Skip to main content

Discriminative Low-Rank Linear Regression (DLLR) for Facial Expression Recognition

  • Conference paper
  • First Online:
  • 2799 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9967))

Abstract

In this paper we focus on the need for seeking a robust low-rank linear regression algorithm for facial expression recognition. Motivated by low-rank matrix recovery, we assumed that the matrix whose data are from the same pattern as columns vectors is approximately low-rank. The proposed algorithm firstly decomposes the training images per class into the sum of the sparse error matrix, the low-rank matrix of the original images and the class discrimination criterion. Then accelerated proximal gradient algorithm was used to minimize the sum of ℓ1-norm and the nuclear matrix norm to get the set of tight linear regression base as the dictionary. Finally, we reconstruct the samples by tight dictionary and classified the face image by linear regression method according to the residual. The experimental results on facial expression databases show that the proposed method works well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yang, P., Liua, Q., Metaxasa, D.N.: Boosting encoded dynamic feature for facial expression recognition. Pattern Recogn. Lett. 30(2), 132–139 (2009)

    Article  Google Scholar 

  2. Lin, K., Cheng, W., Li, J.: Facial Expression Recognition Based on Geometric Features and Geodesic Distance. Int. J. Sig. Process. Image Process. Pattern Recogn. 7(1), 323–330 (2014)

    Google Scholar 

  3. Pantic, M., Rothkrantz, L.J.M.: Automatic analysis of facial expressions: The state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1424–1445 (2000)

    Article  Google Scholar 

  4. Kaltwang, S., Rudovic, O., Pantic, M.: Continuous pain intensity estimation from facial expressions. In: Proceedings of the International Symposium on Visual Computing, pp. 368–377 (2012)

    Google Scholar 

  5. Rudovic, O., Patras, I., Pantic, M.: Regression-based multiview facial expression recognition. In: Proceedings of the 20th International Conference on Pattern Recognition (ICPR), pp. 4121–4124 (2010)

    Google Scholar 

  6. Chai, X., Shan, S., Chen, X., Gao, W.: Locally linear regression for pose-invariant face recognition. IEEE Trans. Image Process. 7(16) (2007)

    Google Scholar 

  7. Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2106–2112 (2010)

    Article  Google Scholar 

  8. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), vol. 12 (2009)

    Google Scholar 

  9. Candès, E.J., Li, X., Ma, Y., et al.: Robust principal component analysis? J. ACM (JACM) 58(3), 11 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Recht, B., Fazel, M., Parrio, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. Soc. Ind. Appl. Math. 52(3), 471–501 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Peng, Y., Ganesh, A., Wright, J., Wenli, X., Ma, Y.: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 11(34), 2233–2246 (2012)

    Article  Google Scholar 

  12. Zhang, Q., Li, B.: Discriminative K-SVD for dictionary learning in face recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2691–2698 (2010)

    Google Scholar 

  13. Swets, D., Weng, J.: Using discriminant eigen features for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 831–836 (1996)

    Article  Google Scholar 

  14. Liu, C., Wechsler, H.: Enhanced fisher linear discriminant models for face recognition. In: Proceedings of Fourteenth International Conference on Pattern Recognition, vol. 2, 1368–1372 (1998)

    Google Scholar 

  15. Parkhi, O., Simonyan, K., Vedaldi, A., et al.: A compact and discriminative face track descriptor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1693–1700 (2014)

    Google Scholar 

  16. Ma, L., Wang, C., Xiao, B., et al.: Sparse representation for face recognition based on discriminative low-rank dictionary learning. In: Computer Vision and Pattern Recognition (CVPR), pp. 2586–2593 (2012)

    Google Scholar 

  17. Yang, M., Zhang, L., Feng, X., Zhang, D.: Fisher discrimination dictionary learning for sparse representation. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 543–550 (2011)

    Google Scholar 

  18. Eleftheriadis, S., Rudovic, O., Pantic, M.: Discriminative shared gaussian processes for multiview and view-invariant facial expression recognition. IEEE Trans. Image Process. 24(1), 189–204 (2015)

    Article  MathSciNet  Google Scholar 

  19. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  20. Yang, M., Zhu, P., Van Gool, L., et al.: Face recognition based on regularized nearest points between image sets. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–7 (2013)

    Google Scholar 

  21. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  22. Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 218–233 (2003)

    Article  Google Scholar 

  23. Toh, K.C., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optim. (2010)

    Google Scholar 

  24. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust l1 tracker using accelerated proximal gradient approach. Comput. Vis. Pattern Recogn. (2012)

    Google Scholar 

  25. Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. Adv. Neural Inf. Process. Syst. 9 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Zhu, J., Zheng, H., Zhao, H., Zheng, W. (2016). Discriminative Low-Rank Linear Regression (DLLR) for Facial Expression Recognition. In: You, Z., et al. Biometric Recognition. CCBR 2016. Lecture Notes in Computer Science(), vol 9967. Springer, Cham. https://doi.org/10.1007/978-3-319-46654-5_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46654-5_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46653-8

  • Online ISBN: 978-3-319-46654-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics