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Abstract. In this paper, novel cost-sensitive principal component anal-
ysis (CSPCA) and cost-sensitive non-negative matrix factorization (CSNMF)
methods are proposed for handling the problem of feature extraction
from imbalanced data. The presence of highly imbalanced data misleads
existing feature extraction techniques to produce biased features, which
results in poor classi�cation performance especially for the minor class
problem. To solve this problem, we propose a cost-sensitive learning
strategy for feature extraction techniques that uses the imbalance ra-
tio of classes to discount the majority samples. This strategy is adapted
to the popular feature extraction methods such as PCA and NMF. The
main advantage of the proposed methods is that they are able to lessen
the inherent bias of the extracted features to the majority class in exist-
ing PCA and NMF algorithms. A series of experiments on twelve public
datasets with di�erent levels of imbalance ratios show that the proposed
methods outperformed the state-of-the-art methods on multiple classi-
�ers.

1 Introduction

The class imbalance issue is caused by unequal distributions of the data between
class labels [5]. It occurs due to a paucity of cases, for example, patients with a
rare disease, or di�culties in collecting samples due to high cost or privacy. The
imbalanced class is considered as a crucial issue in machine learning and data
mining due to two reasons: �rstly, learning from an imbalanced dataset leads
to poor classi�cation because classical data mining algorithms tend to favor
classifying examples as belonging to the majority class (negative class). Thus,
these base learning algorithms would be incapable of classifying the instances of
the minority class (positive class), which are considerably the class of interest.
Secondly, it is a common problem in many real world domains including those
related to biomedical, �nancial data and others.

In the literature, three categories of techniques have been proposed to solve
the class imbalance issue: the data-level, the cost-sensitive, and the algorithm-
level. Firstly, the data-level category or sampling techniques modify the distri-
bution of dataset to make it balanced by using under-sampling or over-sampling
methods. The former reduces the majority class samples such as �ABC-Sampling�
[3] and others. However, this may exclude important information by removing
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useful majority samples [15]. The latter approach increases the number of minor
class samples by duplicating or creating new synthetic samples. Oversampling
approach does not lose information since all majority samples are retained [6].
However, duplicating samples approach is more prone to over-�tting. Several
methods proposed in oversampling approach such as �SMOTE� [6], Adaptive
Synthetic Sampling (ADASYN) [9], and others. Secondly, cost-sensitive super-
vised learning term has been proposed in classi�cation environment to increase
the cost on the misclassi�ed instances [8]. Finally, the algorithm-level category
modi�es existing learning algorithms to tend towards the minority samples. For
example, Class Con�dence Proportion Decision Tree (CCPDT) [13] has been
proposed to modify the classical decision trees algorithm. However, these algo-
rithms solve the class imbalance problem at the classi�er level.

On the other hand, feature extraction techniques are considered as a prepro-
cessing method to reduce the number of dimensions in the dataset. In the case of
imbalanced data, the extracted features are biased to predict the majority class
samples that lead to poor performance on classi�cation [14]. Principal compo-
nent analysis (PCA) [11] and non-negative matrix factorization (NMF) [12] are
very well-known feature extraction methods. The unsupervised PCA algorithm
seeks the orthogonal feature extractors that maximize the total variance. There-
fore, the extracted features favors majority class because there number is much
more than the minority class.

NMF has recently been shown to be a very e�ective matrix factorization
technique in approximating the high dimensional data [12]. It is a vector space
method that uses matrix factorization to �nd two non-negative reduced-dimension
matrices W and H [12]. The factorized matrices W and H will be a�ected by
the imbalance problem and the basis matrix W will be biased to represent the
majority class samples, because the magnitude of the residual squared error of
negative class instances is much more than the positive ones.

Recently, supervised feature extraction methods are proposed to enhance the
classi�cation capability of the factorized matrices by utilizing the existence of
class labels [10]. However, to our knowledge, there is no cost-sensitive learning
approach to solve the imbalance problem in the supervised feature extraction
techniques. In fact, we are unaware of any previous studies that address the
imbalanced class problem in the most widely used feature extraction approaches
namely NMF and PCA.

