattened files for query set
1 Q = LOAD ’queries’ AS (user id, image id q,

(coarse code,position,fine code) as code q);

// load flattened files for the database set
2 D = LOAD ’documents’ AS (image id d, (coarse code,position,fine code)

as code d);

// join by code
3 matches = JOIN Q by code q, D BY code d;

// group by document
4 grouped = GROUP matches BY (user id, image id d);

// count the matches within each group
5 scores = FOREACH grouped GENERATE group.$0 as user id, group.$1 as
image id, COUNT(matches) as n matches;

// order by number of matches
6 scores = ORDER scores BY user id ASC, n matches DESC;

We choose to set these weight to a simple exponential function of the approximate
distances dc used by the multi-sequence algorithm.

Similarities are evaluated for every vector in list Lc, for every cell c returned by the
multi-sequence algorithm. In [4], search is terminated if a quota of at least T vectors
have been evaluated. For a query vector y, we may assume that cells tc1, . . . , cW u
were visited by the multi-index algorithm until termination. Let that sequence of lists
visited be Ly “ tLc1 , . . . ,LcW u. Also let X y “ tx1, . . . ,xT u be the sequence of
the T database vectors evaluated during search, concatenated from W disjoint inverted
lists. Let also set Sy “ tσwpy,x1q, . . . , σwpy,xT qu, hold the similarity values of the
query vector y with each of the top T database vectors returned by the multi-index.
The ranked list of nearest neighbors returned for the query is the top elements of Sy in
descending order according to the approximate similarity values.

3.4 Searching with large query sets

An application like recommendation requires the ability to jointly search with multiple
query vectors and get aggregated results. Taking visual recommendation as an example,
one can define query sets in multiple ways, e.g. the set of images in a given Flickr group,
or the set of images that a given user has favorited. If each image is represented as a
vector, e.g. using CNN-based global visual features, queries with image sets correspond
to queries with multiple vectors and can produce results that are visually similar to the
whole query image set.
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Now let’s suppose that the query is a set of Y vectors, Y “ ty1, . . . ,yY u. If we
query the index for each of the query vectors, we get sets Ly, X y and Sy for each
vector corresponding to cells, database vectors and similarities, respectively, with y “
1, . . . , Y . We can now define the set of similarity values

SY “ tσpY,xtqu for t P
ď

yPY

X y, (14)

between the query set Y and all database vectors evaluated in any of the single-vector
queries. The aggregation function σpY,xq “ gpσwpy1,xq, . . . , σwpyY ,xqq measures
the similarity of the query set Y to database vector x, where g can be any pooling
function, for example

σSUM pY,xq “
ÿ

yPY
σwpy,xq, (15)

for sum-pooling or σMAXpY,xq “ argmaxyPY σwpy,xq for max-pooling. We exper-
imentally found that sum-pooling performs better than max-pooling, which is under-
standable since the latter tends to under-weight results that appeared in the result sets
of many query vectors. We also experimented with more complex functions, e.g. func-
tions that combine max-pooling with the frequency that each database image appears in
the result sets, but since the improvements were minimal we end up using the simpler
sum-pooling function of (15) for the rest of the paper.

An advantage of representing images as multiple hash codes is that they can be nat-
urally manipulated for a variety of tasks with MapReduce using tools such as PIG or
HIVE for Hadoop. Returning to our example of image recommendations in Flickr, we
might use a user’s favorited images as a query set to produce a ranked set of recom-
mended images that are visually similar to images the user has favorited. In this case
we would like to produce recommendations for all users, and we would like an algo-
rithm that can run many searches efficiently in batch to periodically recompute image
recommendations for all users.

We show PIG pseudo-code for such a batch search in Algorithm 2. The algorithm
assumes that the coarse and fine codes for each document have already been computed
and are available in a flattened form. To get this form, we first split them fine codes and
create triplets by appending each fine code with its position in f and the corresponding
coarse code. That is, for coarse and fine codes pc1, c2q and pf1, . . . , fmq, respectively,
we would get the set of m triplets ppc1, 1, f1q, pc1, 2, f2q, . . . , pc2,m, fmqq or LOH
codes.

3.5 Clustering and deduplication with LOH

LOH can also be used for efficient and scalable clustering. Unlike recent approaches
that try to cluster data on a single machine [2, 13], we are interested in the distributed
case. Our clustering algorithm first constructs a graph of documents from an input set Y
such that a pair of documents x,y P Y is connected by an edge iff the LOH similarity
of the pair is above some threshold t, i.e. σhpy,xq ą t. Clustering then amounts to
finding connected components in this graph.
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Algorithm 3: Pseudo-code for LOH clustering
input : documents Y “ ty1, . . . ,ynu with the set of flattened triplets, threshold t
output: clusters R “ tr1, . . . , rnu

1 Groups = HashMapăListą()
2 Matches = HashMapăIntą()
3 DocumentGraph = Graph()

// group documents by matching LOH codes
4 foreach d P D do
5 foreach pci, j, fjq P d do
6 Groups(pci, j, fjq).append(d)

// count num of matching codes for pairs of documents in each group
7 foreach group P Groups do
8 foreach pda, dbq P allPairspgroupq do
9 Matches(pda, dbq)++

10 if Matches(pda, dbq) ą t then
11 DocumentGraph.addEdge(da, db)

// find connected components in the document graph
12 RÐÝ DocumentGraph.findConnectedComponents()
13 return R

We present pseudo-code for LOH clustering in Algorithm 3. The algorithm first
groups documents by flattened code triplets. This grouping is used to efficiently count
the number of matches for document pairs by greatly reducing the number of pairs we
consider when constructing the graph. Like the batch search algorithm, LOH clustering
is easily implemented in MapReduce frameworks. When running with a high threshold
for a small set of images, e.g. for the top hundred or thousand results after an image
search, this algorithm can deduplicate the set in real-time, requiring only a few mil-
liseconds.

4 Experiments

We use the following four datasets:
SIFT1M dataset [16]. This dataset contains of 1 million 128-dimensional SIFT vectors
and 10K query vectors and is a common benchmark dataset in related work [21,25,33].
Yahoo Flickr Creative Commons 100M dataset [30]. This dataset (YFCC100M) con-
tains a subset of 100 million public images with a creative commons license from Flickr
and is the largest such publicly available collection of social multimedia images.
Flickr Brad Pitt Search Dataset. This dataset contains the top 1048 photo results
from a query for the search term ”Brad Pitt” on the Flickr website. At the time that we
collected this data, results from this query exhibited a large amount of ”near-duplicate”
results. We manually grouped each photo that looked visually similar into the same
cluster. The dataset contains a total of 30 clusters with more than 1 image.
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Fig. 1: Left: Recall@R on SIFT1M with 64bit codes. Recall is measured here as the
percentage of times the true nearest neighbor is returned within the top R results re-
turned by the index for all 10K queries. K “ 1024 for LOH. Center: Recall@R on
SIFT1M for the proposed LOH and Spectral Hashing. LOH only takes into account
the top T “ 10000 results returned by the multi-index, while SH is exhaustive. Right:
Precision@P for the 7 Flickr Group Photos dataset. Recommendations for the group
“Portraits & Faces” are not depicted because they were flawless.

7 Flickr Groups dataset. This dataset contains 70K images in total and was con-
structed by collecting 10K images from 7 popular Flickr groups: Graffiti of the world,
Sailboats and sailing, Glaciers, Icefields and Icebergs,Windmills, Columns and Columns,
Vintage Cars and Trucks and Portraits and Faces.

We use the fc7 features of the pretrained AlexNet model [23] from Caffe [18] and
use PCA to reduce them to 128 dimensions. We learn a covariance matrix from 100
million images of the YFCC100M dataset and further permute the dimensions in order
to balance variance between the two subspaces before multi-indexing [10]. As in all
related work [10,16,21], we set the number of sub-quantizer centroids k “ 256, i.e. we
require m bytes of memory in total per vector.

We adopt the Multi-LOPQ [21] approach to train1 and index the database points.
We use parameters K “ 1024 (K “ 8192), m “ 8 (m “ 16) and for T “ 10K
(T “ 100K) for SIFT1M (YFCC100M).

We use the recall metric to measure the performance of LOH against related meth-
ods and conduct experiments on the SIFT1M dataset. To compare with hashing meth-
ods that do not return any ordering of the retrieved points, we measure the percentage
of times the true nearest neighbor is within the top R results returned by the index
(therefore varying parameter T of the multi-index for LOH) for all 10K queries of the
SIFT1M dataset. We use the precision-recall metric for evaluating deduplication.

4.1 Approximate nearest neighbor search with LOH

We first investigate how the LOH approach compares with the hashing literature for the
task of retrieving the true nearest neighbor within the firstR samples seen. We compare

1 https://github.com/yahoo/lopq

https://github.com/yahoo/lopq
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(a) LOH-based results (proposed) (b) Tag-based results (baseline)

Fig. 2: Suggestions for Flickr group “vintage cars and trucks”, false positives are
marked by a red border. Figure 2a: Our visual similarity-based suggestions; only 1
of the top results is false and the aesthetics fit the images in the group. Figure 2b: Top
images returned by tag-based search for “vintage cars and trucks”; we see more false
positives in this case.

against classic hashing methods like Locality Sensitive Hashing (LSH) [6], Iterative
Quantization [12] and the recent Sequential Projection Learning Hashing (USPLH) [33]
and report results in Figure 1a. One can see that LOH, built on the inverted multi-index
after balancing the variance of the two subspaces, compares well with the state-of-the-
art in the field, even outperforming recently proposed approaches like [33] for large
enough R.

In 1b, we evaluate LOH ranking, i.e. how well LOH orders the true nearest neigh-
bor after looking at a fraction of the database. We compare against Spectral Hashing
(SH) [34] which, like LOH, also provides a ranking of the results. LOH performs sim-
ilarly for small values of R but outperforms SH when retrieving more than R “ 100
results, which is the most common case.

4.2 Visual recommendations for Flickr groups

We conduct an experiment to evaluate the ability of the proposed approach to visually
find images that might be topically relevant to a group of photos already curated by a
group of users. On Flickr, such activity is common as users form groups around topical
photographic interests and seek out high-quality photos relevant to the group. Group
moderators may contact photo owners to ask them to submit to their group.

To evaluate this, we select 7 public Flickr groups that are representative of the types
of topical interests common in Flickr groups, selected due to their clear thematic con-
struction (graffiti, sailing, glacier, windmill, columns, cars & trucks, portrait & face),
for ease of objective evaluation. For each group, we construct a large query of 10, 000
images randomly sampled from the group pool. We perform visual search using our
proposed method on the YFCC100M dataset, aggregate results from all 10 thousand
images and report precision after manual inspection of the top k “ 500 results. We
visually scanned the photo pools of the groups and consider true positives all images
that look like images in the photo pool and follow the group rules as specified by the
administrators of each group.

Precision for each group is shown in Figure 1c. For group “Portraits & Faces”, for
example all 500 top results were high-quality portraits. We see some confusion due
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Fig. 3: Left: Precision-Recall curve on the Brad Pitt dataset. Right: Deduplication results
on the Brad Pitt dataset; three clusters of duplicates are shown where each cluster shares
at least 3 LOH codes.

to the nature of the visual representation chosen (e.g. our visual representation may
confuse desert and cloud images with snow images), but overall, Precision@500 was
over 0.96 for five out of the seven groups we tested.

Example results for the set expansion with our method and a baseline tag-based
search are shown in Figure 2 for Flickr group “vintage cars and trucks”. For the pro-
posed approach, precision is high, as is the aesthetic quality of the results. The tag-based
Flickr search returns more false positives for such a specific group, as irrelevant images
are likely improperly tagged.

4.3 Clustering and deduplication results

We evaluate the performance of LOH on the deduplication task using a dataset of Flickr
searches for the query “Brad Pitt” with the LOH codes learned on the YFCC100M
dataset. To measure precision and recall, we enumerate all pairs of images in the dataset
and define a “positive” sample as a pair of images that belong to the same group in our
dataset, and a “negative” sample as a pair of images that belong to different groups in
our dataset.

In figure 3a we plot the precision-recall for LOH versus LSH [6] and PCA-E [14].
For LSH, we transform our PCA’d 128 dimensional image descriptor into a 128-bit
binary code computed from random binary projection hash functions. For PCA-E we
compute a 128-bit binary code by subtracting the mean of our PCA’d 128 dimensional
image descriptor and taking the sign.

We run LOH clustering for the 100 million images of the YFCC100M dataset on a
small Hadoop cluster and show sample clusters in Figure 4. We first did some clean-
ing and preprocessing by using a stoplist of codes (i.e. remove all triplets that appear
more than 10K or less than 10 times) for efficiency. For a threshold of t “ 3, we get
74 million edges and approximately 7 million connected components. Of those, about
6.5 million are small components of size smaller than 5. The graph construction for
the 100M images took a couple of hours, while connected components runs in a few
minutes.
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Fig. 4: Random images from sample clusters of the YFCC100M dataset. The first three
rows show (mostly) coherent clusters that can be used for learning classifiers, while
the bottom row shows failure cases. The sizes of the clusters depicted are (row-wise):
1194,976,920 / 272,320,873 / 139,151,164 / 6.8M, 1363 and 94.

By visual inspection, we notice that a large set of medium-sized clusters (i.e. clus-
ters with 102´ 104 images) contain visually consistent higher level concepts (e.g. from
Figure 4: “motorbikes in the air”, “Hollywood St stars” or “British telephone booths”).
Such clusters can be used to learn classifiers in a semi-supervised framework that in-
corporates noisy labels. Clustering YFCC100M gives us about 32K such clusters.

5 Conclusions

In this paper we propose a novel matching scheme, Locally Optimized Hashing or LOH,
that is computed on the very powerful and compact LOPQ codes. We show how LOH
can be used to efficiently perform visual search, recommendation, clustering and dedu-
plication for web-scale image databases in a distributed fashion.

While LOPQ distance computation gives high quality, fast distance estimation for
nearest neighbor search, it is not as well suited for large-scale, batch search and cluster-
ing tasks. LOH, however, enables these use-cases by allowing implementations that use
only highly parallelizable set operations and summations. LOH can therefore be used
for massively parallel visual recommendation and clustering in generic distributed en-
vironments with only a few lines of code. Its speed also allows its use for deduplication
of, e.g. , search result sets at query time, requiring only a few milliseconds to run for
sets of thousands of results.
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