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Abstract. Using vehicle cameras to automatically assess road weather
conditions requires that the road surface first be identified and segmented
from the imagery. This is a challenging problem for uncalibrated cameras
such as removable dash cams or cell phone cameras, where the location
of the road in the image may vary considerably from image to image.
Here we show that combining a spatial prior with vanishing point and
horizon estimators can generate improved road surface segmentation and
consequently better road weather classification performance. The result-
ing system attains an accuracy of 86 % for binary classification (bare
vs. snow /ice-covered) and 80 % for 3 classes (dry vs. wet vs. snow/ice-
covered) on a challenging dataset.

Keywords: Linear perspective - Vanishing point - Horizon - Road seg-
mentation + Weather conditions

1 Introduction

Automatic assessment of road weather conditions using vehicle camera data can
be used to inform the human driver, driver-assist controls and autonomous con-
trol systems. Moreover, the information can be shared across connected vehicles,
alerting following vehicles to conditions ahead. Another application is automatic
dispatch and verification of snow ploughs and service vehicles. Given their typ-
ically wide geographic distribution, these service vehicles can provide real-time
data on road conditions to central management, which can then use the data to
verify maintenance and optimize dispatch.

While future generations of service vehicles may be manufactured with appro-
priate built-in cameras, in the meantime there is interest in retrofitting existing
vehicles with removable dash cams that can be used for multiple purposes. This
poses a challenge for video analytics, as the pose of the camera relative to the
road surface may vary considerably. Since the cameras are mounted inside the
vehicle, imagery may be partially occluded by the hood of the vehicle, For snow
ploughs, the road surface may also be occluded further by the plough, depending
on its position (Fig.1).

To address these challenges a reliable algorithm for segmenting the road sur-
face from the imagery is required. This method must be able to handle variations
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Fig. 1. Example images from training dataset, and the number n in each class.

in the position and pose of the camera as well as geometry of the road surface.
Using appearance features of the road surface (e.g., texture) for segmentation is
unlikely to be reliable across diverse weather conditions, since the road appear-
ance will vary considerably and sometimes may strongly resemble other surfaces
in the scene. For these reasons, we focus here on geometric methods for identi-
fying the road surface and show that by fusing a combination of these methods
we can significantly improve road weather classification performance.

In particular we develop a novel method for estimating the road vanishing
point, which yields a triangular road segmentation hypothesis. This vanishing
point method also delivers a measure of reliability, which can be used to identify
when the vanishing point is ill-defined (in a parking lot, for example). Under
these conditions we revert to a weaker segmentation based upon detection of the
horizon line. Combining these with a spatial prior then delivers an estimated
road segmentation tailored to each image.

This paper is organized as follows: Sect. 2 reviews prior work, Sect. 3 details
our road segmentation algorithm, Sect.4 describes our classification process,
Sect. 5 reports results and finally Sect. 6 presents our conclusions and plans for
future work.
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2 Prior Work

2.1 Road Segmentation

One might initially imagine using surface appearance properties to distinguish
the road pavement surface from other surfaces in the scene [2,3]. However, this
approach is problematic here for at least three reasons: (1) pavement appear-
ance varies depending upon the exact road materials employed and age of the
road; (2) other nearby surfaces (e.g., sidewalks, driveways, buildings) may be
constructed from similar materials; (3) the road surface may be partially or
completed covered by snow and/or ice.

For these reasons, we use geometric methods to estimate the road segmenta-
tion. This is still non-trivial due to diversity in camera pose and road geometry.
Roads vary in shape, are sometimes relatively unstructured, non-homogeneous
and vary in appearance under varying weather and illumination conditions.

Previous approaches have estimated the vanishing point [12,18,19], horizon
[1] and/or border lines of the road [13]. The vanishing point is typically detected
using texture information from Gabor wavelet filters [1,12,18], using a Hough
transform [24] or with a line segment voting scheme [20]. In this work we adapt
recent work on Hough-based vanishing point detection [21] that has proven effec-
tive for Manhattan frame estimation.

The horizon line is often estimated as the line that partitions the image into
two regions that differs maximally in appearance [6,7], however more elaborate
approaches based on gist descriptors [1,15] have also been employed. Here we
identify the horizon as the vertical location that maximizes the RMS first deriv-
ative in the vertical direction across all horizontal locations and colour channels.

2.2 Road Weather Classification

Since the focus of this paper is on road segmentation, we will review the literature
on road weather classification only briefly.

Much of the prior work on road condition classification has focused on the
use of polarization and infrared cameras [5,8-10,14,25], which can be expensive
and installation can be complex. However, there are also a number of efforts
employing standard RGB cameras. Omer and Fu [16] used an SVM with RGB
and gradient histogram features to classify conditions as bare, covered or covered
with bare tire tracks. However their approach required manual cropping of each
image to extract the image region projecting from the ground surface, which is
impractical for a real system. Kauai et al. [11] used colour cues to add some
degree of illumination invariance, however their approach depends on detecting
white line markings to identify the road area, which will fail under snowy condi-
tions or for roads that are poorly marked. In a very recent paper, Amthor et al. [4]
proposed a spatiotemporal approach that integrates over many frames to detect
specular reflections indicative of wet conditions. While their method improves
over prior approaches, it requires integration over many frames, increasing com-
putational load and delay.
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For the present paper we employ the classifier reported recently by Qian
et al. [17], which uses a naive Bayes classifier over texton and luminance features.
Please see Sect. 4 for more details.

2.3 Dataset

To train and evaluate our algorithm, we employ the challenging dataset of 100
2048 x 1536 pixel images (Fig. 1) introduced by Qian et al. [17], obtained directly
from the authors. The dataset contains roads under different weather conditions,
from bare dry to snow packed. Each of the five classes was randomly and evenly
split between training and test datasets, each consisting of 50 images.

The pictures were taken at different times of the day, thus covering a wide
range of illumination conditions and the camera pose varied considerably. The
road condition class was identified manually by our industrial partner. For train-
ing and evaluation purposes, we manually segmented the road surface from the
background. Running our classifier on the manually segmented imagery allows
us to estimate the potential for increasing classification performance through
further improvements in segmentation.

3 Road Segmentation

The main challenge for segmenting the road surface is the variability of the
road appearance under different weather conditions, which limits the utility of
appearance features such as luminance, colour, texture and detailed road mark-
ings. We therefore propose a method that relies on contextual information to
define the vanishing point of the road and horizon line. The process consists of
four stages: (1) estimation of the vanishing point of the road; (2) assessment of
the reliability of this vanishing point estimate; (3) direct estimation of the hori-
zon line, for vanishing points assessed to be unreliable; (4) fusion with a spatial
prior to identify the region of the image corresponding to the road surface.

3.1 Vanishing Point Estimation

A vanishing point is defined as a point in the image plane where parallel lines
converge. We use the line detector algorithm of Tal and Elder, 2012 [21] (code
obtained directly from authors). The detector returns betwen 122 and 746 lines
for each of the images in the training dataset. It also returns the estimated total
length [ of the line segments along each detected line. As revealed in Fig. 2,
the geometry (position p, orientation 6, length ) of each line provides some
information about the likelihood that it is generated by the vanishing point
(ON) versus a background process (OFF). We therefore rerank the lines using a
naive Bayes model to approximate the likelihood ratio L; for each line i:

_ 2(pi, 05, lION) - p(pi|ON)p(6;|ON)p(l;|ON)
" p(pi, 05, 1|OFF) ~ p(p;|OFF)p(8;|OFF)p(l;]OFF)

(1)
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Fig. 2. Likelihood distributions for the three line features (p, 6 and ).

We estimate the vanishing point as the point in the image that minimizes the
distance to the top-ranked n lines. Specifically, we adopt a naive Bayes approach
and choose the point v that maximizes

p(v|L) Hp(dilv)p(v) (2)

where D = (dy,ds,...,d,) are the distances to the detected lines. The spatial
prior p(v) is modelled as a Gaussian distribution, and the likelihoods p(d;|v) are
determined from the training data as shown in Fig. 3.

Equation 2 is not convex in general; to maximize we select the optimal solu-
tion from 50 gradient descent solutions (MATLAB fminsearch), initialized by
randomly sampling from the prior p(v).

Figure 4 compares performance of the vanishing point algorithm on the train-
ing dataset with and without the re-ranking step. We find that generally the
re-ranking improves results and that error is minimizec by using the top-ranked
20 lines. Note also that using the lines to estimate the vanishing point yields
much lower error than using the centroid of vanishing points from the training
set (Prior model). Figure 5 shows examples of automatically estimated vanishing
points.
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Fig. 3. (a) Vanishing point prior distribution plotted on a sample image from the
dataset. The red ellipse indicates the 95 % confidence interval for the vanishing point.
(b) Likelihood distribution for the distance of the top-ranked 20 detected lines from
the vanishing point. (Color figure online)
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Fig.4. (a) Average Euclidean error of the estimated vanishing point as a function
of the number n of lines employed. (b) Mean error and standard error of the mean,
collapsing over n.

There are some situations where the vanishing point of the road is not readily
apparent, such as in parking lots or intersections (Fig.10(c—f)). Our vanishing
point algorithm will tend to produce large errors for these cases, which could in
turn lead to large errors in the road segmentation. To prevent this, we assess the
reliability of vanishing point estimates as the average distance Dy, of the top k
lines closest to the estimated vanishing point; If Dy, exceeds a threshold t, we
reject the vanishing point estimate and use an alternate method to determine
the horizon line (see below). There are two free parameters for this reliability
measure: the number k£ of lines and the threshold t. We optimize using the
training data based on the ultimate error in estimating the horizon line, assessed
as the average absolute error at left and right image boundaries (Fig. 6): values
of k=12 and t = 21 were found to be optimal.
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Fig. 5. Examples of automatically estimated vanishing points.
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Fig. 6. The error graph of different combinations of threshold ¢ and top k lines.

3.2 Horizon Estimation

When vanishing point estimation fails it may still be possible to constrain the
road location using the horizon line. The horizon line can be defined by two
parameters, for example, its vertical location and orientation. For our dataset,
however, we found that orientation estimation could be quite unreliable. We
therefore fixed the orientation to horizontal.

To estimate the vertical location of the horizon, we used the training images
for which our vanishing point estimates were judged (automatically) to be unreli-
able as a horizon training dataset (k = 23 images in all). We then (1) normalized
each image to have zero mean and unit variance, (2) registered them vertically
so that their horizons aligned, (3) extracted the luminance channel from each
image, (4) averaged over horizontal position (see Fig.7(a)) and (5) cropped to
extract a luminance vector 1; of length n centred at the horizon. Finally, we
computed the first m principal components u; (see Fig. 7(b)) of length n over
these k vectors.

To estimate the vertical position y; of the horizon for a target image, we
(1) normalize the image to have zero mean and unit variance, (2) extract the
luminance channel, (3) average over horizontal position and (4) convolve the
resulting vector 1 with each of the m principal component vectors to generate m
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Fig. 7. (a) Mean normalized luminance of horizon training images as a function of
vertical displacement from horizon. (b) First three principal components of vertical
luminance distribution around horizon location.

projection vectors 1;. Approximating the training data as multivariate normal,
the log probability that the horizon lies at vertical location y can be estimated as:

mo. _ 2
logp (yn =y) x = > (li(y) - lTui) /s (3)
i=1
where 1 is the mean over the training vectors 1; and )\; is the ith eigenvalue. The
horizon is then estimated by maximizing this log probability over y.

The two free parameters of this method are the length n of the principal
component filters and the number m of these filters to employ. We optimized
these parameters by grid search over the training data (Fig.8), finding n = 300
pixels and m = 6 to be optimal. Examples of horizon lines estimated on the test
dataset are shown in Fig. 10(c—f).
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Fig. 8. Mean vertical location error in horizon estimate over training data, as a function
of the length n and number m of principal components filters.
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3.3 Region of Interest

The road vanishing point and horizon line provide crucial geometric constraints
on the location of the road surface. To turn these constraints into an approxi-
mate segmentation of the road, we fuse them with a spatial prior that has been
conditioned on the estimated vanishing point or horizon. Figure9(a) shows the
spatial prior, learned over the training dataset, without conditioning. The prior
is quite diffuse, due not only to the variability in road geometry but also to the
variation in camera placement. Figures 9(b—c) show the same prior, computed
relative to the vanishing point location for images where a vanishing point can
be identified (a) and relative to the horizon line for images where it cannot (c).
Note that conditioning on the geometry leads to a more focused and accurate
indicator of the road surface location.

In order to segment the road for a novel image, we first estimate the van-
ishing point. If the estimate is judged reliable, we register the associated prior
(Fig.9(b)) with the estimated vanishing point and label all pixels above a thresh-
old probability py to be road pixels. If the vanishing point is judged to be unreli-
able we follow the same procedure for the estimated horizon line and prior. If our
vanishing point and horizon line estimates were perfectly accurate, a threshold
of pg = 0.5 would maximize proportion correct pixel labelling (road/non-road).
Figure 9(d) shows that our road segmentation algorithm performs substantially
better than the method of Qian et al. [17], which involved simply thresholding
the spatial prior, with no estimation of road geometry. This figure also confirms
that a threshold of 0.5 works well in practice and is the value we adopt for road
weather classification.

Figure 10 shows representative road segmentation results on the test dataset.
There remain some failure modes for both road vanishing point and horizon
detection, but generally speaking the results are good, as indicated by the median
examples (b).

4 Road Condition Classification

To assess the utility of the improved road segmentation, we use it to define
the region of interest (ROI) for road weather classification. In particular, we
use an adaptation of the method of Qian et al. [17], which employs scale- and
orientation-invariant MR8 filters [23]. These filters produce an 8-dimensional
feature vector at each pixel in the ROIL. Each ground truth ROI in the training
set is divided into 8 x 8 pixel non-overlapping patches, each of which is then
represented by an 8 x 8 x 8 = 512-dimensional feature vector. K-means is then
used to cluster the feature vectors from the training data into k = 74 textons.

While MRS is roughly luminance-invariant, luminance can carry information
about weather (snow is bright, wet roads tend to be darker). Qian et al. therefore
augmented this texton descriptor with a 20-bin histogram of grey level deviations
from the mean image luminance.

Qian et al. based their classifier on a naive Bayes model of exponential-x?
distances of input vectors from their class-conditional means. Here we take a
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Fig. 9. (a) Prior spatial distribution of road pixels, in absolute image coordinates.
(b) Prior horizontally and vertically registered to vanishing point. (¢) Prior vertically
registered to horizon. (d) Proportion of correctly labelled image pixels for the test set,
as a function of the probability threshold po.

Fig. 10. Example road segmentations on the test dataset. Results are evaluated based
on proportion of correctly labelled pixels (road/non-road). (a)—(c) show best, median
and worst-case (failure mode) examples for cases where a vanishing point could be
estimated. (d)—(f) show best, median and worst-case examples for cases where the
vanishing point was deemed unreliable and a horizon estimator was used.
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simpler approach, using an SVM with RBF kernel in a one-versus all design (the
SVM implementation provided in the MATLAB Statistics and Machine Learning
Toolbox). We found this to yield very similar results.

5 Performance Evaluation

Classification results on the test set for two classes (bare vs snow/ice covered),
three classes (dry, wet, snow/ice covered) and five classes (dry, wet, snow, ice,
packed) are shown in Fig.11. We evaluate results using three different meth-
ods to define the ROI: (1) manual segmentation; (2) the automatic segmenta-
tion method proposed here; (3) automatic segmentation using the fixed prior of
Fig.9(a) [17]. As a baseline we also show performance for a classifier that sim-
ply selects the highest a priori probability. Note that the manual segmentation
provides an upper bound on the possible payoff from further improvements to
segmentation.

100 Il Manual Segmentation
Il Proposed Segmentation
301 Il Fixed Prior Segmentation
Il Baseline

(o)
o

S
[«

Classification Accuracy(%)

2 Class 3 Class 5 Class

Fig. 11. Results comparison for 2, 3 and 5 classification using manual, Proposed Seg-
mentation, Fixed prior segmentation against random guesses

Our proposed segmentation method achieved an accuracy of 86 % for two-
classes, 80% for three-classes, and 52 % for 5 classes. Given the challenging
nature of the dataset, these are promising results.

The proposed segmentation method improves classification accuracy over the
fixed segmentation method used by Qian et al. [17] in all cases. Statistical sig-
nificance of this improvement can be assessed by computing the posterior prob-
ability that the underlying probability of correct classification is greater for our
proposed method, assuming a flat prior over the performance for the two meth-
ods. This yields a posterior probability of 0.81 for the 2-class case, 0.99 for the
3-class case and 0.90 for the 5-class case, corresponding to p-values of .19, .01
and .10 in the language of null-hypothesis testing.
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6 Summary

In this paper we have proposed a novel algorithm for road segmentation from
uncalibrated dash cameras, to support road weather analysis. The algorithm
was designed to operate robustly over a a diverse range of camera poses on
both structured (highway/local road) and unstructured roads (parking lots).
The approach consist of finding the vanish point, or horizon and fusing with a
registered spatial prior. Classification performance on a challenging dataset was
86 % and 80% for two- and three-class problems, respectively, representing a
significant improvement over prior work [17]. Our analysis reveals that further
improvements in performance will likely depend on improvements in both the
segmentation and classification stages.

In recent years concern has been raised regarding the lack of generalization
of traditional supervised road segmentation techniques, which tend to fail when
facing situations not covered in the training set. To overcome this issue, attempts
have been made to use online learning methods to adapt the parameters of the
algorithm to the image data [1,22]. These methods typically assume that the
bottom of the image projects from the road surface [1,2,7,22], which unfortu-
nately is not the case for our dataset (Fig. 1). Nevertheless, this is an important
issue, and we hope to increase the adaptiveness of our method in the near future.
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