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Abstract. In this paper we present a vision-based active safety system
targeting the blind spot zone of trucks. Each year, these blind spot acci-
dents are responsible for numerous fatalities and heavily injured. Existing
commercial systems seem not to be able to cope with this problem com-
pletely. Therefore, we propose a vision-based safety system relying solely
on the blind spot camera images. Our system is able to detect all vulner-
able road users (VRUs) in the blind spot zone, and automatically gener-
ates an alarm towards the truck driver. This inherently is a challenging
task. Indeed, such active safety system implicitly requires extremely high
accuracy demands at very low latency. These two demands are contradic-
tory, and thus very difficult to unite. However, our real-life experiments
show that our proposed active alarm system achieves excellent accuracy
results while meeting these stringent requirements.
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1 Introduction and Related Work

Each year the blind spot zone of trucks is responsible for an estimate of about
1300 casualties in Europe alone [9]. These accidents almost always occur in a
similar fashion: the truck driver takes a right hand turn at an intersection and
overlooks vulnerable road users (VRUs – e.g. pedestrians or bicyclists) which
continue their way straight ahead. They have one of two distinctive causes: inat-
tentiveness of the truck driver or the fact that these victims were located in
a blind spot zone around the truck. Several such zones around the truck exist
where the driver has only limited or no view. Evidently, the zone starting from
the front right corner of the truck’s cabin which extends further to the right
hand side of truck is the most crucial one. To cope with these blind spot zones,
several commercial systems were developed. However, each of them has specific
disadvantages, and as such none of them seem to handle this blind spot problem
completely. These commercial systems can be subdivided into two main groups:
passive and active systems. Passive safety systems still rely on the attentiveness
of the truck driver himself. The most widely used passive systems are the – since
2003 obliged by law – blind spot mirrors. However, their introduction did not
resulted in a decrease in the number of casualties [14]. A second passive safety
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system is found in passive blind spot cameras. These systems are mounted in
a robust manner and – using wide-angle lenses – display the blind spot zone
on a monitor in the truck’s cabin when a right hand turn is signalled. How-
ever, these systems again rely on the attentiveness of the truck driver. Active
safety systems automatically generate an auditive, visual or haptic alarm signal
towards the truck driver (e.g. ultrasonic distance sensors) and as such avoid this
disadvantage. However, existing active safety systems are unable to interpret the
environment. No distinguishment between static objects (e.g. traffic signs) and
VRUs is made, and often false positive alarms are generated. As such, the truck
driver experiences this as annoying, and tends to disable the system. To over-
come the aforementioned challenges, we present an active safety system relying
solely on the input images from the blind spot camera. Using computer vision
object detection methodologies, our system is able to efficiently detect VRUs in
these challenging blind spot images, and automatically warns the truck driver
of their presence. Such a system eliminates all disadvantages mentioned above:
it is always adjusted correctly, is easily integratable in existing passive blind
spot camera setups, does not rely on the attentiveness of the truck driver and
implicitly provides some scene understanding. However, this is not an easy task.
Indeed, these VRUs are multiclass (they consist of pedestrians, bicyclists, chil-
dren and so on) and appear in very different viewpoints and poses. Furthermore
excellent accuracy results need to be achieved for such a system to be usable in
real-life scenarios. However, achieving high accuracy often comes at the cost of
high computational complexity. This is unfeasible for our application: we aim to
develop an active safety system which runs in real-time on low-cost embedded
hardware. Additionally, we need to cope with the large viewpoint and lens distor-
tion induced by traditional blind spot cameras. As a starting point, we employ
the vanilla implementation of a VRU detection and tracking framework that we
proposed in previous work [16], able to efficiently detect and track both pedes-
trians and bicyclists in these challenging blind spot camera images. However,
currently this framework focuses on the aspect of VRU detection and tracking
only. As such, the framework remains far away from a total active safety system.
Therefore, in this paper we extend, polish and elevate this tracking-by-detection
VRU framework into such an active alarm system. We present extensive real-life
experiments and indicate that our final active alarm system meets the stringent
requirements that such a system should achieve to be usable in practice.

To efficiently generate an alarm, we employ object detection algorithms that
enable the detection of vulnerable road users in the blind spot images. A vast
amount or literature concerning pedestrian detection exists. Since a detailed
discussion is out of the scope of this work, we refer the reader to [1,6–8,18] for
an extensive overview on the evolution of different pedestrian detectors. Several
works exist which perform pedestrian and bicycle detection specifically for traffic
safety applications, and are thus related to our work. However, to the best of our
knowledge, no publications exist which explicitly discuss accuracy and usability
results at safety system level. Furthermore only forward-looking cameras [3,13]
or stationary cameras [15] are used. Indeed, traditionally only forward-looking
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Fig. 1. Our final active alarm system. See http://youtu.be/0S-uEPA R5w.

datasets are employed. The images in Fig. 1 display example frames of the blind
spot safety application we target here. As seen, the specific viewpoint and lens
distortion significantly increases the difficulty. The remainder of this paper is
structured as follows. In Sect. 2 we briefly discuss the vanilla implementation
of [16] which we use as our baseline. In Sect. 3 we then discuss our extension,
and elevate this baseline framework into a complete active safety system. We
present accuracy results at system level. Based on these results, we discuss the
usability of our safety system for real-life scenarios in Sect. 4. We conclude this
paper and discuss future work in Sect. 5.

2 Baseline Algorithm

As baseline framework we start from the VRU detection and tracking frame-
work for blind spot camera images presented in [16]. An overview of this VRU
detection and tracking framework is visualised in Fig. 2. In a nutshell, the frame-
work works as follows. As seen in the images of Fig. 1, the vulnerable road users
appear distorted, rotated and scaled based on the position in the image. This
scene knowledge is exploited as follows. We assume that the blind spot camera
is mounted at a fixed position w.r.t. the ground plane. In this case, the exact
transformation only depends on the position in the image. During an offline cal-
ibration, this distortion is modelled as a perspective transformation. Thus, for
each region of interest (ROI) in the input image the transformation due to the
viewpoint distortion is locally modelled. Based on this information each ROI is
rewarped to an upright, undistorted fixed-height image patch. Since the scale is
fixed, only a single search scale needs to be evaluated for the detection models.
Next, image features are extracted on this rewarped patch. Three different detec-
tion models are evaluated. As object detection methodology, the deformable part
based models (DPM) are employed [10,11]. Apart from the standard pedestrian
model, an upper body model and one of three bicycle components (i.e. different
viewpoint) – selected depending on the position in the image – are evaluated.
This upper body model, combined with a bicycle model enables the efficient
detection of bicyclists. For each of these three models a probability map is gen-
erated. These hypothesis maps are then combined into a single detection prob-
ability map for that image patch. Finally, to cope with missing detections these
detection maps are integrated in a tracking-by-detection methodology. For this,

http://youtu.be/0S-uEPA_R5w
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Fig. 2. An overview of the baseline blind spot VRU detection algorithm [16].

at strategic positions in the image initial search locations are defined (indicated
with the black asterisks in Fig. 2). Each of these initial search locations is evalu-
ated in each frame. If a VRU is found, a Kalman filter is instantiated based on a
constant velocity motion model. In future frames, the next location is predicted
and evaluated using the detection pipeline discussed above.

3 An Active Vision-Based Blind Spot Safety System

Our VRU detection and tracking framework from [16] is able to detect and
track both pedestrians and bicyclists with high accuracy at reasonable process-
ing speeds. Here we now elevate the tracking-by-detection methodology into an
active safety system, and present extensive experiments as such. In its current
form the existing framework has several caveats which need to be tackled first.
Currently, the calculation time is non-deterministic. The tracking-by-detection
framework relies on initial search coordinates which are defined at strategic
positions in the image. When VRUs are detected at these positions, a new
track is instantiated and evaluated in the consecutive frames. This approach
thus implies that the processing speed depends on the number of tracks that
are evaluated. Such non-deterministic behaviour is not suited for hard real-time
applications where predictable latency and processing speed are of crucial impor-
tance. We must be able to guarantee that the system reacts within a constant
time. Therefore, in Subsect. 3.1 we propose a methodology which tackles the
non-deterministic behaviour of this framework. In Subsect. 3.2 we then elevate
the tracking approach, convert it into a final active alarm system and present
accuracy experiments as such.

3.1 Deterministic Calculation Time

We first define a blind spot zone in the image in which all pedestrians and
bicyclists ought to be detected. Determining this zone correctly is of crucial
importance for the effectiveness of our final alarm system. A strong correla-
tion exists between the size of this detection zone and the latency of our final
detection system. Most accidents occur when the truck makes a right turn with-
out noticing pedestrians or bicyclists that continue their way straight ahead.
Research indicates that it takes a worst-case reaction time of about 1.5 s for a
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Fig. 3. Blind spot zone.
(Color figure online)

Fig. 4. 4 × 3 search grid. Fig. 5. 5 × 4 search grid.

truck driver to react when confronted with an event and undertake the effective
break action [4]. Thus, an early detection of the VRUs is crucial. For this, a large
detection zone is needed, which ideally starts far behind the truck itself. In such
scenarios, e.g. fast moving bicyclists are detected early and enough time remains
for the truck driver to interpret the alarm signals and undertake a correspond-
ing action. However, such a large detection zone requires significant calculation
power. Indeed, the size of this blind spot detection zone essentially determines
a trade-off between the latency of our alarm system and the required computa-
tion power. To perform our consecutive validation experiments, we constructed
a detection zone denoted in red in Fig. 3 (on the ground plane). All VRUs which
enter this zone (approximately 6.60 m by 2.60 m) ought to be detected as soon
as possible. The vanilla implementation performs the transformation based on
the centroids of the VRUs. Therefore, we define the slightly larger and higher
positioned detection zone displayed in green.

We now determine fixed search points within this previously defined (green)
blind spot zone. At each point we perform the exact same approach as in [16].
Note that we still employ the tracking-by-detecting approach to cope with miss-
ing detections and to increase the robustness. However, we do not utilise the
predicted Kalman future locations as input to our warping framework. These
future locations are now only used to match detections from the previous frames
in future frames. This is needed to cope with missing detections (e.g. in between
two search points). Evidently, since the number of search points now is fixed, the
calculation time becomes deterministic. We positioned these search points on a
linear grid distributed in the above mentioned green detection zone. Evidently,
the number of grid points determines a trade-off between the computational
complexity and the accuracy. To determine this trade-off we evaluated the per-
formance of five different grids, ranging from dense to fine: a 3 × 3 grid, a 4 × 3
grid, a 4 × 4 grid, a 5 × 4 grid and finally a 5 × 5 grid. As an example, two
of these grids are visualised in Figs. 4 and 5. However, due to the non-linear
distortion and specific viewpoint a linear grid does not represent the most opti-
mal distribution. Therefore we developed an algorithm which splits up the blind
spot zone in segments of optimal sizes, taking into account the rotation and
scale robustness of our detector. For this we first we evaluated the invariance of
our deformable part detectors with respect to both rotation and scale variation.
These results are visualised in Figs. 6 and 7. As seen, slight variations on both
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Fig. 6. Acc. of DPM vs. height.
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Fig. 7. Acc. of DPM vs. rotation.

Fig. 8. The construction of the dynamic search grid.

the exact height and rotation cause negligible loss in accuracy. Based on these
results, the delineated blind spot zone is segmented and search points are deter-
mined automatically as visualised in Fig. 8. This results in a grid of 12 points,
which we coined the dynamic grid. We executed thorough experiments con-
cerning both accuracy and speed when using these detection grids. To validate
our algorithms we recorded real-life experiments using a commercially available
blind spot camera (Orlaco 115◦) and a genuine truck (Volvo FM12). For this,
several dangerous blind spot scenarios were simulated, including both pedes-
trians and bicyclists. Our final test set consists of about 5500 blind spot image
frames, in which about 8000 VRUs were labelled. Since we now only detect VRUs
in this delineated blind spot zone, we evidently discard all annotations outside
this zone. About 42 % of all annotations are maintained. Figure 9 displays these
accuracy results for all grids, and the original tracking-by-detection accuracy.
The dashed black line indicates the accuracy of the VRU tracking-by-detection
implementation from [16] which relies on initial search coordinates without the
use of our blind spot zone. The full black line displays the accuracy for this orig-
inal implementation when only taking into account detections and annotations
in the blind spot zone as discussed above. As seen, a significant gain in accuracy
is achieved. When only detecting the VRUs in the delineated blind spot zone,
the framework achieves an average precision of 91.92%. This is due to multiple
reasons. Annotations far outside the blind spot zone are difficult to detect, since
they are very small. Furthermore, several different annotators were involved.
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Fig. 9. Acc. when using fixed grids.
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Fig. 10. Speed when using fixed grids.

This induced that often the exact location behind the truck, where the anno-
tations start, significantly diverges between different sets. Due to the position
of the initial search points in the tracking-by-detection framework, sometimes it
was unfeasible to detect specific pedestrian or VRUs early enough. As seen, the
3×3 grid evidently is not dense enough. Similar accuracy performance as to the
original tracking-by-detection framework is achieved with a grid of 4× 3 points.
Apart from the deterministic calculation time, these grids have another signif-
icant advantage over the standard tracking-by-detection framework. There, a
VRU that is being tracked might be lost if for multiple frames in a row no detec-
tion is found (e.g. due to occlusions). No new search point is predicted in such
cases. When using this default grid, tracks are much more easily recovered. Fur-
thermore, we also performed experiments with additional datasets which include
children. Our experiments indicated that, apart from adults, our approach is able
to efficiently detect children without the need for additional search scales. This
is due to the perspective transformation: when enough search points are utilised
the probability that a child incidentally is retransformed to the fixed adult scale
increases. Note that the accuracy results of Fig. 9 are still on single VRU detec-
tion capacity, the accuracy of the overarching blind spot alarming system is to
be discussed in the next subsection.

Figure 10 displays the processing speed when using the fixed detection grids
in the delineated blind spot zone. The evaluation is performed on an Intel Xeon
E5 CPU at 3.1 GHz. The framework is mainly implemented in Matlab with
time-consuming parts in both C and OpenCV. We tested both a sequential and
a parallel implementation of our framework. Parallelisation was simply obtained
by evaluating each grid point on a parallel CPU core. When using for example a
4×3 grid (an identical size to the dynamic grid), we achieve a parallel processing
speed of 6.2 frames per second (FPS). However, even when evaluated in parallel,
increasing the size of the detection grid lowers the detection speed. Note that we
still employ Matlab which implies that multi-threaded processing and the data
transfer between different threads is far from optimal.
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3.2 Final Safety System

We now elevate the tracking-by-detection framework towards an autonomous
active safety system. We step away from individual bounding boxes for each
VRU, and generate an alarm if one or more VRUs are detected in the blind spot
zone delineated as discussed above. Figure 1 shows how our final alarm system
currently displays the detection of VRUs in the blind spot zone. For each frame
we determine if an alarm needs to be generated. For validation we thus clas-
sify each frame as a true positive (TP), false positive (FP), false negative (FN)
and true negative (TN). Thus, for each frame, we validate the effectiveness of
our system. This is far from ideal, since no temporal information is taken into
account. Furthermore, such evaluation metric is pessimistic when evaluating an
alarm system such as in our application. Take for example the scenario where
multiple true positive frames in a row occur when one of more VRU(s) enter
the blind spot zone at the end of the truck. In such cases the truck driver is
warned. Now suppose – due to e.g. missed detections – a few consecutive frames
are classified as false negatives. While not optimal, in real-world scenarios this is
less of a concern since the truck driver was already warned. In such cases only a
short interruption of the (auditory) alarm signal would be noticed. However, the
evaluation results presented here fail to take these considerations into account.
To further improve the accuracy of our system, we evaluated the integration
of temporal smoothing as follows. We aim to reject single (or short periods of)
false positives. For this, we perform majority voting on a window sliding over the
temporal frame per frame detection results. The exact size of this window (num-
ber of frames, N) is used as a parameter in our accuracy experiments. Figure 11
displays the accuracy results of our final active alarm system (black line), as
compared to the accuracy of the original tracking-by-detection framework when
only VRUs are accounted in the delineated blind spot zone (as discussed above,
indicated with the dashed black line). Our active alarm system achieves an aver-
age precision of 97.26%. We observe a significant accuracy improvement over the
vanilla tracking-by-detection framework where the accuracy is defined by tak-
ing into account each individual VRU track. This improvement is explained by
the fact that the exact accuracy conditions are now shifted towards the system
level. Take for example two pedestrians walking side by side in the blind spot
zone, where one pedestrian is (partially) occluded by the other. If in such case
our tracking framework only detects the non-occluded pedestrian, and fails to
detect the occluded pedestrian a false negative is counted resulting in a lower
recall. Regarding our alarm system, finding only the non-occluded pedestrian
in the blind spot zone is sufficient, since this already generates an alarm (and
thus the frame is regarded as being a true positive). A similar observation for
false positives exist. As mentioned, to further increase the detection accuracy we
employ a sliding majority voting over a window of N frames. For this, we simply
take the most occurring classification in the window of the N previous frames
as a final decision for that frame. Figure 12 displays the precision recall curves
of our alarm system for increasing sizes of this majority window (zoomed in on
the top right corner). The black curve indicates our original algorithm (N = 1).
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Fig. 11. Acc. of our final alarm system.
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An increase in size of this window evidently increases the accuracy. The latency
introduced by our majority voting scheme equals N+1

2 frames on average, 1 frame
best-case and N frames worst-case. Take for example N = 29 frames. In such
cases, our final alarm system achieves an average precision of about 99.5%. At a
frame rate of 15 FPS (and taken into account real-time detection performance),
an alarm is generated after worst-case two seconds.

4 Discussion

The acceptability and usability of an active alarm system as presented in the
previous sections depends on many considerations. These range from reliability,
predictiveness, false error rate and so on. An active blind spot detection system
consists of at least two main components: the detection of the VRUs in the blind
spot zone, and communicating this information to the truck driver. Although
this latter component is of extreme importance towards the development of a
commercial system, in this paper we focused on the first component: detecting
the VRUs in an efficient manner. According to [12], two main technical criteria
exist: the system should be able to perform good VRU detection and the system
should be able to give an alarm system in time such that enough time remains for
the truck driver to take action. We translated both criteria in three distinctive
requirements: the throughput, latency and accuracy of the system. Here, we now
discuss the required specifications and discuss the usability of our final alarm
system in real-life situations.

Throughput. The throughput, defined in the number of FPS, is easily quantifi-
able. Evidently, to be used in hard real-time scenarios our alarm system should
be able to classify each detection frame at least as fast as the rate at which
new frames need to be analysed. Typical commercial blind spot cameras achieve
a frame rate of 15 FPS. The detection speed of our final active alarm system
depends on the number of grid points. At e.g. a 3 × 3 detection grid, a process-
ing speed of about 7 FPS is achieved. Our final alarm system fails to meet
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this requirement. However, the final multiclass detection framework (used as
a baseline in our final active alarm system) served as a proof-of-concept Mat-
lab implementation. Plenty of room for speed optimisation exists. Indeed, in [5]
we proposed a highly optimised hybrid CPU/GPU implementation of the VRU
detection system presented in [17], and proofed that real-time performance is
achieved. Increasing the throughput of our final alarm system is only a matter
of a more efficient implementation, e.g. no algorithmic redevelopment is needed.

Latency. The latency is defined as the time delay between the moment that
VRUs enter the blind spot zone, and the moment that the system was able to
raise an alarm. In the most extreme case, the truck driver should be warned
before at least his reaction time (worst case 1.5 s) added with the time needed
to perform a stopping maneuver in advance. Quantifying the time needed to
perform this stopping maneuver is difficult, since it depends on several factors
such as weather conditions, the combined mass of the HGV and its truckload.
Due to the methodology of our active alarm system presented above, the max-
imally allowed latency depends on several factors. In our current final alarm
system we defined that the zone in which VRU detection needs to be performed
starts about 6.60 m behind the front of the truck’s cabin. However, this is only a
design parameter and as such can be increased – at the cost of higher computa-
tional complexity. Indeed, an increase of this detection zone allows for a larger
latency. Furthermore, the allowed latency of our detection system is correlated
with the relative speed difference between the VRUs and the truck. For pedes-
trians, this is of limited concern. However, for bicyclists this needs to be taken
into account. Additionally, when the majority voting scheme presented above is
used, the latency is correlated with the accuracy. When increasing the number
of frames (N) of the sliding majority window, the latency increases. The optimal
value of this parameter depends on how the system is employed. Evidently, when
no majority voting is used (i.e. N = 1) an immediate decision is taken for each
individual frame. The latency thus equals the detection time for a single frame.
If e.g. a detection speed of 15 FPS is achieved, a latency of only 67 ms exist.
However, this ideal scenario is based on offline processing of the image frames,
and ignores the latency introduced by e.g. the frame grabber when capturing
the image frames from the camera. For the remainder of this section we assume
that this latter time is negligible. When majority voting is used to increase the
accuracy, an increase in latency occurs. As an example, suppose N = 5. The
(worst case) latency between a bicyclist who enters the frame at the rear of the
truck, and the generation of an alarm now takes 333 ms (at 15 FPS and real-
time detection performance). The relative speed difference between the bicyclist
and the size of the detection zone needs to be taken into account to determine
if this latency is small enough. Suppose a bicyclist with a velocity of 20 km/h
approaches a truck taking a right hand turn at 10 km/h. In such scenario, the
time between entering the delineated detection zone and reaching the front right
corner of the truck’s cabin equals about 2.4 s. Thus, slightly more than 2 s remain
for the truck driver to react in this particular situation. As noticed, determining
the minimal latency that such an alarm system requires is a difficult task. At
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Fig. 13. The recall of our alarm system for three fixed values of the FPR.

best, when achieving real-time performance, our alarm system achieves a detec-
tion latency of 67 ms. In such cases, we achieve an average precision of 97.26%
on our test set. If needed, the detection accuracy could further be increased at
the cost of an increase in latency. If such an increase in latency is not allowed,
the VRU detection zone could be extended at the cost of extra computational
complexity.