In this paper, we propose a cost-sensitive approach for classical PCA and
NMF feature extractions which is able to solve the imbalanced class problem
without modifying the existing base classi�ers, or changing the original informa-
tion of the training datasets. Our approach is validated on highly imbalanced
datasets, and the extracted features are classi�ed on popular classi�ers such as
SVM, k-NN, Naive Bayes and decision trees (CART).

Speci�cally, the contributions of this paper are:

1. We propose an e�ective cost-sensitive strategy that can improve general
feature extraction methods for imbalanced data.
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2. We apply the cost-sensitive learning strategy to the popular classical feature
extraction methods PCA and NMF to handle the imbalance class problem.

3. We provide comprehensive evaluations of our methods on many real-world
imbalanced datasets which show the advantages of our methods.

This rest of this paper is organised as follows. Section 2 describes a moti-
vating example. Section 3 presents the theoretical analysis. Section 4 reports
experiments before concluding in Section 5.

2 A Motivating Example

A training dataset is comprised of instances X ∈ Rn×m with m features. In
a binary case, these instances belong to two di�erent classes which are known
as the majority (negative) and minority (positive) class respectively. When the
data is imbalanced, the number of majority instances greatly outnumbers the
instances of minority class. In this section, a vehicle dataset is used and we
postpone the description of the characteristics of this dataset to Table 1.

A major motivation for proposing a cost-sensitive feature extraction method
is that the classical PCA and NMF ignore the minority samples during the
feature construction that negatively a�ects the performance of classi�ers and
leads to a overlap class problem that increases with the imbalance ratio.

Figures 1a and 1b show the distribution of the testing samples on original
unbalanced data after a classical PCA and NMF is applied on it respectively. It
clearly shows that the classi�ers will �nd it very di�cult to distinguish between
classes due to the overlap class problem.

Thus, integrating the feature extraction methods with the labelling infor-
mation can often improve the performance of supervised learning algorithms as
shown in section 4, because it generates extracted features that consider both
classes and corrects the overlap class problem by separating the two classes.

(a) Testing data after projecting
the instances using PCA

(b) Testing data after projecting
the instances using NMF factors

Fig. 1: Applying PCA and NMF on imbalanced Vehicle data leads to overlapping problem
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3 Theoretical Analysis

In this section, we present the theoretical analysis of our proposed cost-sensitive
PCA (CSPCA) and cost-sensitive NMF (CSNMF).

3.1 Imbalance cost ratio

Di�erent cost ratios are used in all training examples for the majority and mi-
nority classes:

Ci =

C−
i =

(1−α)
N−

, If yi = −1, (Negative class)

C+
i =

(1+α)
N+

, If yi = +1, (Positive class)
(1)

for i = 1, ..., N samples,N− and N+ are the total number of negative and
positive samples respectively. 0 6 α < 1 is a parameter to weight the majority
class. If α = 0, the majority class is weighted by the ratio of the two class sizes
in training data. In the case, where the α value gets close to 1, it gradually
represents the learning from the positive examples only.

3.2 Cost-sensitive Principal Component Analysis (CSPCA)

Principal component analysis (PCA) [11] is one of the most popular feature
extraction techniques. It is de�ned as a statistical procedure that uses an or-
thogonal transformation to construct a low-dimensional representation of the
data known as principal components. The linear transformation aims to max-
imize the global variance of the data as well as to minimize the least square
error of the transformation. The �rst principal component represents the largest
variance of the data; the remaining principal components have smaller variance
and orthogonal to the preceding ones. Consider a data matrix X ∈ Rn×m, where
each of the n rows represent the instances or observations, and m columns are
the dimensions.

Mathematically, the �rst loading w1 is computed by:

w1 = argmax
∑
ij

(Xij ·w1j)
2 (2)

where i and j are the index of rows and columns of X respectively, w1 is
the �rst principal component of p dimensions and p << m. In the case of the
class imbalance issue, the spread of data is dominated by the majority samples,
because when the directions of principal axes (components) of both classes are
di�erent, the reduced space found by PCA represents the majority space and
under-represents the minority one.

Geometrically, the �rst step in PCA is to centre the data by subtracting
the mean of the data from all points. However, in the case of imbalance class,
the global mean may be shifted to the majority samples space. Moreover, PCA
computes the covariance matrix of the data which captures the variance of the
dataset. But, in the case of highly skewed data, the covariance matrix mostly rep-
resents the variance of majority class samples, and the largest variance direction
of the data may be captured mostly from the majority space.



5

Therefore, we propose a cost-sensitive PCA technique (CSPCA) to improve
the computations of the principal components with consideration of the imbal-
anced class issue. In the binary case, assume that the negative and positive
samples are discounted by imbalance cost ratio C− and C+ respectively. The
weighted �rst principal component becomes:

w1 = argmax
∑

i:yi=−1,j

(
C

−
i Xij ·w1j

)2
+

∑
i:yi=+1,j

(
C

+
i Xij ·w1j

)2
(3)

where C−i and C+
i from Eq. (1), and j is the dimension index. Using the di�erent

cost ratios for the negative and positive class lead to lessening the dominant e�ect
of the negative samples on the extracted features.

3.3 Cost-sensitive Non-negative Matrix Factorization (CSNMF)

Non-negative Matrix Factorization (NMF) [12] is a matrix factorization tech-
nique under the constraint that the values of the input matrix are non-negative.
NMF can be described by the following factorization form

Xn×m ' Wn×pH
T
m×p (4)

where n is the number of observations, m is the dimension of the data, p is
the desired rank such that p < min(m,n) and X ∈ R+n×m, W ∈ R+n×p,
H ∈ R+p×m.

To �nd the approximate matrix factorization (4), an optimization function

is de�ned by [12] to minimize ‖X −WH‖2 with respect to W and H.
In the case of imbalanced data, we propose a cost-sensitive NMF (CSNMF),

which injecting the classical unsupervised NMF with labelling information to
take into consideration the imbalance class problem.

Our CSNMF function modi�es the original matrix to alleviate the e�ective-
ness of the negative samples, a new matrix X ′ is de�ned by

X ′ =

[[
C−i Xi

]
, If yi = −1[

C+
i Xi

]
, If yi = +1

]
(5)

where C− and C+ is de�ned in (1), X ′ ∈ Rn×m. CSNMF aims to �nd two non-
negative matrices W = [wip] ∈ Rn×p and H = [hjp] ∈ Rm×p whose products
can estimate the balanced matrix X ′. The objective function is the Euclidean
distance between two matrices, it can be written as:

O =
∥∥X ′ −WHT

∥∥2 =
(
X ′ −WHT

) (
X ′ −WHT

)T
(6)

The objective function O is convex with respect toW and H separately. Lee and
Seung [12] proposed iterative multiplicative update rules to minimise the error
of O in Eq. (6):

hjp ← hjp
(X ′W )jp

(HWTW )jp
wip ← wip

(
X ′TH

)
ip

(WHTH)ip
(7)

The convergence of the objective function with X ′ is the same as the objective
with X proof in [12].
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3.4 Revisiting the Motivating Example

This section visualizes the classi�cation improvements after applying our two
proposed methods CSPCA and CSNMF on the same dataset that we used in
section 2. Fig. 2 shows how the classes can be better distinguished compared to
Fig. 1.

(a) Testing data after projecting the
instances using CSPCA

(b) Testing data after projecting the
instances using CSNMF factors

Fig. 2: Applying CSPCA and CSNMF on imbalanced Vehicle dataset leads to improve the classi�-
cation performance.

4 Experiments and Analysis

In this section, we analyse and compare the performance of CSPCA and CSNMF
against classical PCA and NMF, existing ADASYN algorithm [9], random under-
sampling (RU), maximum likelihood cost-sensitive (ML-CST) [7] and CCPDT [13].
We will make use of four classi�ers, namely SVM, Naive Bayes, decision trees
(CART), and k-NN as instance based learning approach.

4.1 Experimental Framework

In the �rst place, we de�ne a set of parameter values for classi�ers that have been
used in all experiments. Without loss of generality, we select k = 5 neighbors in
k-NN classi�er. We choose the number of principal components which represent
the 90% of the original data, and the desired rank for CSNMF equal the number
of class labels because it is highly related to the cluster structure of the data [4].
Also, we set balance factor α = 0 for imbalance cost ratio C in (1) to represent
equal class proportions in training set.

We evaluated the methods on 12 datasets each with two classes. These
datasets are selected from the UCI repository [2] and KEEL-datasets [1]. De-
tails of the data sets are shown in Table 1. The AUC metric is used to measure
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the accuracy in the experiments, which is widely used metric for evaluations on
imbalanced data. Estimates of AUC was averaged over 5-fold cross-validation.

Dataset #Instance #Attributes #IR Dataset #Instances #Attributes #IR

Diabetes 768 20 1.86 Blood 748 5 3.2
Glass 214 9 6.38 Colon 62 2000 1.82
Yeast 1484 8 28.1 Survival 306 3 2.77

Spambase 4601 57 1.53 Adeno 86 76 5.34
Breast 198 34 3.21 Ecoli 336 7 8.6
Vehicle 846 18 2.99 Abalone 4174 8 129.43

Table 1: Characteristics of the data sets. Column #IR is the imbalance ratio (i.e., Neg/Pos)

4.2 Analysis and Results

In this section, we analyse the behaviour of classical PCA and NMF with exist-
ing algorithms that proposed to handle the imbalanced class issue against our
proposed CSPCA and CSNMF methods. Firstly, the state-of-the-art methods
are composed of two methods from data sampling techniques: ADASYN [9] and
random undersampling, one method from cost-sensitive level: ML-CST [7], and
one method from algorithm level: CCPDT [13].

The obtained results in Tables 1 through 5 show that the performance of the
classi�ers substantially improves for the cost-sensitive version of PCA and NMF.
Moreover, the proposed CSPCA and CSNMF with base classi�ers outperformed
the classical PCA and NMF with the state-of-the-art methods. Therefore, our
proposed method can solve the imbalanced class issue at feature extraction level
without the need of changing the data distribution or modifying the existing
algorithms.

We conduct t-tests between vector results of our methods (Base) against
the compared methods for each classi�er, under the null hypothesis that the
AUC on vectors of the used methods is not signi�cantly di�erent. As shown on
the bottom line of Tables 1 through 5, the p-values reject the null hypothesis,
as most values of our methods (base) are lower than 0.01. This indicates that
the proposed methods CSPCA and CSNMF have signi�cantly improved the
performance of the classi�ers.

E�ectiveness of CSPCA and CSNMF on classi�cation performance

We analyse the e�ects of our CSPCA and CSNMF algorithm on the base classi-
�ers, and we compare it with baseline and existing algorithms that proposed for
the imbalanced class problem. Firstly, we apply the data sampling algorithms on
the training sets to balance the datasets using ADASYN oversampling method
and undersampling method. Then, we apply the PCA and NMF on the training
sets of imbalanced datasets to construct the extracted features. The projected
test data is classi�ed using the base classi�ers such as SVM, Naive Bayes, De-
cision Trees and k-NN. Secondly, we apply our proposed CSPCA and CSNMF
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Dataset PCA ADASYN
- PCA

RU
- PCA

CSPCA

Diabetes .695 .706 .576 .762

Spambase .869 .868 .872 .904

Breast .562 .586 .556 .620

Ecoli .860 .828 .857 .879

Abalone .669 .627 .666 .683

Survival .607 .546 .536 .611

Blood .676 .676 .677 .660
Glass .945 .933 .900 .951

Yeast .850 .831 .839 .871

Vehicle .634 .620 .628 .681

Colon .512 .490 .517 .531

Adeno .579 .525 .497 .610

t-test 3.4× 10−3 9.7× 10−5 5.3× 10−3 Base

(a) SVM Performance

Dataset PCA ADASYN
- PCA

RU
- PCA

CSPCA

Diabetes .641 .694 .633 .71

Spambase .857 .703 .815 .841
Breast .503 .556 .557 .611

Ecoli .722 .857 .864 .881

Abalone .500 .645 .692 .711

Survival .515 .532 .510 .590

Blood .546 .655 .651 .741

Glass .914 .922 .928 .912
Yeast .514 .825 .821 .842

Vehicle .508 .619 .638 .650

Colon .532 .510 .552 .640

Adeno .542 .414 .597 .620

t-test 1× 10−3 3.1× 10−3 2× 10−3 Base

(b) Naive Bayes Performance

Dataset PCA ADASYN
- PCA

RU
- PCA

CSPCA

Diabetes .624 .645 .616 .689

Spambase .811 .802 .819 .836

Breast .515 .561 .542 .591

Ecoli .563 .775 .849 .852

Abalone .503 .522 .529 .615

Survival .514 .474 .498 .600

Blood .577 .575 .606 .641

Glass .821 .867 .882 .891

Yeast .543 .683 .808 .812

Vehicle .555 .565 .595 .625

Colon .587 .392 .590 .630

Adeno .578 .518 .538 .565

t-test 4.2× 10−3 7.5× 10−4 1.4× 10−3 Base

(c) Decision Trees Performance

Dataset PCA ADASYN
- PCA

RU
- PCA

CSPCA

Diabetes .632 .633 .536 .671

Spambase .855 .828 .848 .862

Breast .550 .590 .495 .620

Ecoli .580 .823 .844 .856

Abalone .500 .573 .621 .641

Survival .509 .481 .458 .570

Blood .609 .626 .623 .681

Glass .930 .850 .925 .941

Yeast .535 .721 .834 .880

Vehicle .546 .581 .613 .600

Colon .600 .472 .615 .631

Adeno .476 .589 .503 .591

t-test 6.7× 10−3 1.1× 10−3 4.2× 10−3 Base

(d) 5-NN Performance

Table 2: CSPCA classi�cation performance on imbalanced datasets compared to PCA and
ADASYN-PCA.

on the training sets of the imbalanced datasets. Then, we use the same base
classi�ers as in the �rst case on the projected test data. Tables 2 and 3 show the
preference of our CSPCA and CSNMF method over the existing data sampling
techniques. The best average values per approach are highlighted in bold.

On the other hand, we compare our CSPCA and CSNMF method with the
ML-CST using logistic regression as a base classi�er. Then, we conduct another
experiment, to compare CSPCA and CSNMF with CCPDT using decision trees
as a base classi�er, and in both cases our method outperformed the above two
methods. Tables 4 and 5 show the quality of using our proposed solution for
applying feature extraction on imbalanced datasets, as there is a signi�cant
di�erence between the results of our methods and the standard PCA, NMF
and the other compared algorithms. One may also observe the generalization of
our new method by improving the performance of classi�cation on a set of the
well-known classi�ers.

As highlighted earlier, CSPCA and CSNMF methods improve the perfor-
mance of classi�cation for to two reasons. Firstly, it tackles the overlap class
problem by shrinking the majority samples. Secondly, the extracted features of
CSPCA and CSNMF respectively consider the minority samples, even in highly
imbalanced datasets where the imbalance ratio >> 20.
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Dataset NMF ADASYN
- NMF

RU
- NMF

CSNMF

Diabetes .695 .699 .691 .721

Spambase .627 .665 .636 .825

Breast .573 .484 .516 .597

Ecoli .868 .855 .840 .869

Abalone .674 .577 .670 .693

Survival .577 .523 .533 .621

Blood .679 .566 .559 .756

Glass .911 .832 .790 .925

Yeast .844 .833 .817 .890

Vehicle .645 .637 .600 .740

Colon .752 .772 .752 .798

Adeno .537 .620 .613 .723

t-test 5.5× 10−3 1.1× 10−4 1.9× 10−4 Base

(a) SVM Performance

Dataset NMF ADASYN
- NMF

RU
- NMF

CSNMF

Diabetes .670 .693 .686 .743

Spambase .580 .583 .582 .622

Breast .547 .484 .516 .583

Ecoli .850 .853 .833 .882

Abalone .500 .669 .616 .712

Survival .604 .489 .592 .621

Blood .553 .561 .544 .680

Glass .536 .760 .808 .870

Yeast .548 .727 .726 .781

Vehicle .621 .647 .643 .660

Colon .687 .780 .672 .791

Adeno .500 .475 .471 .660

t-test 1.8× 10−3 6.5× 10−4 2.5× 10−4 Base

(b) Naive Bayes Performance

Dataset NMF ADASYN
- NMF

RU
- NMF

CSNMF

Diabetes .612 .613 .630 .750

Spambase .709 .711 .699 .770

Breast .526 .507 .523 .630

Ecoli .684 .748 .882 .890

Abalone .497 .543 .623 .651

Survival .566 .558 .550 .680

Blood .589 .624 .611 .710

Glass .807 .760 .770 .830

Yeast .593 .753 .734 .771

Vehicle .617 .578 .617 .651

Colon .692 .760 .727 .751

Adeno .520 .471 .582 .620

t-test 3.8× 10−5 6.4× 10−5 2.6× 10−4 Base

(c) Decision Trees Performance

Dataset NMF ADASYN
- NMF

RU
- NMF

CSNMF

Diabetes .631 .643 .658 .700

Spambase .722 .724 .723 .800

Breast .520 .500 .519 .591

Ecoli .733 .831 .850 .880

Abalone .500 .616 .682 .691

Survival .530 .563 .535 .591

Blood .598 .628 .615 .674

Glass .788 .800 .782 .791

Yeast .497 .789 .795 .821

Vehicle .591 .581 .647 .691

Colon .777 .727 .672 .791

Adeno .460 .570 .586 .630

t-test 1.3× 10−3 5.9× 10−5 1.9× 10−4 Base

(d) 5-NN Performance

Table 3: CSNMF classi�cation performance on imbalanced datasets compared to NMF, NMF-
ADASYN and NMF-RU.

Logit PCA-
MLCST

CSPCA NMF-
MLCST

CSNMF

Diabetes .604 .640 .625 .680

Spambase .729 .810 .716 .720

Breast .523 .656 .500 .580

Ecoli .541 .728 .500 .610

Abalone .499 .660 .500 .730

Survival .543 .610 .500 .690

Blood .510 .610 .500 .581

Glass .915 .660 .500 .590

Yeast .496 .574 .500 .570

Vehicle .511 .634 .630 .691

Colon .590 .664 .602 .642

Adeno .510 .610 .500 .650

t-test 4.3× 10−2 Base 2.9× 10−4 Base

Table 4: CSPCA and CSNMF on logistic
regression classi�er compared to ML-CST

Decision Trees PCA-
CCPDT

CSPCA-
DT

NMF-
CCPDT

CSNMF-
DT

Diabetes .676 .689 .704 .750

Spambase .918 .836 .756 .770

Breast .487 .591 .487 .630

Ecoli .498 .852 .498 .890

Abalone .481 .615 .481 .651

Survival .492 .600 .492 .680

Blood .721 .641 .552 .710

Glass .854 .891 .767 .830

Yeast .491 .812 .634 .771

Vehicle .652 .625 .671 .651
Colon .472 .630 .528 .751

Adeno .433 .565 .443 .620

t-test 3.3× 10−2 Base 9.5× 10−4 Base

Table 5: CSPCA and CSNMF CART classi-
�cation performance compared to CCPDT

5 Conclusions and Future Work

Many existing studies have been proposed to solve the skewed data issue at the
learning algorithm level. But, in the case of applying feature extraction tech-
niques before classifying the data, these solutions cannot help. Applying classical
feature extraction techniques on imbalanced data will yield biased features that
favor the majority class.
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This paper proposes a cost-sensitive learning strategy to address the im-
balanced class problem that can be applied to well-known feature extraction
techniques such as PCA and NMF. We have integrated the cost-sensitive strat-
egy in PCA and NMF and proposed two new methods CSPCA and CSNMF.
Our proposed method embeds the labelling information in the classical feature
extraction methods to extract the balanced features which improve the accuracy
of classi�cation and reduce the overlapping between the classes. Our results show
the high-performing quality of our proposed methods on multiple popular clas-
si�ers and benchmark datasets. They can deal with di�erent levels of imbalance
and sizes of the datasets. In future, we will extend the idea to multi-label classi-
�cation problems. We also plan to adapt the strategy to other feature extraction
techniques.
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