Skip to main content

Image-Based PSF Estimation for Ultrasound Training Simulation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9968))

Abstract

A key aspect for virtual-reality based ultrasound training is the plausible simulation of the characteristic noise pattern known as ultrasonic speckle. The formation of ultrasonic speckle can be approximated efficiently by convolving the ultrasound point-spread function (PSF) with a distribution of point scatterers. Recent work extracts the latter directly from ultrasound images for use in forward simulation, assuming that the PSF can be known, e.g., from experiments. In this paper, we investigate the problem of automatically estimating an unknown PSF for the purpose of ultrasound simulation, such as to use in convolution-based ultrasound image formation. Our method estimates the PSF directly from an ultrasound image, based on homomorphic filtering in the cepstrum domain. It robustly captures local changes in the PSF as a function of depth, and hence is able to reproduce continuous ultrasound beam profiles. We compare our method to numerical simulations as the ground truth to study PSF estimation accuracy, achieving small approximation errors of \({\le }15\,\%\) FWHM. We also demonstrate simulated in-vivo images, with beam profiles estimated from real images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abeyratne, U.R., Petropulu, A.P., Reid, J.M.: Higher order spectra based deconvolution of ultrasound images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(6), 1064–1075 (1995)

    Article  Google Scholar 

  2. Bamber, J.C., Dickinson, R.J.: Ultrasonic b-scanning: a computer simulation. Phys. Med. Biol. 25(3), 463 (1980)

    Article  Google Scholar 

  3. Bhanu, B., McClellan, J.H.: On the computation of the complex cepstrum. IEEE Trans. Acoust. Speech Signal Process. 28(5), 583–585 (1980)

    Article  Google Scholar 

  4. Bürger, B., Bettinghausen, S., Rädle, M., Hesser, J.: Real-time GPU-based ultrasound simulation using deformable mesh models. IEEE Trans. Med. Imaging 32(3), 609–618 (2013)

    Article  Google Scholar 

  5. Gao, H., Choi, H., Claus, P., Boonen, S., Jaecques, S., Van Lenthe, G., Van der Perre, G., Lauriks, W., D’hooge, J.: A fast convolution-based methodology to simulate 2-d/3-d cardiac ultrasound images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 404–409 (2009)

    Article  Google Scholar 

  6. Jensen, J., Leeman, S.: Nonparametric estimation of ultrasound pulses. IEEE Trans. Biomed. Eng. 41(10), 929–936 (1994)

    Article  Google Scholar 

  7. Jensen, J., Mathorne, J., Gravesen, T., Stage, B.: Deconvolution of in vivo ultrasound b-mode images. Ultrason. Imaging 15(2), 122–133 (1993)

    Google Scholar 

  8. Jensen, J.A.: Deconvolution of ultrasound images. Ultrason. Imaging 14(1), 1–15 (1992)

    Article  Google Scholar 

  9. Kobayashi, T., Imai, S.: Spectral analysis using generalized cepstrum. IEEE Trans. Acoust. Speech Signal Process. 32(5), 1087–1089 (1984)

    Article  Google Scholar 

  10. Lee, J.K., Kabrisky, M., Oxley, M.E., Rogers, S.K., Ruck, D.W.: The complex cepstrum applied to two-dimensional images. Pattern Recognit. 26(10), 1579–1592 (1993)

    Article  Google Scholar 

  11. Mattausch, O., Goksel, O.: Scatterer reconstruction and parametrization of homogeneous tissue for ultrasound image simulation. In: IEEE EMBC, pp. 6350–6353, August 2015

    Google Scholar 

  12. Meunier, J., Bertrand, M.: Ultrasonic texture motion analysis: theory and simulation. IEEE Trans. Med. Imaging 14(2), 293–300 (1995)

    Article  Google Scholar 

  13. Meunier, J., Bertrand, M., Mailloux, G.: A model for dynamic texture analysis in two-dimensional echocardiograms of the myocardium. In: SPI 0768, pp. 193–200 (1987)

    Google Scholar 

  14. Michailovich, O., Adam, D.: Phase unwrapping for 2-d blind deconvolution of ultrasound images. IEEE Trans. Med. Imaging 23(1), 7–25 (2004)

    Article  Google Scholar 

  15. Oosterveld, B., Thijssen, J., Verhoef, W.: Texture of b-mode echograms: 3-d simulations and experiments of the effects of diffraction and scatterer density. Ultrason. Imaging 7(2), 142–160 (1985)

    Article  Google Scholar 

  16. Oppenheim, A.V., Schafer, R.W., Buck, J.R., et al.: Discrete-Time Signal Processing, vol. 2. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  17. Reis, G., Lappe, B., Kohn, S., Weber, C., Bertram, M., Hagen, H.: Towards a virtual echocardiographic tutoring system. In: Linsen, L., Hagen, H., Hamann, B. (eds.) Visualization in Medicine and Life Sciences, pp. 99–119. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Taxt, T.: Restoration of medical ultrasound images using two-dimensional homomorphic deconvolution. IEEE Trans. UFFC 42(4), 543–554 (1995)

    Article  Google Scholar 

  19. Taxt, T.: Three-dimensional blind deconvolution of ultrasound images. IEEE Trans. UFFC 48(4), 867–871 (2001)

    Article  Google Scholar 

  20. Taxt, T.: Comparison of cepstrum based methods for radial blind deconvolution of ultrasound images. IEEE Trans. UFFC 1417(44), 666–674 (1997)

    Article  Google Scholar 

  21. Varray, F., Liebgott, H., Cachard, C., Vray, D.: Fast simulation of realistic pseudo-acoustic nonlinear radio-frequency ultrasound images. In: 2014 IEEE International Ultrasonics Symposium, pp. 2217–2220, September 2014

    Google Scholar 

  22. Wan, S., Raju, B.I., Srinivasan, M.A.: Robust deconvolution of high-frequency ultrasound images using higher-order spectral analysis and wavelets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(10), 1286–1295 (2003)

    Article  Google Scholar 

  23. Yamada, I., Sakaniwa, K.: An optimal design of homomorphic deconvolution system. In: IEEE Symposium on Circuits and Systems. pp. 1344–1349, May 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Mattausch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Mattausch, O., Goksel, O. (2016). Image-Based PSF Estimation for Ultrasound Training Simulation. In: Tsaftaris, S., Gooya, A., Frangi, A., Prince, J. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2016. Lecture Notes in Computer Science(), vol 9968. Springer, Cham. https://doi.org/10.1007/978-3-319-46630-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46630-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46629-3

  • Online ISBN: 978-3-319-46630-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics