Skip to main content

Sparse Auto-encoder with Smoothed \(l_1\) Regularization

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9949))

Included in the following conference series:

Abstract

To obtain a satisfying deep network, it is important to improve the performance on data representation of an auto-encoder. One of the strategies to enhance the performance is to incorporate sparsity into an auto-encoder. Fortunately, sparsity for the auto-encoder has been achieved by adding a Kullback-Leibler (KL) divergence term to the risk functional. In compressive sensing and machine learning, it is well known that the \(l_1\) regularization is a widely used technique which can induce sparsity. Thus, this paper introduces a smoothed \(l_1\) regularization instead of the mostly used KL divergence to enforce sparsity for auto-encoders. Experimental results show that the smoothed \(l_1\) regularization works better than the KL divergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fischer, A., Igel, C.: An Introduction to restricted Boltzmann machines. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp. 14–36 (2012)

    Google Scholar 

  5. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and Helmholtz free energy. Adv. Neural Inf. Process. Syst. 6, 3–10 (1993)

    Google Scholar 

  6. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Conference on Neural Information Processing Systems, pp. 153–160 (2006)

    Google Scholar 

  7. Lennie, P.: The cost of cortical computation. Current Biol. 13, 493–497 (2003)

    Article  Google Scholar 

  8. Simoncelli, E.P.: Statistical Modeling of Photographic Images, 2nd edn. Academic Press, San Diego (2005)

    Google Scholar 

  9. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

    Article  Google Scholar 

  10. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by V1? Vis. Res. 37(33), 3311–3325 (1997)

    Article  Google Scholar 

  11. Lee, H., Ekanadham, C., Ng, A.Y.: Sparse deep belief net model for visual area V2. In: Conference on Neural Information Processing Systems, pp. 873–880 (2007)

    Google Scholar 

  12. Luo, H., Shen, R., Niu, C., Ullrich, C.: Sparse group restricted Boltzmann machines. In: AAAI Conference on Artificial Intelligence, pp. 429–434 (2011)

    Google Scholar 

  13. Ng, A.Y.: Sparse autoencoder. CS294A Lecture, Stanford University (2011). http://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf

  14. Le, Q.V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Ng, A.Y.: On optimization methods for deep learning. In: International Conference on Machine Learning, pp. 265–272 (2011)

    Google Scholar 

  15. Deng, J., Zhang, Z.X., Marchi, E., Schuller, B.: Sparse autoencoder-based feature transfer learning for speech emotion recognition. In: Humaine Association Conference on Affective Computing and Intelligent Interaction, pp. 511–516 (2013)

    Google Scholar 

  16. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Conference on Neural Information Processing Systems, pp. 801–808 (2006)

    Google Scholar 

  17. Candes, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 15(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ng, A.Y.: Feature selection, \(L_1\) vs. \(L_2\) regularization, and rotational invariance. In: International Conference on Machine Learning (2004)

    Google Scholar 

  20. Moreau, J.J.: Proximite et Dualite dans un espace Hilbertien. Bulletin de la Society Math matique de France 93, 273–299 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bech, A., Teboulle, M.: Smoothing and first order methods: a unified framework. SIAM J. Optimization 22(2), 557–580 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ng, A.Y., Ngiam, J., Foo, C.Y., Mai, Y., Susen, C.: Ufldl Tutorial (2012). http://ufldl.stanford.edu/wiki/resources/sparseae_exercise.zip

  24. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  25. Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-100). Technical Report, CUCS-006-96, Department of Computer Science, Columbia University (1996)

    Google Scholar 

  26. Hinton, G.E.: A practical guide to training restricted Boltzmann machines. Neural Netw. Tricks Trade 7700, 599–619 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61373093, and 61402310, by the Natural Science Foundation of Jiangsu Province of China under Grant No. BK20140008, by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant No.13KJA520001, and by the Soochow Scholar Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Zhang, L., Lu, Y., Zhang, Z., Wang, B., Li, F. (2016). Sparse Auto-encoder with Smoothed \(l_1\) Regularization. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9949. Springer, Cham. https://doi.org/10.1007/978-3-319-46675-0_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46675-0_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46674-3

  • Online ISBN: 978-3-319-46675-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics