Longitudinal analysis of the preterm cortex
using multi-modal spectral matching

Eliza Orasanu', Pierre-Louis Bazin?, Andrew Melbourne', Marco Lorenzi®,

Herve Lombaert?, Nicola J. Robertson?, Giles Kendall*, Nikolaus Weiskopf?,
Neil Marlow?, and Sebastien Ourselin®

LCentre for Medical Image Computing, University College London, UK
2Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain
Sciences, Leipzig, Germany
3INRIA - Microsoft Research Joint Centre, Palaiseau, France
4 Academic Neonatology, EGA UCL Institute for Women’s Health, London, UK

Abstract. Extremely preterm birth (less than 32 weeks completed ges-
tation) overlaps with a period of rapid brain growth and development.
Investigating longitudinal brain changes over the preterm period in these
infants may allow the development of biomarkers for predicting neurolog-
ical outcome. In this paper we investigate longitudinal changes in cortical
thickness, cortical fractional anisotropy and cortical mean diffusivity in
a groupwise space obtained using a novel multi-modal spectral matching
technique. The novelty of this method consists in its ability to register
surfaces with very little shape complexity, like in the case of the early de-
velopmental stages of preterm infants, by also taking into account their
underlying biology. A multi-modal method also allows us to investigate
interdependencies between the parameters. Such tools have great poten-
tial in investigating in depth the regions affected by preterm birth and
how they relate to each other.

1 Introduction

Infants born extremely preterm are at high risk of developing cognitive and neu-
rologic impairment from an early age [1]. During the last trimester of pregnancy,
the fetal brain undergoes several changes in size, shape, volume, appearance [2],
as well as changes in connectivity and microstructure. Premature birth implies
that this development of the infant brain will take place under the harsh condi-
tions of the extra-uterine environment. Accurate measurements of the preterm
brain during this early post-natal period may yield predictive biomarkers of
neurological outcome. Furthermore, connecting information given by different
imaging modalities (structural and diffusion), may begin to provide an under-
standing on the brain development during the preterm period and how it is
affected by preterm birth.

Longitudinal studies are critical to the accurate analysis of neurodevelop-
ment due to the rapidity of changes in shape and structure. However, longitu-
dinal studies of this period of development are challenging for several reasons.



First, the early and more developed infant brains have very different appearance
and connectivity. Spectral techniques have been used in the preterm popula-
tions for matching white matter surfaces for the study of longitudinal cortical
folding patterns and changes in the white-grey matter boundary [3]. These tech-
niques have proved successful in the intra-subject case due to the prominance
of primary sulci even at early gestational age allowing matching to be driven
by low-frequency spatial features. Second, the anatomical variability of cortical
surfaces is very high cross-sectionally, and variability is not well-represented by
geometric folding patterns. This is especially true in the very early stages of
development, when we deal with lissencephalic brains from different subjects.
During the very-preterm period, additional diffusion information of the white
matter might guide surface registration by contributing emergent microstruc-
tural information; high cortical fractional anisotropy (FA) is a feature of early
brain development, although FA falls rapidly in the third trimester with cortical
maturation. Matching of diffusion tensor images alone [4] to study longitudinal
changes in diffusion parameters and white matter tract shape has already shown
to be successful, but is of limited use to align cortical surfaces except within a
very narrow age range.

The relationships between cerebral microstructure and cortical shape are
intrinsically related and the ability to accurately combine multi-modal informa-
tion about cortical and white matter structure with cortical shape information
represents a key challenge to understanding the synergistic processes of neu-
rodevelopment. In this paper we propose a novel registration technique based
on Pairing Images using the Multi-Modal Spectra (PIMMS) to register cross-
sectional data from 9 early-scanned preterm infants and investigate longitudinal
rates of change in cortical thickness, cortical FA and MD, in the created group-
wise space. The method matches the combined spectra based on tensor similarity
(from the diffusion weighted images) and on the surface information (obtained
from structural image segmentation). The proposed method has an advantage
over the classical surface registration algorithm, since it optimises both surface
and microstructural information, thus providing a more biologically accurate
mapping based on tissue properties and not only sulcal patterns. The mapping
also enables us to study multi-modal variations and interdependency between
parameters obtained from different imaging modalities.

2 Data and image processing

Subjects Volumetric T-weighted images were acquired for nine infants (Mean
Gestational Age at Birth (GAB) of 26.8 &+ 1.5 weeks) on a Philips Achieva 3T
MRI machine. The infants were imaged at first shortly after birth, at a mean
age of 26.8 £ 1.1 weeks equivalent gestational age (EGA) and then at a mean age
of 41.7 £+ 2.9 weeks EGA, in an MR-compatible incubator after feeding, when
spontaneously asleep, with no sedation. T1-weighted data was acquired at a reso-
lution of 0.82mm x 0.82mmx0.5mm at TR/TE =17/4.6ms, acquisition duration
462s. The diffusion weighted data had a resolution of 1.75mm x 1.75mm x 2mm.



We acquired six volumes at b = Omm?/s, 16 directions at b = 750mm? /s and
32 at b = 2000mm?/s with TR/TE =9s/60ms.

Image preprocessing and infant brain segmentation The preprocessing
of the T1-weighted images was done as described in [5]. Briefly, images were
bias-corrected then segmented using the help of neonate brain atlases and an
adaptive EM algorithm. The preprocessing of the diffusion images was done as
described in [6]. We obtained FA and MD maps by fitting a diffusion tensor
model to the data. We resampled the diffusion images to T1 space using a rigid
registration and correct for EPI distortions.

Cortical Thickness Using the obtained white matter, grey matter and CSF
segmentations, we automatically computed the level set functions of the inner
(WM/GM), central and outer (GM/CSF) boundaries of each hemisphere of the
cerebral cortex using CRUISE [7]. We estimated the cortical thickness (CT) as
the difference between the distance to the inner cortical surface and the dis-
tance to the outer cortical surfaces (given by the level set values). The WM/GM
boundary level set was used to create smooth triangle based meshes of each
hemisphere. We mapped the CT values onto the white-grey matter inner sur-
face.

Laminar Analysis From the level set functions of the WM/GM and GM/CSF
boundaries, we created a continuous layering of the cortex (cortical grey mat-
ter) [8]. We used the obtained 11 laminar profiles to sample the FA and MD
maps, and computed the mean values of these parameters across the cortex. To
reduce partial volume effects, we excluded the first and last three profiles from
the computation of the average cortical FA and MD values. These mean FA and
MD values were then mapped onto the white-grey surface.

Longitudinal and cross-sectional mapping To quantify the longitudinal
changes taking place over the preterm period, we defined a mapping for the
intra-subject WM/GM surfaces, by hemisphere, at the two timepoints, using
JSM 9], initialised with a rigid CPD [10]. To investigate the changes in the same
reference space, we create an average early time point template, by choosing a
random subject as template, mapping all the others into its space and averaging
the results. To register this WM/GM surface data, using only a surface-based
matching technique based on mapping sulcal patterns would not be appropriate,
since early cross-sectional data of this type does not provide us with sufficient
surface information for a proper match. Hence we propose a novel multi-modal
registration technique based on spectral matching (PIMMS), described in the
following section.

3 Pairing Images using Multi-Modal Spectra (PIMMS)

To estimate a more biologically accurate surface matching in the case of lissencephalic
surfaces, we propose the novel PIMMS, which uses both diffusion tensor images
and surface information. Combining surface (2D) and volume (3D) information
is not trivial [11]. We tackled this problem by embedding the surface with a
level set representation in the 3D image domain, and reformulating the surface



spectral matching problem in this context. We followed the previous strategies
of spectral decomposition in the case of surfaces and diffusion tensor images. We
then compared the groupwise average of PIMMS with the results of JSM.
Spectral Components of Surface in Image Domain To decompose the cor-
tical surface, but in image space, we used the level set images of the white-grey
matter boundary, I s. To optimise our decomposition, we considered a subset of
our image, I1s0,, consisting of the voxels around the boundary within a chosen
threshold. Similarly to the surface decomposition, where we need to have con-
tinuous surfaces with no holes to obtain smooth spectra, we chose the smallest
threshold that ensured a continuous surface for all subjects, which was found to
be of 3.5 mm in the presented work.

We constructed the connected graph (V,E) with the vertices V' being image
voxels and the edges E are defined by the neighbourhood structure of these
vertices. We then represented the graph with its adjacency matrix W, where for
each pair of voxels x; and z;, z; # x;, W;; is 1 if the voxels are neighbours
and 0 if they are not. The diagonal matrix D gives the total weighting of all
edges connected to each voxel and is computed by D;; = > j Wij. The general
graph Laplacian is defined by £ = G=*(D — W), with G being the diagonal node
weighting matrix, which we computed according to the each voxel i’s inverse level
set value G;; = 1/z;. Hence, elements closer to the boundary, with a smaller level
set value, will have a higher weighting when computing the spectra.

The graph spectrum of the level set image at the defined points is given by the
eigen-decomposition of the general graph Laplacian £ .The spectral components
Uirsq,,---,UnLsgn, represent the fundamental modes of vibrations of the im-
age, and respectively describe increasing complexity of its geometric features,
from coarse to fine scales.

Mapping the obtained spectra from the level set images decomposition on sur-
faces describe similar patterns of variations as the direct spectral decomposition
of surfaces given by [9], as shown in Figure 3.
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Fig. 1. Spectral modes of shape variation given by the decomposition of a subset of a
level set image, and by the surface of the same boundary in the same subject



Combined Level Set and Diffusion Tensor Spectra We combined the level
set spectra with the spectra obtained by the decomposition of the diffusion ten-
sor images as described by [4]. Briefly, for obtaining the DTI spectra, the weights
between the graph nodes (also neighbouring voxels) are computed based on both
tensor similarity from the log-Euclidean distance and Euclidean distance. Our
main goal was to optimise the surface correspondence by taking into account mi-
crostrucural information inside the white matter. Hence, we separately compute
tensor spectral components Uiprra,,-..,Unprin, for a subset of the image
Ipria,, in the deeper white matter structures, i.e. for the values inside the level
set boundary (negative level set values) and outside the level set subset I1s0,
(Uprra, UILsn, = @). The independently computed spectra were then com-
bined in the same space to obtain the combined spectra, with voxels receiving
spectral information from either diffusion (inside the WM) or the surface data
(around the boundary) [Uirso,, Uibrias),-- - [UNnLso,, UNprin,) (Figure 3).
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Fig. 2. Combined spectral modes for the left hemisphere: shape variation given by the
decomposition a subset of a level set image (edges of the surface) and microstructural
variation given by the decomposition of the diffusion tensor image (inner)

Matching of multi-modal spectra Having the multi-modal spectra of two
subjects R and F', we can now estimate the spatial correspondences between
them by optimising the correspondences between the spectral coordinates de-
fined by the first k& multi-modal components of UR, and UF. We followed the
computational scheme introduced in [9]. Briefly, the first k& spectral components
are initially corrected for their sign ambiguity by computing the dot product
between the corresponding eigenmodes at similar locations. For this we ran a
coherent-point drift (CPD) rigid registration [10] of the respective clouds of
points, which we used just to ensure the sign matching of the spectra in both
the spectral and diffusion components, independently. Using the combined spec-
tra and the thresholded level set distance maps for regularisation of the reference
and floating images, we estimate a mapping between the corresponding points
using a nearest neighbour search algorithm.

Comparison of Multi-Modal Spectral Matching with Surface Spectral
Matching We used both PIMMS and JSM to create a groupwise average of
the early time point of the subjects described in section 2. The accuracy of the
matching was evaluated by comparing at each vertex the standard deviation of



the mean diffusivity values in the groupwise space. A lower variability indicates
better alignment and consistency of the registration algorithm. We chose the
MD for this validation over the FA, since FA values in the cortex are more
homogeneous.

Figure 3 shows that the standard deviation from the mean of the mean diffusivity
is minimised when we used the proposed multi-modal technique. Using additional
microstructural information improves the alignment of the surfaces by taking
into account tissue properties.
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Fig. 3. Standard deviation in mean diffusivity in the cortex of the early timepoint on
average groupwise for the left hemisphere, obtained using the proposed method and
Joint-Spectral Matching of surfaces

4 Groupwise Analysis of Longitudinal Changes

Longitudinal Rates of Change All longitudinal changes in the parameters
were corrected for the time between scans. We computed rates of change per week
in CT, cortical FA and cortical MD during the preterm period in all infants and
mapped them in the groupwise average space (Figure 4).
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Fig. 4. Mean Longitudinal Rates of Change per week in cortical thickness (CT), cortical
fractional anisotropy (FA) and cortical mean diffusivity (MD) in Groupwise Space
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Multi-modal parameters interdepencies To investigate correlations be-
tween the rates of change in the cortex, we computed the rank based correlation
coefficient between rates in all infants, per region, for each pair of parameters:
CT-FA, CT-MD and FA-MD. The p-values were FDR corrected at a 0.05 signifi-
cance rate. The cortical rates of change show statistically significant correlations
between the three measures in different regions summarised in Table 1. We no-
tice that the changes in CT and FA are positively correlated, while the ones in
CT-MD and FA-MD show a direct negative correlation.

Table 1. Statistically significant (0.05 significance, FDR, corrected) correlation coeffi-
cients between multi-modal cortex parameters in all four lobes. Negative values imply
a negative correlation, while positive imply a direct positive correlation. The regions
not mentioned did not have a significant correlation between certain parameters.

Left Hemisphere Right Hemisphere
CT-FA Temporal: 0.15, Occipital: 0.09 Temporal: 0.32, Occipital: 0.21
CT-MD Frontal: -0.06, Occipital: -0.13, Frontal: -0.11, Temporal: -0.33,
Parietal: -0.17 Occipital: -0.17

FA-MD Frontal: -0.24, Temporal: -0.18, Parietal: -0.33 -

5 Discussion

In this work we propose a novel registration technique based on Pairing Im-
ages using the Multi-Modal Spectra (PIMMS), which defines a surface-to-surface
mapping in image domain by optimising both microstructural information in the
white matter (from the diffusion tensor images) and WM /GM surface informa-
tion (obtained from structural image segmentation). We applied this method
to the challenging problem of registering early developmental stages in preterm
born infants. Because of the timing, these surfaces do not provide us with suf-
ficient sulcal patterns needed for a classical surface registration algorithm. The
novelty of this method consists of ensuring a biologically accurate correspon-
dence for surfaces with low gyrification.

We used PIMMS to create a groupwise average space of the early develop-
mental time point, in which we mapped longitudinal changes over the preterm
period in 9 infants. We investigated the rates of change per week in cortical thick-
ness, cortical fractional anisotropy and cortical mean diffusivity in the cortex.
The cortical FA is decreasing in most regions of the brain, and the cortical MD
is increasing, results which match previous studies at the global level [6]. The
cortical thickness is increasing in most regions, except the temporal lobe, where
it is slightly decreasing. This result may be connected to the later development
of the temporal lobe and the fact that it is the most affected region by preterm
birth [5]. We further investigated the interdependency of these multi-modal pa-
rameters of the cortex across the different lobes. We found a positive CT-FA
correlation, while the CT-MD and FA-MD correlations were negative.



Our future research will imply linking grey and white matter properties close
to the surface (e.g. studying cortical laminae in the cortex and closer to the
white matter boundary), as well as linking the cortical surface and deep white
matter connectivity. Furthermore this method may allow us to also look into the
relationship between cortical folding and fibre-based connectivity.
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