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Abstract. Cooperative neuro-evolution has shown to be promising for
chaotic time series problem as it provides global search features using
evolutionary algorithms. Back-propagation features gradient descent as
a local search method that has the ability to give competing results.
A synergy between the methods is needed in order to exploit their fea-
tures and achieve better performance. Memetic algorithms incorporate
local search methods for enhancing the balance between diversification
and intensification. We present a memetic cooperative neuro-evolution
method that features gradient descent for chaotic time series prediction.
The results show that the proposed method utilizes lower computational
costs while achieving higher prediction accuracy when compared to re-
lated methods. In comparison to related methods from the literature, the
proposed method has favorable results for highly noisy and chaotic time
series problems.
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1 Introduction

Evolutionary Algorithms (EAs) have achieved significant success as search and
optimization techniques across various domains [11, 8]. In particular, they are
best suited for non-linear and noisy systems [4], and have gained success for
training neural networks which are also known as neuro-evolution [25]. A major
drawback of EAs is convergence due to computational costs as they are essen-
tially black-box optimization methods. Gradient-based training methods provide
much faster convergence which has been successful for convex optimization, how-
soever, premature convergence and over-training have been a recurring challenge
[2].

The balance between diversification and intensification for neuro-evolution
is imperative in order to provide more emphasis on promising solutions in the
search space [20, 17, 14]. Memetic algorithms (MAs) [17] take advantage of the



strengths of evolutionary algorithms and local search methods while eliminating
their weaknesses [20, 9, 4, 2, 13]. Successful implementations of MAs span over
many fields including plane wing design [20], image classification [1], continuous
function optimization [2], and pattern classification [9].

Cooperative coevolution decomposes a problem into subcomponents [21] which
are typically implemented as sub-populations that evolve in isolation and coop-
eration takes place for fitness evaluation. Cooperative neuro-evolution (CNE)
refers to the application of cooperative coevolution for training neural networks.
CNE has been applied successfully for time series prediction [8]. A memetic
CNE method was presented with crossover-based local search and was able to
reduce the computational time while achieving high-quality solutions for pattern
classification problems [9]. Moreover, it has been shown that gradient descent
algorithms converge faster with high multi-modal problems that complement in
developing memetic algorithms [14]. There has not been much work done that
features local search in improving CNE for chaotic time series problems.

In this paper, we present memetic cooperative neuro-evolution method that
features gradient descent for chaotic time series problems. We evaluate the per-
formance of the approach on simulated and real-world benchmark chaotic time
series and also compare the results with related methods from the literature.

The rest of the paper is organized as follows. Section 2 presents the proposed
method and Section 3 focuses on the experiment design and results. Conse-
quently, Section 4 presents conclusion and discussion for future work.

2 Memetic Cooperative Neuro-evolution with Gradient
Local Search

As discussed earlier, Chandra et. al presented a framework for memetic coop-
erative coevolution for pattern classification [9] where it was highlighted that
the challenge lies in terms of implementation due to multiple sub-populations
in cooperative neuro-evolution. We note that conventional memetic algorithms
feature a single population and hence local search incorporation is relatively
easier when compared to several decomposed sub-populations in cooperative
neuro-evolution.

We employ a similar strategy for memetic cooperative neuro-evolution pre-
sented by Chandra et. al [9] where the best individuals from all the respective
sub-populations are concatenated after a given number of cycles for local refine-
ment. Note that a cycle refers to the completion of evolution of the respective
sub-populations in a round-robin fashion. We employ problem decomposition in
cooperative neuro-evolution that is based on neuron level decomposition (CNE-
NL) [10]. Each neuron acts as a reference for a subcomponent that contains
all the weight connections from the previous layer as shown in Figure 1. The
subcomponents are created from reference to all the neurons in the hidden and
output layers. These subcomponents are implemented as sub-populations.

We present the implementation details of memetic cooperative neuro-evolution
for feedforward networks (MCNE) that is given in Algorithm 1 and shown in



Fig. 1. Neuron level decomposition: a feedforward neural network with 3 input neurons,
3 hidden and 1 output neuron. Neurons in the hidden and output layers act as reference
points for new sub-populations, hence the creation of several sub-populations after
decomposition.

Figure 1. In Step 1, the algorithm begins by configuring the number of subcom-
ponents needed which is determined by the number of h and o neurons used. The
function rand(L,s,µ,w,w) then initializes the subcomponents in L with a pop-
ulation size of µ containing randomized values between w and w, respectively.
Then follows the evaluation phase in eval(L,s) where the fitness values of the
sub-population individuals are computed. This initialization operation cost also
contributes to the total number of function evaluations, ΓCC .

The loop on lines 7 - 16 holds the entire part of evolution that encompasses
cooperative neuro-evolution with local refinement by gradient descent which is
implemented through back-propagation. The algorithm halts if the specified min-
imum error εt, or if the maximum function evaluations Γmax has been reached.
Global search is employed in Step 3 where the sub-populations are evolved in a
round-robin fashion using evolutionary operators given by the designated evo-
lutionary algorithm. Hence, the subcomponent Dj is evaluated through func-
tion, evolve(b,Dj ,γ,α) which returns a training error given by the root-mean-
squared-error (RMSE). The total number of function evaluations ΓCC for is then
updated. This step is repeated according to the local search frequency lsf .

After completion of the evolution cycle, the meme δ∗ that contains the fittest
individuals from each sub-population in L is retrieved and concatenated from a
call to function getbestsolution(L,s). This calls the local refinement func-
tion bp(δ∗,λ) shown in Step 4. This is executed for lsi number of iterations where
the refined meme δ∗ is then broken up in replaceworst(L,s,δ∗,b) as shown in
line 16 and returned in order to be encoded into the respective sub-populations
L, replacing only the individuals with the lowest fitness. Finally, the total num-
ber of function evaluations ΓCC is updated in consideration of the lsi. Although
gradient descent has been used for local refinement, the proposed algorithm is
flexible, and hence other local refinement procedures can also be used.



Algorithm 1: mcnefnn(i,h,o,α,µ,Γmax,λ,ε,lsf,lsi,δ
∗)

1 Step 1: Initialization
2 s = h + o;
3 for k ∈ {1,..,h} & k ∈ {1,..,o} do
4 Lk += new C;

5 rand(µ,w,w,L,s); b = eval(L,s); ΓCC = µ ;
6 Step 2: Evolution
7 while εt > εmin & ΓCC < Γmax do
8 Step 3: Global Search
9 for k ∈ {1,..,lsi} (Cycles) do

10 for j ∈ {1,..,s} (Subcomponents) do
11 b = evolve(b,Lj,γ,α);
12 ΓCC += µ x (γ + 1);

13 δ∗ = getbestsolution(L,s);
14 Step 4: Local Refinement
15 for k ∈ {1,..,lsi} do
16 εt = bp(δ∗,λ);

17 replaceworst(L,s,δ∗,b); ΓCC += lsi;

Table 1. Variables

Variable Description Variable Description

α species mutation rate εt test error.
µ the population size lsf local search frequency.

Γmax max function evaluations. lsi local search intensity.
ΓCC total algorithm evaluations. δ∗ best meme.
λ backpropagation learning rate. L decomposition components set.
γ subcomponent optimization time C decomposition component.
i number of input neurons. s L size.
h number of hidden neurons. w upper weight boundary.
o number of output neurons. w lower weight boundary.

εmin minimum error needed.

3 Simulation and Analysis

This section presents an experimental study on the performance of MCNE for
chaotic time series problems. We first provide details of the parameters used in
the implementation of the algorithms and then present experimental design.

The sub-populations in cooperative neuro-evolution employ a pool of 200
individuals (µ) that feature the G3-PCX evolutionary algorithm (generalized
generation gap with parent-centric crossover) [11]. It employs a mating pool
size of 2 offspring and 2 parents. The respective sub-populations are initialized



within {w:-5, w:5}. We use fixed local search intensity (lsi = 200) and local
search frequency (lsf = 10) that gave good performance in trial experiments.
Additionally, backpropagation (gradient descent) employs a learning rate of λ =
0.1.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2) (1) NMSE =

(∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2

)
(2)

The embedding dimension D determines the number of input neurons while
the number of hidden neurons are varied (from 3 to 9) in order to test for
robustness and scalability. The number of function evaluations (Γmax) was set
at 5000. The (RMSE ) and normalized mean squared error (NMSE ) given in
Equations 1 and 2, provide the main performance measures. Note that yi refers
to observed data, ŷi the predicted data, ȳi the average of observed data, and N
the size of the data.

The datasets employed consist of simulated (Mackey-Glass) and real-world
(Sunspot, Laser, and ACI finance) chaotic time series problems. The ACI finance
dataset contains closing stock prices of ACI Worldwide Inc. from December 2006
to February 2010 (800 data points [19] ). The Laser dataset [24] contains 1000
data points along with the Mackey-Glass [16] while the Sunspot problem consists
of 2000 data points [5].

Each problem is divided into a 60-20-20 structure to provide training, valida-
tion and test set, respectively. The Taken’s embedding theorem [23] is employed
to reconstruct original time series data into a usable phase space for training
the neural network. The time-lag T determines the interval at which the data
points are to be picked while the embedding dimension D, specifies the size of
the sliding window. The reconstruction settings for this study are as follows;
Mackey-Glass and Laser {D :3,T :2}, Sunspot {D :5,T :3}, and ACI {D :5,T :2}.

3.1 Results

The results are presented in Figure 2 that highlights the training time (function
evaluations) and generalization performance (RMSE) of the given methods. The
respective histograms show mean and error bars from with 95 percent confidence
interval from 50 independent experimental runs. In Figure 2 (a), MCNE shows
significant convergence time improvement over CNE, with the exception of BP.
The confidence interval of MCNE is the best for the different number of hidden
neurons when we consider the RMSE which shows that it has been the most
robust method for this problem. Moreover, MCNE has achieved the highest
accuracy in prediction (with lowest values of RMSE).

MCNE has shown to get the lowest training time for the ACI-finance problem
shown in Figure 2(b). It also achieves best prediction accuracy in terms of lowest
RMSE for Sunspot, Mackey-Glass, and Laser problems. MCNE achieves a com-
peting performance with BP for prediction performance for ACI-finance problem



Table 2. Comparison with related methods from the literature

Problem Prediction Method RMSE NMSE
RBF-OLS (2006) [12] 46.0E-03
LLNF-LoLiMot (2006) [12] 32.0E-03
SL-CCRNN (2012) [8] 1.66E-02 1.47E-03
NL-CCRNN (2012) [8] 2.60E-02 3.62E-03

Sunspot [5] MO-CCFNN-T=2 (2014) [6] 1.84E-02 1.02E-03
MO-CCFNN-T=3 (2014) [6] 1.81E-02 0.998E-03
CICC-RNN (2015) [7] 1.57E-02 1.31E-03
CCFNN-CSFR (2016) [18] 1.58E-02 0.756E-03
MCNE 1.01E-02 1.24E-03
CICC-RNN (2009) [7] 1.92E-02
MO-CCFNN-T=2 (2014) [6] 1.94E-02

ACI [19] MO-CCFNN-T=3 (2014) [6] 1.47E-02
CCFNN-CSFR (2016) [18] 1.34E-02 0.995E-03
MCNE 2.21E-02 1.139E-03
RBF-OLS (2006) [12] 1.02E-03 460E-04
LLNF-LoLiMot (2006) [12] 0.961E-03 320E-04
PS0 (2009) [15] 21.0E-03
Neural fuzzy network and DE (2009) [15] 16.2E-03
Neural fuzzy network and GA (2009) [15] 16.3E-03

Mackey [16] SL-CCRNN (2012) [8] 6.33E-03 2.79E-04

NL-CCRNN (2012) [8] 8.28E-03 4.77E-04
MO-CCFNN-T=2 (2014) [6] 3.84E-03 0.28E-04
MO-CCFNN-T=3 (2014) [6] 3.77E-03 0.27E-04
CICC-RNN (2015) [7] 3.99E-03 1.11E-04
CCFNN-CSFR (2016) [18] 2.90E-03 0.016E-04
MCNE 4.57E-03 1.23E-04
RNN-BPTT (2002) [3] 1.54E-02
RNN-CBPTT (2002) [3] 2.24E-02

Laser [24] Echo State Network (SN) with IS 0.5 (2011) [22] 9.83E-02
Echo State Network (SN) with IS 1 (2011) [22] 10.58E-02
MCNE 2.32E-02 0.589E-02
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(a) Sunspot [5] (b) ACI World [19]

0 . 0 3 0
0 . 0 2 4
0 . 0 1 8
0 . 0 1 2
0 . 0 0 6

1 2 0 0
2 4 0 0
3 6 0 0
4 8 0 0
6 0 0 0

0 . 0 3 0
0 . 0 2 4
0 . 0 1 8
0 . 0 1 2
0 . 0 0 6

1 2 0 0
2 4 0 0
3 6 0 0
4 8 0 0
6 0 0 0

0

M e t h o d s  E m p l o y e d

Me
an

 TR
AIN

 Ev
als

973
#  H i d d e n  N e u r o n s

5 9753 3 5 7 9

RM
SE

0

C C N E B P M C N E
0 . 0 8 0
0 . 0 6 4
0 . 0 4 8
0 . 0 3 2
0 . 0 1 6

1 2 0 0
2 4 0 0
3 6 0 0
4 8 0 0
6 0 0 0

0 . 0 8 0
0 . 0 6 4
0 . 0 4 8
0 . 0 3 2
0 . 0 1 6

1 2 0 0
2 4 0 0
3 6 0 0
4 8 0 0
6 0 0 0

0

K e y
 B E S T  T E S T  R M S E
 T R A I N  R M S E
 T E S T  R M S E

M e t h o d s  E m p l o y e d

Me
an

 TR
AIN

 Ev
als

973
#  H i d d e n  N e u r o n s

5 9753 3 5 7 9

RM
SE

0

C C N E B P M C N E

(c) Mackey Glass [16] (d) Laser [24]

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7

0 2 0 4 0 6 0 8 0

0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

Pr
ed

ict
ed

 Se
rie

s D
ata

 P r e d i c t e d  S e r i e s  D a t a
 A c t u a l  S e r i e s  D a t a

Pr
ed

ict
ion

 Er
ror

 (R
MS

E)

T i m e  S e r i e s  D a t a p o i n t s

 P r e d i c t i o n  E r r o r  ( R M S E )
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0
0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

Ac
tua

l S
eri

es
 Da

ta  A c t u a l  S e r i e s  D a t a
 P r e d i c t e d  S e r i e s  D a t a

Pr
ed

ict
ion

 Er
ror

 (R
MS

E)

T i m e  S e r i e s  D a t a p o i n t s

 P r e d i c t i o n  E r r o r  ( R M S E )

(e) Laser prediction performance (f) Sunspot prediction performance

Fig. 2. The training time (function evaluations) and generalization performance
(RMSE) of the given methods for the Sunspot, ACI finance, Mackey-Glass and Laser
time series. Note that the values below the x-axis are not negative. Additionally, (e)
and (f) shows the prediction accuracy of MCNE for a single test run for the Sunspot
and Laser problems.



where BP takes most training time when compared to the other methods. This
case shows the inefficiency of BP convergence although it is perceived as a faster
method when compared to evolutionary techniques. In terms of robustness, 5
hidden neurons provide the best convergence and prediction performance for all
the problems.

Table 2 presents a comparison with related methods from the literature. We
note that MCNE shows the best performance for Sunspot and Laser problems
however the algorithm did not perform very well for the ACI finance and Mackey
problems. One of the problems with direct comparison with other methods is the
difference in training time and related parameters of the experimental design.
We employed maximum of 5000 function evaluations for training while compared
to Nand and Chandra [18] (CSFR in Table 2) used 50,000 function evaluations.
Hence, more training time could be attributed to better performance. Addition-
ally, recurrent neural networks seem to be better suited for time series prediction
[8].

3.2 Discussion

The results show that the proposed method performs very well on the real-world
problems (Sunspot and Laser) when compared to standalone methods. The im-
provement can be credited to solution transfer between global and local search,
especially through the use of gradient information. We note that extra emphasis
on global search increases computational costs that produce lower accuracy since
neuro-evolution is essentially a black-box training method. Real world problems
are often non-linear and noisy thus the diversity of solutions through exchange
between local and global search has been beneficial. A major advantage of lo-
cal refinement has been the decrease in the number of function evaluations in
reaching a promising solution. The results show that local refinement in evo-
lution speeds convergence and produces better accuracy for chaotic time series
prediction.

Although the method has shown to perform better than its counterparts,
the results face some challenges when compared to some of the methods from
the literature. We note that it is not fair for a straight-forward comparison with
results from the literature as some of the methods rely on different approaches
that include hybrid methods, ensembles, and feature extraction. However, an
extensive study on the balance between the local search frequency and intensity
in our proposed method is needed for further improvement.

4 Conclusion and Future Work

We presented a memetic cooperative neuro-evolution method where backpropa-
gation was used for local refinement. The method was applied to selected prob-
lems in chaotic time series prediction and the results showed promising when
compared to related methods in the literature. This was mainly for real-world



application problems that feature noise and are chaotic in nature. Coopera-
tive neuro-evolution provided diversification while backpropagation refined the
promising solutions that lead to rapid convergence. We highlight that the pro-
posed method has been feasible even with limited training time.

The proposed method is flexible and can be easily adapted to incorporate
other local search methods. A group of local search methods can also be used
that can exploit different regions of search space at different stages of the learning
process.

A limitation of this study has been the lack of extensive study on the balance
between diversification and intensification. Hence, future work can focus on this
in the context of time series prediction. Furthermore, the results motivate real-
world applications to domains that range from finance to climate change. Further
improvements in the results could be achieved with different local refinement
procedures. Moreover, the method can be extended to multi-step-ahead time
series prediction.
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