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Abstract. In this paper, we use deep neural networks for inverting face
sketches to synthesize photorealistic face images. We first construct a
semi-simulated dataset containing a very large number of computer-
generated face sketches with different styles and corresponding face
images by expanding existing unconstrained face data sets. We then train
models achieving state-of-the-art results on both computer-generated
sketches and hand-drawn sketches by leveraging recent advances in deep
learning such as batch normalization, deep residual learning, perceptual
losses and stochastic optimization in combination with our new dataset.
We finally demonstrate potential applications of our models in fine arts
and forensic arts. In contrast to existing patch-based approaches, our
deep-neural-network-based approach can be used for synthesizing pho-
torealistic face images by inverting face sketches in the wild.

Keywords: Deep neural network · Face synthesis · Face recognition ·
Fine arts · Forensic arts · Sketch inversion · Sketch recognition

1 Introduction

Portrait and self-portrait sketches have an important role in art. From an art
historical perspective, self-portraits serve as historical records of what the artists
looked like. From the perspective of an artist, self-portraits can be seen as a
way to practice and improve one’s skills without the need for a model to pose.
Portraits of others further serve as memorabilia and a record of the person in the
portrait. Artists most often are able to easily capture recognizable features of a
person in their sketches. Therefore, hand-drawn sketches of people have further
applications in law enforcement. Sketches of suspects drawn based on eye-witness
accounts are used to identify suspects, either in person or from catalogues of
mugshots (Fig. 1).

However, a challenging task that remains is photorealistic face image synthe-
sis from face sketches in uncontrolled conditions. That is, at present, there exist
no sketch inversion models that are able to perform in realistic conditions. These
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ground truth sketch inverse sketchdeep neural network

Fig. 1. Demonstration of our convolutional sketch inversion models. Our models invert
face sketches to synthesize photorealistic face images. Each row shows the sketch inver-
sion/image synthesis pipeline that transforms a different sketch of the same face to a
different image of the same face via a different deep neural network. Each deep neural
network layer is represented by the top three principal components of its feature maps.

conditions are characterized by changes in expression, pose, lighting condition
and image quality, as well as the presence of varying amounts of background
clutter and occlusions.

Here, we use DNNs to tackle the problem of inverting face sketches to syn-
thesize photorealistic face images from different sketch styles in uncontrolled
conditions. We developed three different models to handle three different types
of sketch styles by training DNNs on datasets that we constructed by extending
a well-known large-scale face dataset, obtained in uncontrolled conditions [21].
We test the models on another similar large-scale dataset [17], a hand-drawn
sketch database [31] as well as on self-portrait sketches of famous Dutch artists.
We show that our approach, which we refer to as Convolutional Sketch Inver-
sion (CSI) can be used to achieve state-of-the-art results and discuss possible
applications in fine arts, art history and forensics.

2 Related Work

Prior work related to face sketches in computer vision has been mostly limited
to synthesis of highly controlled (i.e. having neutral expression, frontal pose,
with normal lighting and without any occlusions) sketches from photographs [7,
19,26,30,34] (sketch synthesis) and photographs from sketches [7,20,30,31,33]
(sketch inversion). Sketch inversion studies with controlled inputs utilized patch-
based approaches and used Bayesian tensor inference [20], an embedded hidden
Markov model [33], a multiscale Markov random field model [31], sparse repre-
sentations [7] and transductive learning with a probabilistic graph model [30].

Few studies developed methods of sketch synthesis to handle more variation
in one or more variables at a time, such as lighting [18], and lighting and pose [36].
In a recent study, Zhang et al. [35] showed that sketch synthesis by transferring
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the style of a single sketch could be used also in uncontrolled conditions. In [35],
first an initial sketch by a sparse representation-based greedy search strategy
was estimated, then candidate patches were selected from a template style sketch
and the estimated initial sketch. Finally, the candidate patches were refined by
a multi-feature-based optimization model and the patches were assembled to
produce the final synthesized sketch.

Recently, the use of deep convolutional neural networks (DNNs) in image
transformation tasks, in which one type of image is transformed into another,
has gained tremendous traction. In the context of sketch analysis, DNNs were
used to tackle the problems of sketch synthesis and sketch simplification. For
example, [34] has used a DNN to convert photographs to sketches. They devel-
oped a DNN with six convolutional layers and a discriminative regularization
term for enhancing the discriminability of the generated sketch against other
sketches. Furthermore, [24] has used a DNN to simplify rough sketches. They
have shown that users prefer sketches simplified by the DNN more than they do
those by other applications 97 % of the time.

Some other notable image transformation problems include colorization, style
transfer and super-resolution. In colorization, the task is to transform a grayscale
image to a color image that accurately captures the color information. In style
transfer, the task is to transform one image to another image that captures
the style of a third image. In super-resolution, the task is to transform a low-
resolution image to a high-resolution image with maximum quality. DNNs have
been used to tackle all of these problems with state-of-the art results [3,5,6,9,
13,15].

3 Semi-simulated Datasets

For training and testing our CSI model, we made use of the following datasets:

– Large-scale CelebFaces Attributes (CelebA) dataset [21]. The CelebA dataset
contains 202,599 celebrity face images and 10,177 identities. The images were
obtained from the internet and vary extensively in terms of pose, expression,
lighting, image quality, background clutter and occlusion. Each image in the
dataset has five landmark positions and 40 attributes. These images were used
for training the networks.

– Labeled Faces in the Wild (LFW) dataset [17]. The LFW dataset contains
13,233 face images and 5749 identities. Similar to the CelebA dataset, images
were obtained from the internet and vary extensively in terms of pose, expres-
sion, lighting, image quality, background clutter and occlusion. A subset of
these images (11,990) were used for testing the networks.

– CUHK Face Sketch (CUFS) database [31]. The CUFS database contains pho-
tographs and their corresponding hand-drawn sketches of 606 individuals. The
dataset was formed by combining face photographs from three other data-
bases and producing hand-drawn sketches of these photographs. Concretely,
it consists of 188 face photographs from the Chinese University of Hong Kong
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(CUHK) student database [31] and their corresponding sketches, 123 face pho-
tographs from the AR Face Database [22] and their corresponding sketches,
and 295 face photographs from the XM2VTS database [23] and their corre-
sponding sketches. Only the 18 sketches that are showcased at the website
of the CUFS database (six from each sub-database) were used in the current
study. These images were used for testing the networks.

– Sketches of famous Dutch artists. We also used the following sketches: (i)
Self-Portrait with Beret, Wide-Eyed by Rembrandt, 1630, etching, (ii) Two
Self-portraits and Several Details by Vincent van Gogh, 1886, pencil on paper
and (iii) Self-Portrait by M.C. Escher, 1929, lithograph on gray paper. These
images were used for testing the networks.

3.1 Preprocessing

Similar to [4], each image was cropped and resized to 96 pixels × 96 pixels such
that:

– The distance between the top of the image and the vertical center of the eyes
was 38 pixels.

– The distance between the vertical center of the eyes and the vertical center of
the mouth was 32 pixels.

– The distance between the vertical center of the mouth and the bottom of the
image was 26 pixels.

– The horizontal center of the eyes and the mouth was at the horizontal center
of the image.

3.2 Sketching

Each image in the CelebA and LFW datasets was automatically transformed
to a line sketch, a grayscale sketch and a color sketch. Sketches in the CUFS
database and those by the famous Dutch artists were further transformed to line
sketches by using the same procedure.

Color and grayscale sketch types are produced by the same stylization algo-
rithm [8]. To obtain the sketch images, the input image is first filtered by an
edge-aware filter. This filtered image is then blended with the magnitude of the
gradient of the filtered image. Then, each pixel is scaled by a normalization
factor resulting in the final sketch-like image.

Line sketches which resemble pencil sketches were generated based on [2].
Line sketch conversion works by first converting the color image to grayscale.
This is followed by inverting the grayscale image to obtain a negative image.
Next, a Gaussian blur is applied. Finally, using color dodge, the resulting image
is blended with the grayscale version of the original image.

It should be noted that synthesizing face images from color or grayscale
sketches is a more difficult problem than doing so from line sketches since many
details of the faces are preserved by line sketches while they are lost for other
sketch types.
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4 Models

We developed one DNN for each of the three sketch styles based on the style
transfer architecture in [15]. Each of the three DNNs was based on the same
architecture except for the first layer where the number of input channels were
either one or three depending on the number of color channels of the sketches.
The architecture comprised three convolutional layers, five residual blocks [12],
two deconvolutional layers and another convolutional layer. Each of the five
residual blocks comprised two convolutional layers. All of the layers except for
the last layer were followed by batch normalization [14] and rectified linear units.
The last layer was followed by batch normalization and hyperbolic tangent units.
All models were implemented in the Chainer framework [27]. Table 1 shows the
details of the architecture.

Table 1. Deep neural network architectures. BN; batch normalization with decay =
0.9, ε = 1e− 5, ReLU; rectified linear unit, con.; convolution, dec.; deconvolution, res.;
residual block, tanh; hyperbolic tangent unit. Outputs of the hyperbolic tangent units
are scaled to [0, 255]. x/y indicates the parameters of the first and second layers of a
residual block. +x indicates that the input and output of a block are summed and no
activation function is used.

Layer Type in channels out channels ksize Stride Pad Normalization Activation

1 con. 1 or 3 32 9 1 4 BN ReLU

2 con. 32 64 3 2 1 BN ReLU

3 con. 64 128 3 2 1 BN ReLU

4 res. 128/128 128/128 3/3 1/1 1/1 BN/BN ReLU/+x

5 res. 128/128 128/128 3/3 1/1 1/1 BN/BN ReLU/+x

6 res. 128/128 128/128 3/3 1/1 1/1 BN/BN ReLU/+x

7 res. 128/128 128/128 3/3 1/1 1/1 BN/BN ReLU/+x

8 res. 128/128 128/128 3/3 1/1 1/1 BN/BN ReLU/+x

9 dec. 128 64 3 2 1 BN ReLU

10 dec. 64 32 3 2 1 BN ReLU

11 con. 32 3 9 1 4 BN tanh

4.1 Estimation

For model optimization we used Adam [16] with parameters α = 0.001, β1 = 0.9,
β2 = 0.999, ε = 10−8 and mini-batch size = 4. We trained the models by
iteratively minimizing the loss function for 200,000 iterations. The loss function
comprised three components. The first component is the standard Euclidean loss
for the targets and the predictions (pixel loss; �p). The second component is the
Euclidean loss for the feature-transformed targets and the feature-transformed
predictions (feature loss) [15]:
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�f =
1
n

∑

i,j,k

(
φ (t)i,j,k − φ (y)i,j,k

)2

(1)

where n is the total number of features, φ(t)i,j,k is a feature of the targets and
φ(y)i,j,k is a feature of the predictions. Similar to [15], we used the outputs of
the fourth layer of a 16-layer DNN (relu 2 2 outputs of the VGG-16 pretrained
model) [25] to feature transform the targets and the predictions. The third com-
ponent is the total variation loss for the predictions:

�tv =
∑

i,j

(
(yi+1,j − yi,j)

2 + (yi,j+1 − yi,j)
2
)0.5

(2)

where yi,j is a pixel of the predictions. A weighted combination of these compo-
nents resulted in the following loss function:

� = λp�p + λf �f + λtv�tv (3)

where we set λp = λf = 1 and λtv = 0.00001.
The use of the feature loss to train models for image transformation tasks

was recently proposed by [15]. In the context of super-resolution, [15] found that
replacing pixel loss with feature loss gives visually pleasing results at the expanse
of image quality because of the artefacts introduced by the feature loss.

In the context of sketch inversion, our preliminary experiments showed that
combining feature loss and pixel loss increases image quality while maintaining
visual pleasantness. Furthermore, we observed that a small amount of total vari-
ation loss further removes the artefacts that are introduced by the feature loss.
Therefore, we used the combination of the three losses in the final experiments.
The quantitative results of the preliminary experiments in which the models
were trained by using only the feature loss are provided in the Appendix (Tables
4 and 5).

4.2 Validation

First, we qualitatively tested the models by visual inspection of the synthe-
sized face images (Fig. 2). Synthesized face images matched the ground truth
photographs closely and persons in the images were easily recognizable in most
cases. Among the three styles of sketch models, the line sketch model (Fig. 2,
first column) captured the highest level of detail in terms of the face structure,
whereas the synthesized inverse sketches of the color sketch model (Fig. 2, third
column) had less structural detail but was able to better reproduce the color
information in the ground truth images compared to the inverted sketches of
the line sketch model. Sketches synthesized by the grayscale model (Fig. 2, sec-
ond column) were less detailed than those synthesized by the line sketch model.
Furthermore, the color content was less accurate in sketches synthesized by the
grayscale model than those synthesized by both the color sketch and the line
sketch models. We found that the line model performed impressively in terms of
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Fig. 2. Examples of the synthesized inverse sketches from the LFW dataset. Each
distinct column shows examples from different sketch styles models, i.e. line sketch
model (column 1), grayscale sketch model (column 2) and colour sketch model (column
3). First image in each column is the ground truth, the second image is the generated
sketch and the third one is the synthesized inverse sketch.

matching the hair and skin color of the individuals even when the line sketches
did not contain any color information. This may indicate that along with tak-
ing advantage of the luminance differences in the sketches to infer coloring, the
model was able to learn color properties often associated with high-level face
features of different ethnicities.

Then, we quantitatively tested the models by comparison of the peak sig-
nal to noise ratio (PSNR), structural similarity (SSIM) and standard Pearson
product-moment correlation coefficient R of the synthesized face images [32]
(Table 2). PSNR measures the physical quality of an image. It is defined as the
ratio between the peak power of the image and the power of the noise in the
image (Euclidean distance between the image and the reference image):

PSNR =
1
3

∑

k

10 log10
max DR2

1
m

∑
i,j (ti,j,k − yi,j,k)

2 (4)

where DR is the dynamic range, and m is the total number of pixels in each of
the three color channels. SSIM measures the perceptual quality of an image. It is
defined as the multiplicative combination of the similarities between the image
and the reference image in terms of contrast, luminance and structure:
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where μ (ti,j,k), μ (yi,j,k), σ (ti,j,k), σ (yi,j,k) and σ (ti,j,k, yi,j,k) are means, stan-
dard deviations and cross-covariances of windows centered around i and j. Fur-
thermore, C1 = (0.01max DR)2 and C2 = (0.03max DR)2. Quality of a dataset
is defined as the mean quality over the images in the dataset.

Table 2. Comparison of physical (PSNR), perceptual (SSIM) and cor relational (R)
quality measures for the inverse sketches synthesized by the line, grayscale and color
sketch-style models. x ± m shows the mean ± the bootstrap estimate of the standard
error of the mean.

PSNR SSIM R

Line 20.1158 ± 0.0231 0.8583 ± 0.0003 0.9298 ± 0.0005

Grayscale 17.6567 ± 0.0263 0.6529 ± 0.0008 0.7458 ± 0.0020

Color 19.2029 ± 0.0293 0.7154 ± 0.0008 0.8087 ± 0.0017

The inversion of the line sketches resulted in the highest quality face images
for all three measures (20.12 for PSNR, 0.86 for SSIM and 0.93 for R). In contrast
the inversion of the grayscale sketches resulted in the lowest quality face images
for all measures (17.65 for PSNR, 0.65 for SSIM and 0.75 for R). This shows
that both the physical and the perceptual quality of the inverted sketch images
produced by the line sketch network was superior than those by the other sketch
styles.

Finally, we tested how well the line sketch inversion model can be transferred
to the task of synthesizing face images from sketches that are hand-drawn and
not generated using the same methods that were used to train the model. We
considered only the line sketch model since the contents of the hand-drawn sketch
database that we used [31] were most similar to the line sketches.

We found that the line sketch inversion model can solve this inductive transfer
task almost as good as it can solve the task that it was trained on (Fig. 3). Once
again, the model synthesized photorealistic face images. While color was not
always synthesized accurately, other elements such as form, shape, line, space
and texture were often synthesized well. Furthermore hair texture and style,
which posed a problem in most previous studies, was very well handled by our
CSI model. We observed that the dark-edged pencil strokes in the hand-drawn
sketches that were not accompanied by shading resulted in less realistic inversions
(compare e.g. nose areas of sketches in the first and second rows with those in
the third row in Fig. 3). This can be explained by the lack of such features in the
training data of the line sketch model, and can be easily overcome by including
training examples more closely resembling the drawing style of the sketch artists.

For all the samples from the CUFS database, the PSNR, the SSIM index
and the R of the synthesized face images were 13.42, 0.52, and 0.67, respectively
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Fig. 3. Examples of the synthesized inverse sketches from the CUFS database. First
image in each column is the ground truth, the second image is the sketch hand-drawn
by an artist and the third one is the inverse sketch that was synthesized by the line
sketch model.

(Table 3). Among the three sub-databases of the CUFS database, the quality of
the synthesized images from the CUHK dataset was the highest in terms of the
PSNR (15.07) and R (0.83). While the PSNR and R values for the AR dataset
was lower than those of the CUHK dataset, SSIM did not differ between the two
datasets. The lowest quality inverted sketches were produced from the sample
sketches of the XM2GTS database (with 13.42 for PSNR, 0.42 for SSIM and
0.41 for R).

Additional results on both computer-generated sketches and hand-drawn
sketches are provided at https://github.com/yagguc/CSI due to space limita-
tions.

Table 3. Comparison of physical (PSNR), perceptual (SSIM) and correlational (R)
quality measures for the inverse sketches synthesized from the sketches in the CUFS
database and its sub-databases. x ± m shows the mean ± the bootstrap estimate of
the standard error of the mean.

PSNR SSIM R

CUHK (6) 15.0675 ± 0.3958 0.5658 ± 0.0099 0.8264 ± 0.0269

AR (6) 13.8687 ± 0.7009 0.5684 ± 0.0277 0.7667 ± 0.0314

XM2GTS (6) 11.3293 ± 1.2156 0.4231 ± 0.0272 0.4138± 0.1130

All (18) 13.4218 ± 0.6123 0.5191 ± 0.0207 0.6690 ± 0.0591

https://github.com/yagguc/CSI
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5 Applications

5.1 Fine Arts

In many cases self-portrait studies allow us a glimpse of what famous artists
looked like through the artists’ own perspective. Since there are no photographic
records of many artists (in particular of those who lived before the 19th cen-
tury during which the photography was invented and became widespread) self-
portrait sketches and paintings are the only visual records that we have of many
artists. Converting the sketches of the artists into photographs using a DNN
that was trained on tens of thousands of face sketch-photograph pairs results in
very interesting end-products.

Here we used our DNN-based approach to synthesize photographs of famous
Dutch artists Rembrandt, Vincent van Gogh and M.C. Escher from their self-
portrait sketches1 (Fig. 4). To the best of our knowledge, the synthesized photo-
realistic images of these artists are the first of their kind.

sketch inverse sketch reference

Fig. 4. Self-portrait sketches and synthesized inverse sketches along with a reference
painting or photograph of famous Dutch artists: Rembrandt (top), Vincent van Gogh
(middle) and M.C. Escher (bottom). Sketches: (i) Self-Portrait with Beret, Wide-Eyed
by Rembrandt, 1630, etching. (ii) Two Self-portraits and Several Details by Vincent
van Gogh, 1886, pencil on paper. (iii) Self-Portrait by M.C. Escher, 1929, lithograph
on gray paper. Reference paintings: (i) Self-Portrait by Rembrandt, 1630, oil painting
on copper. (ii) Self-Portrait with Straw Hat by Vincent van Gogh, 1887, oil painting
on canvas.

1 For simplicity, although different methods were used to produce these artworks, we
refer to them as sketches.
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Our qualitative assesment revealed that, the inverted sketch of Rembrandt
synthesized from his 1630 sketch indeed resembles himself in his paintings (par-
ticulary his self-portrait painting from 1630), and Escher’s to his photographs.
We found that the inverted sketch of van Gogh synthesized from his 1886
sketch was the most realistic synthesized photograph among those of the three
artists, albeit not closely matching his self-portrait paintings of a distinct post-
impressionist style.

Although we do not have a quantitative way to measure the accuracy of
the results in this case, results demonstrate that the artistic style of the input
sketches influence the quality of the produced photorealistic images. Generating
new training sketch data to match more closely to the sketch style of a specific
artist of interest (e.g. by using the method proposed by [35]), and training the
network with these sketches would overcome this limitation.

Sketching is one of the most important training methods that artist use to
develop their skills. Converting sketches into photorealistic images would allow
the artists in training to see and evaluate the accuracy of their sketches clearly
and easily which can in turn become an efficient training tool. Furthermore,
sketching is often much faster than producing a painting. When for example the
sketch is based on imagination rather than a photograph, deep sketch inversion
can provide a photorealistic guideline (or even an end-product, if digital art is
being produced) and can speed up the production process of artists. Figure 3,
which shows the inverted sketches by contemporary artists that produced the
sketches in the CUFS database, further demonstrates this type of application.
The current method can be developed into a smartphone/tablet or computer
application for common use.

5.2 Forensic Arts

In cases where no other representation of a suspect exists, sketches drawn by
forensic artists based on eye-witness accounts are frequently used by the law
enforcement. However, direct use of sketches for automatically identifying sus-
pects from databases containing photographs does not work well because these
two face representations are too different to allow a direct comparison [29].
Inverting a sketch to a photograph makes this task much easier by reducing
the difference between these two alternative representations, enabling a direct
automatized comparison [31].

To evaluate the potential use of our system for forensic applications, we per-
formed an identification analysis (Fig. 5). In this analysis, we evaluated the accu-
racy of identifying a target face image in a very large set of candidate face images
(LFW dataset containing over 11,000 images) from an (inverse) face sketch. The
identification accuracies for the synthesized faces were always significantly higher
than those for the corresponding sketched faces (p � 0.05, binomial test). While
the identification accuracies for the color and grayscale sketches were very low
(2.38 % and 1.42 %, respectively), those for the synthesized color and grayscale
inverse sketches were relatively high (82.29 % and 73.81 %, respectively). On the
other hand, identification accuracy of line sketches was already high, at 81.14 %
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before inversion. Synthesizing inverse sketches from line sketches raised the iden-
tification accuracy to an almost perfect level (99.79 %).

Line
sketch

Inverse
line
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Grayscale
sketch

Inverse
grayscale

sketch

Color
sketch

A
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ur
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y 
(%

)

Inverse
color
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0

50
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Fig. 5. Identification accuracies for line, grayscale and color sketches, and for inverse
sketches synthesized by the corresponding models. Error bars show the bootstrap esti-
mates of the standard errors.

6 Conclusions

In this study we developed sketch datasets, complementing well known uncon-
strained benchmarking datasets [17,21], developed DNN models that can synthe-
size face images from sketches with state-of-the-art performance and proposed
applications of our CSI model in fine arts, art history and forensics. We fore-
see further computer vision applications of the developed methods for non-face
images and various other sketch-like representations, as well as cognitive neu-
roscience applications for the study of cognitive phenomena such as perceptual
filling in [1,28] and the neural representation of complex stimuli [10,11].

Appendix

Table 4. Comparison of physical (PSNR), perceptual (SSIM) and correlational (R)
quality measures for the inverse sketches synthesized by the line, grayscale and color
sketch-style models trained using feature loss alone. x ± m shows the mean ± the
bootstrap estimate of the standard error of the mean.

PSNR SSIM R

Line 14.8956 ± 0.0207 0.5931 ± 0.0006 0.6023 ± 0.0017

Grayscale 17.1654 ± 0.0277 0.6301 ± 0.0008 0.7175 ± 0.0022

Color 18.9884 ± 0.0296 0.7072 ± 0.0008 0.7976 ± 0.0019
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Table 5. Comparison of physical (PSNR), perceptual (SSIM) and correlational (R)
quality measures for the inverse sketches synthesized from the sketches in the CUFS
database and its sub-databases with the line sketch model trained using feature loss
alone. x ± m shows the mean ± the bootstrap estimate of the standard error of the
mean.

PSNR SSIM R

CUHK (6) 14.6213 ± 0.4061 0.5358 ± 0.0216 0.8295 ± 0.0200

AR (6) 14.1721 ± 0.4127 0.5608 ± 0.0232 0.7811 ± 0.0217

XM2GTS (6) 11.7158 ± 1.3050 0.4096 ± 0.0258 0.3817 ± 0.1341

All (18) 13.5030 ± 0.5639 0.5021 ± 0.0205 0.6641 ± 0.0658
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