Accuracy. The system should be able to perform good VRU detection. As such,
the false alarm rate and miss rate should be minimal. Exact quantitative figures
of these false positive rates (FPR) are difficult to find and not consistent in the
literature. For example, research on vehicle-based pedestrian collision warning
systems state a maximum false alarm rate of 2 % and a miss rate of 1 % [2] need
to be achieved, whereas [12] indicates a false alarm rate of up to 5 % is allowed. In
Fig. 13 we plot the recall of our final alarm system in function of N for three fixed
values of the false positive rate (and thus precision): 0 % (perfect precision), 1 %
(P=98.5 %) and 1.8 % (P=97.6 %). This last FPR rate approximately equals the
allowed rate in the literature. If we allow for a false positive alarm rate of 1.8 %,
our final alarm system achieves for e.g. N = 5 a recall of 89.3% (at a precision
of 97.6 %). Thus, when allowing for a false positive rate of 2 %, about 90 % of the
time VRUs are in the blind spot zone, an alarm is generated. For increasing N
this raises quickly to about 98 % at 1.8 % missed detections (N = 29). A perfect
recall is achieved for N = 55. However, defining the usability of a detection
system solely on a specific value of the false positive rate is not optimal. For
example, research indicates that a correlation exists between the acceptance of
false alarms and the predictiveness of an alarm system [12]. The false alarms are
easier accepted if the circumstances in which they occur are predictable. A safety
system of which is known that false alarms occur during e.g. rainy conditions
is easier accepted as compared to a safety system which produces a similar
amount of false alarms at random moments. Furthermore, a fixed value for the
false positive rate implies a specific operating point (i.e. detection threshold)
of our system. At low detection thresholds most VRUs are detected, at the
cost of relatively many false alarms (i.e. high recall at low precision). At high
detection thresholds only instances that have a high probability of being a VRU
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are detected (i.e. low recall at high precision. Defining the exact operating point
of our active alarm system (and thus the trade-off between precision and recall)
remains open for discussion. This highly depends on how the system is used. If
utilised as autonomous safety system (e.g. as an autonomous emergency braking
system), a perfect accuracy is needed. Currently, our active alarm system fails
to achieve perfect performance. However, if used as a decision support safety
system for the driver, it offers a significant advantage if a high recall is achieved
at (almost) perfect precision, which is the case. For such scenarios the accuracy
and usability of our alarm system is excellent. Take for example the precision
recall curve in Fig. 12, for N = 9. If set for a perfect precision (i.e. no false
alarms), a recall of 80.3 % is achieved. Thus, in 80 % of the time VRUs are
present in the blind spot zone, our system generates an alarm. If a low false
positive rate is allowed, the recall further increases. For example, at a recall of
85.4 %, a false positive rate of only 1 % is achieved. At these settings, about 34
frames of our entire dataset were classified as false positives, on a total of about
5500 frames (i.e. 0.62 %). When measured in time units, about 27 s for each
driven hour a false alarm is generated. Keep in mind that these false positive
frames are not distributed randomly over the entire dataset, since such single
frame false positives are easily filtered out. The remaining false positives occur
where an object in our dataset is misclassified as being a VRU for multiple
frames in a row. After further examination, for these specific settings the main
cause of the false positive frames was due to the false detections where, due
to shadows – with some imagination – an upper body-like appearance is seen.
Such false positives are easily eliminated when validated with e.g. an additional
ultrasonic distance sensor. Furthermore, currently we assume that our alarm
system continuously performs detection. However, commercial alarm systems
are only activated at low speeds (using GPS) or when the driver signals a right
hand turn.

5 Conclusions and Future Work

In this paper we presented a vision-based active alarm safety system guarding
the blind spot zone of trucks. Our alarm system manages to efficiently detect vul-
nerable road users that are present in the blind spot zone, and actively generates
an alarm. We showed that our system is able to meet the stringent requirements
that such an active safety system requires, when used as a decision support active
alarm system. At perfect precision, a recall rate of more than 80 % is achieved.
At low false positive rates and slightly higher latency, our alarm system reaches
recall values of up to three nines five. These results are promising when keeping
a commercial system in mind. However, we note that further large-scale tests
are needed to draw final conclusions with respect to the usability of our active
alarm system. Furthermore, the inclusion of additional sensors (such as long wave
infrared and ultrasonic distance sensors) allow to further boost the accuracy.
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