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Abstract. Dramatic changes of the human brain during the first year
of postnatal development are poorly understood due to their multifold
complexity. In this paper, we present the first attempt to jointly pre-
dict, using neonatal data, the dynamic growth pattern of brain cortical
surfaces (collection of 3D triangular faces) and fiber tracts (collection of
3D lines). These two entities are modeled jointly as a multishape (a set
of interlinked shapes). We propose a hybrid learning-based multishape
prediction framework that captures both the diffeomorphic evolution of
the cortical surfaces and the non-diffeomorphic growth of fiber tracts. In
particular, we learn a set of geometric and dynamic cortical features and
fiber connectivity features that characterize the relationships between
cortical surfaces and fibers at different timepoints (0, 3, 6, and 9 months
of age). Given a new neonatal multishape at 0 month of age, we hier-
archically predict, at 3, 6 and 9 months, the postnatal cortical surfaces
vertex-by-vertex along with fibers connected to adjacent faces to these
vertices. This is achieved using a new fiber-to-face metric that quantifies
the similarity between multishapes. For validation, we propose several
evaluation metrics to thoroughly assess the performance of our frame-
work. The results confirm that our framework yields good prediction
accuracy of complex neonatal multishape development within a few sec-
onds.

1 Introduction

Knowledge about postnatal brain development fuels our understanding of cog-
nition, actions, sensation, perception, decision, and thought. From a modeling
perspective, one could see the developing brain as characterized by complex and
dynamic interactions of multiple shapes, comprising highly folded cortical sur-
faces and white matter fiber tracts that are evolving rapidly due to myelination.
Developing models that accurately capture the spatiotemporal growth of a spe-
cific multishape (here, tract and cortical surface) can help the investigation of
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brain development and improve the diagnosis of several neurodeveopmental and
psychiatric illnesses that are rooted in early infancy [1].

Recently, the generic varifold metric tailored to measure multidimensional
shapes (e.g., a set of landmarks, a set of lines, and surfaces) was introduced
in [2]. It has been used for population-based multishape atlas reconstruction of
subcortical surfaces and fiber tracts [3,4]. However, the evaluation and hence the
utility of these methods are limited. First, they were tested on simple deep brain
structures (e.g., caudate) and specific fiber tracts (e.g., those connecting the
cortical surface to the caudate) [3]. Second, they were tested on adult patients,
where the inter- and intra-subject multishape variability is not as large as that
in postnatal development (Fig. 1). More recently, Gori et al. presented a double-
diffeomorphism strategy to jointly estimate a cortical surface and fiber-bundle
template for both adult control and patient populations. The idea of double-
diffeomorphism nicely accounts for the possibility of having fibers connecting to
a specific cortical region in one subject and then ‘switching’ to another cortical
region for another subject. However, when modeling subject-specific multishape
development in infants, one would not expect the fibers to change their con-
necting spots on the cortical surface. Furthermore, these fiber tracts undergo
fundamental topological changes, especially for the fiber tracts which bifurcate,
branch out and multiply with myelination after birth. This is a non-diffeomorphic
growth behavior, which contrasts the more stable diffeomorphic fiber deforma-
tion in older children and adults. For instance, Li et al. recently found that
cortical fiber density is regionally heterogeneous and increases dramatically in

Fig. 1. Training steps of hybrid multishape prediction framework for one training sub-
ject. (Top row) Estimate the baseline cortical surface diffeomorphic deformation trajec-
tory through the diffeomorphism φ using [6]. (Middle row) Whole-brain deterministic
tractography to estimate diffusion fiber tracts {Fi} at each acquisition timepoint. The
red box demonstrates the non-diffeomorphic nature of fiber growth. (Bottom row)
Non-diffeomorphic projection using πAi of training longitudinal fibers tracts on the
estimated longitudinal mean atlas {Ai}.
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the first year [1]. Put together, these facts present key challenges for predicting
subject-specific postnatal brain multishape development, solely from the neonatal
multishape. To the best of our knowledge, this is a problem that has not been
addressed.

Noting the limited works targeting the prediction of subject-specific postnatal
cortical shape development from a single timepoint [5], we propose in this work
the first learning-based multishape prediction framework from neonatal cortex
and fibers. The proposed framework comprises training and testing stages. In
the training stage, for each infant, we learn from the training subjects (1) the
geometric features (surface vertices), (2) the dynamic features of the baseline
cortical surface development (smooth and invertible evolution trajectories), and
(3) the fiber-to-face connectivity features via projections on an empirical longi-
tudinal cortical surface atlas. In the testing stage, for a new neonatal multishape,
we hierarchically select the best learned features that simultaneously predict the
triangular faces on the cortical surface (or meshes) and the fibers traversing
them at all training timepoints (in our case, 3, 6 and 9 months of age) based on
cortical shape topographic properties and a novel fiber-face selection criterion.

Our proposed method has several advantages. First, it is not only restricted
to predicting the cortical surface growth as in [5]. Second, it does not require
the computationally expensive process of registering or regressing out thousands
of fibers to establish tract-to-tract correspondence for prediction, which is less
likely to be achieved using a conventional diffeomorphic multishape registration
setting as in [2]. Third, it relies on the diffeomorphic cortical surface deforma-
tion trajectory, which is less complex and more accurate to estimate than for
developing fibers, to guide fiber prediction. More importantly, this enables us to
account for fiber connectivity changes and the appearance of ‘new’ fibers with
different topologies. Ultimately, we present a new metric for jointly predicting
both diffeomorphic surface evolution and non-diffeomorphic fiber growth within
the multishape, thus making our approach hybrid.

2 Hybrid Longitudinal Surface-Fiber Evolution Modeling
(Training Stage)

In this section, we present the advanced mathematical tools that mold our work.
As a preliminary step, we embed the multishape (both fibers and cortical surface)
into the varifold space. The multidirectional varifold-based surface representa-
tion will be used to estimate the diffeomorphic cortical growth [6], whereas the
conventional unidirectional varifold-based fiber representation will be part of the
proposed non-diffeomorphic fiber selection criterion for prediction [2].

Surface and Fiber Tract Representation Using Respectively Multidi-
rectional and Unidirectional Varifold Metrics. The varifold metric mea-
sures the rich geometry of any shape with dimension d > 0 by the way the
shape integrates a square-integrable 3D vector field ω ∈ W through convolu-
tions based on a reproducing kernel KW [2,5]. In this case, measuring a surface
S as a varifold is defined as an integration of a testing vector field ω ∈ W
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along its nonoriented normal vectors n and principal curvature direction. More
simply, measuring a fiber F as a varifold refers to the mathematical operation of
integrating ω along the fiber nonoriented tangent vectors τ : F =

∫
ω(x)tτ(x)dx.

In this context, W is defined as a Reproducing Kernel of Hilbert Space (RKHS)
with a Gaussian kernel KW (x, y) = exp(−|x − y|2)/σ2

W . The kernel decays at a
rate σW , which defines the scale under which geometric details will be overlooked
when converting a shape into a varifold. Hence, any discrete shape embedded
in the varifold space W ∗ is a summation of local discrete measurements, each
encoding the interaction of the shape at a local scale with a vector field ω [2,6].

Diffeomorphic Geodesic Longitudinal Surface Regression for Extract-
ing Geometric and Dynamic Features. To longitudinally deform a source
varifold surface S0 observed at t0 into a set of target varifold surfaces
{S1, . . . , SN} respectively observed at {t1, . . . , tN}, we adopt the Hamiltonian
formulation setting as described in [2,5,6] to estimate a diffeomorphism
φ(x, t), t ∈ [0, 1], which is fully parametarized by a set of control points ck

and their attached initial deformation momenta αk. The initial momenta fully
guide the geodesic shooting of S0 onto subsequent surfaces and are estimated
along with the control points through minimizing the following energy functional
using a conjugate gradient descent [5]: E = 1

2

∫ 1

0
|vt|2V dt + γ

∑
j∈{1,...,N} ||Sj −

φ(S0, tj)||2W ∗ , with γ denoting the trade-off between the deformation smooth-
ness term and the fidelity to data term, respectively. The velocity field vt

belongs to a RKHS V , with a Gaussian kernel KV decaying at rate σV ,
and is defined at a location x and timepoint t in terms of convolutions as:
v(x, t) =

∑Nc

k=1 KV (x, ck(t))αk(t), with Nc as the number of the estimated con-
trol points. This allows to set vertex-to-vertex correspondence across subjects
and timepoints. For prediction, we define the set of geometric features V as the
set of all vertices positions x belonging to baseline training surfaces and the
dynamic features as their corresponding evolution trajectories φ(x, t).

Estimation of Non-diffeomorphic Longitudinal Fiber-to-Face Connec-
tivity Features Using Multi-projections on Spatiotemporal Atlases.
Since we aim to predict the multishape growth from a single timepoint, we
estimate a set of spatiotemporal surface atlases {A0, . . . ,AN} by averaging the
shapes of the training surfaces at each timepoint to help guide the prediction
process (Fig. 1). Note that all these atlases are in correspondence with all subjects
and across all acquisition timepoints. Then, to define the fiber-to-face connec-
tivity features that capture the non-diffeomorphic growth of neonatal fibers, for
each ensemble of fibers Fi from a training subject at ti, we introduce the sur-
jective projection function πAi(Fi) to project it onto the corresponding surface
atlas Ai. Specifically, for a fiber line f ∈ Fi with two extremities f1 and f2, we
perform: fk �→ πAi(fk) = ξ, where k ∈ {1, 2} and ξ denotes a face in Ai. In
turn, this allows us to identify for each training subject the connectivity features
for each face in the atlas Ai at a specific timepoint ti as the set of proximal
fibers that hit it or are ‘connected’ to it (noted as Fi(ξ)) (Fig. 1). To define
the connectivity features from all training subjects, we independently project
the set of fibers for each training subject on the atlas. Hence, each atlas face



214 I. Rekik et al.

stores for each training subject a set of connecting fibers through this process of
multi-projections onto a fixed atlas.

3 Longitudinal Multishape Prediction Algorithm from
Baseline (Testing Stage)

In the prediction stage, we first warp all baseline training surfaces onto the
baseline cortical surface of a testing subject. Then, in the common space, we
estimate the baseline testing fiber tracts using deterministic whole-brain trac-
tography. Because of the non-diffeomorphic nature of neonatal fibers growth,
we avoid to diffeomophically regress out fibers as for surfaces for prediction;
instead, we explore the fiber-cortex relationship (or connectivity) to guide the
fiber prediction. Hence, we introduce the following fiber-face selection criterion.

Fiber-face Selection Criterion. We define a distance between two faces ξ
and ξ′ with respectively F(ξ) = {f1, . . . , fN} and F(ξ′) = {f ′

1, . . . , f
′
N ′} the set

of fibers that ‘connect’ to it as follows: d(ξ, ξ′) = dshape(ξ, ξ′) + dtermini(ξ, ξ′) +
dconnectivity(ξ, ξ′). The first term measures the overall shape difference between
fibers attached to faces ξ and ξ′ using the varifold metric as: dshape(ξ, ξ′) =
| 1
N

∑N
k=1 ||fk||W ∗ − 1

N ′
∑N ′

j=1 ||f ′
j ||W ∗ |. The second term quantifies the geometric

closeness between the fiber termini positions dtermini(ξ, ξ′) = 1
2 (| 1

N

∑N
k=1 f1

k −
1

N ′
∑N ′

j=1 f1
j |2 + | 1

N

∑N
k=1 f2

k − 1
N ′

∑N ′

j=1 f2
j |2). And the third term computes the

difference between the number of fibers attached to respectively ξ and ξ′ (with
η = 0.01 for normalization): dconnectivity(ξ, ξ′) = η|N−N ′|. This criterion defines
a distance between two faces in terms of their ‘attached’ fiber characterstics in
shape, geometric proximity, and connectivity.

Postnatal Multishape Prediction Algorithm. Algorithm 1 presents the key
steps for multishape prediction based on the learned geometric, dynamic and con-
nectivity features. Briefly, for surface prediction, we use a surface topography-
based metric similar to the one introduced in [5] to hierarchically identify the
closest baseline training vertices, which falls within an ε-distance from the base-
line atlas A0, to a baseline testing vertex. Specifically, we propose to reconstruct
a testing baseline surface S̃0 from training baseline surfaces using the following
nested steps: (a) selecting a set of geometrically closest training vertices to the
testing vertex, (b) selecting a subset of these vertices that have most similar
normal directions to the normal vector at the testing vertex, and (c) selecting
another subset of vertices marked in (b) that additionally share the same maxi-
mum principal curvature sign. As for fiber prediction, we first aim to reconstruct
the baseline testing fibers F̃0 using training fibers. To do so, we project the fibers
of the testing subject onto the baseline atlas A0, hence estimating the testing
connectivity features. Then, for each vertex μ in the reconstructed baseline sur-
face S̃0, we use the fiber-face selection criterion to first mark the most similar
corresponding training face in fiber properties to the testing face, then add its
connecting fibers to F̃0. Note that this uses the baseline atlas A0 as a proxy
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since each of its faces stores the set of its connecting fibers from all training
subjects. Ultimately, for each marked training face, we trace its diffeomorphic
deformation using φ, while retrieving the set of its connecting fibers at different
acquisition timepoints ti, thereby estimating F̃i.

Algorithm 1. Hybrid longitudinal multishape evolution prediction from baseline

1: INPUTS:
The longitudinal mean atlases Ai, the set of training baseline vertices V, the

baseline testing multishape M0 = (S0, F0), and πA0(F0).
2: Initialize S̃i ← Ai and F̃i = {} for i ∈ {0, . . . , N}.
3: Initialize ε as the mean distance between S0 and A0 plus its standard deviation.
4: for every vertex μ in the reconstructed baseline shape S̃0 do
5: if its 3D position x is located outside the ε−neighborhood from S0 then

Update x using a hierarchically surface topography-based metric.
� For each unchecked adjacent face ξ to μ, use the fiber-face selection criterion

to identify the most similar corresponding training face in fiber properties to the
testing face. Mark this face as ‘checked’.

Retrieve the dynamic feature for μ as S̃i(x) = φ(x, ti) at each timepoint.
Retrieve the spatiotemporal connectivity features for the selected deforming

training face (set of fibers Fi(φ(ξ, ti)) that hit φ(ξ, ti) at timepoint ti), then F̃i =
F̃i ∪ Fi(φ(ξ, ti)).

6: else
Implement � while using projections of both training and testing fibers on A0.

7: end if
8: end for
9: OUTPUT:

Set of predicted multishapes {M̃i = (S̃i, F̃i)} at timepoints ti.

4 Experiments and Discussion

Dataset and Parameter Setting. We use leave-one-out cross-validation to
evaluate the proposed framework using data of 10 left and right cortical hemi-
spheres from 5 infants, each with longitudinal diffusion and structural MR images
acquired at around birth, 3, 6, and 9 months of age. For varifold surface and fiber
representation, we set σW = 5 for the shape kernel KW , σV = 30 for the defor-
mation kernel KV , and γ = 0.001 for the energy E as explained in [6]. Streamline
tractography [7] was used to estimate the fibers inside each cortical surface at
each timepoint.

Evaluation Metrics. For surface evaluation, we use both Dice index, which
quantifies the face-to-face cortical overlap between two surfaces S and S′ as
the ratio 2S∩S′

S∪S , and the symmetric Euclidean distance. For fiber prediction
evaluation, we introduce three metrics: (1) Global mismatch (%). This rep-
resents the percentage of faces with attached fibers while the corresponding
predicted faces had no fibers and vice versa. (2) Mean varifold difference .
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For a pair of faces both with traversing fibers, we use the varifold metric to
measure a face-wise discrepancy between the ground truth and predicted fibers
F and F̃ connected to two surfaces S and S̃: 1

NS

∑NS

i=1 | ||F ξi ||W ∗ − ||F̃ ξi ||W ∗ |,
with NS denoting the number of faces in S, and ξi a face in S. (3) Fiber
mismatch per face . This metric represents the average number of mis-
matched fibers per face across surface faces that are hit by either predicted
or ground truth fibers or both. We also evaluate the joint prediction accu-
racy for both surface and tracts using a unified varifold difference metric:
1

NS

∑NS

i=1 | ||F ξi ||W ∗ − ||F̃ ξi ||W ∗ | + |||Si||W ∗ − ||S̃i||W ∗ |.
Multishape Prediction Evaluation. Despite the small size of our dataset and
its large variability in cortical shape and fiber tracts, our framework led to very
promising results as summarized in Table 1. Since this is the first work to pre-
dict developing cortical fibers, we compared our prediction error with the error
of the observable baseline multishape reconstruction from the baseline ground
truth multishape, which is very low (0 month in Table 1). We notice that the
prediction accuracy generally decreases from 3 to 9 months compared to the
baseline reconstruction from the ground truth, with a slight potential improve-
ment at 6 months. Notably, the global mismatch for the predicted fibers peaks
at 3 months. This is quite expected since the training fibers at around 3 months
are largely variable due to the rapidly developing myelination. Moreover, the
proposed rich fiber-face selection criterion generated better prediction results
compared to using symmetric Euclidean distance as a similarity metric between
fibers for face-fiber selection. Indeed, mean fiber mismatch per face dropped from
1.76 to 1.64 and mean varifold value from 19.98 to 18.83 when using our metric.
Figure 2 shows a good overall overlap between ground truth and predicted fibers
for a representative testing subject. The red-blue fiber mismatch regions can be
explained by a large variability in the training fiber data as well as the use of
inconsistent subject-specific tractography in the temporal domain. Additionally,
we locally evaluated the accuracy of our prediction method in 35 anatomical
cortical regions (Fig. 3), which showed a spatially-varying prediction accuracy
that generally decreased with time. Nonetheless, it still fitted into a promising
range of prediction values for each evaluation metric (e.g., ∼3 mismatched fibers

Table 1. Surface (S) and fiber (F) prediction accuracy evaluation averaged across 10
cortical hemispheres. The baseline multishape reconstruction error (in bold) is consid-
ered as a ‘reference’ in assessing the performance of our prediction framework.

0 month 3 months 6 months 9 months

Global mismatch % (F) 15.40 ± 2.31 20.40 ± 3.68 19.50 ± 1.26 19.87 ± 1.24

Mean varifold difference (F) 18.83 ± 4.39 21.80 ± 3.22 21.22 ± 4.27 23.83 ± 4.59

Fiber mismatch per face (F) 1.64 ± 0.63 3.09 ± 1.14 2.76 ± 0.44 3.15 ± 0.30

Mean Dice index (S) 1 0.81 ± 0.03 0.81 ± 0.03 0.77 ± 0.02

Mean Euclidean distance in mm (S) 0.45 ± 0.07 0.68 ± 0.09 0.91 ± 0.14 1.08 ± 0.14

Unified varifold difference (S + F) 50.43 55.2 56.42 60.23
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Fig. 2. Multishape prediction for a representative subject. The blue multishape repre-
sents the ground truth while the one in red represents the predicted multishape. The
reconstructed baseline multishape (S̃0, F̃0) is used as guidance for multishape predic-
tion at late timepoints and as a reference for evaluation.

per face). For the cortical surface, the prediction mainly dropped in highly folded
and buried cortical regions such as the insular cortex. On the other hand, the
prediction error of the overall shape of the predicted fiber tracts compared with
the ground truth tracts, quantified using the varifold distance, reached its apex
in the paracentral lobule, the posterior cingulate cortex and the precentral gyrus.
This can be explained by large variability in the shape of the fibers connected to
these regions. For potentially similar reasons, the mean face-wise mismatch was
below 15 % in most cortical regions, except for the anterior and posterior cingu-
late cortices, and the insular cortex. These regions were also affected by largest
values of mean fiber mismatch per face (which generally remained below 5).

Fig. 3. Multishape prediction evaluation in 35 anatomical inflated cortical regions.

5 Conclusion

We proposed the first hybrid developing multishape prediction model
that captured well both the diffeomorphic cortical shape deformation and
non-diffeomorphic fiber tracts growth. Our method leveraged on exploring the
fiber-surface relationship through multi-projections of fiber termini on the cor-
responding surface. Our prediction results are promising and we hope that in



218 I. Rekik et al.

the light of this work more attention will be drawn to solving this challenging
problem. Eventually, building an accurate and fast multishape prediction model
can also help predict structural brain connectivity of axonal wiring during early
postnatal stages. One way to improve our work is to develop a non-diffeomorphic
longitudinally consistent brain tractography algorithm as a preprocessing step –
which, to our knowledge, is still not tailored to handle developing 3D fiber tracts.
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