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Abstract

Computer assisted imaging aims to characterize disease processes by contrasting healthy and 

pathological populations. The sensitivity of these analyses is hindered by the variability in the 

neuroanatomy of the normal population. To alleviate this shortcoming, it is necessary to define a 

normative range of controls. Moreover, elucidating the structure in outliers may be important in 

understanding diverging individuals and characterizing prodromal disease states. To address these 

issues, we propose a novel geometric concept called minimal convex polytope (MCP). The 

proposed approach is used to simultaneously capture high probability regions in datasets 

consisting of normal subjects, and delineate outliers, thus characterizing the main directions of 

deviation from the normative range. We validated our method using simulated datasets before 

applying it to an imaging study of elderly subjects consisting of 177 controls, 123 Alzheimer’s 

disease (AD) and 285 mild cognitive impairment (MCI) patients. We show that cerebellar 

degeneration is a major type of deviation among the controls. Furthermore, our findings suggest 

that a subset of AD patients may be following an accelerated type of deviation that is observed 

among the normal population.

1 Introduction

Mass-univariate and multivariate pattern analysis techniques aim to reveal disease effects by 

comparing a patient group to the control population [1,9]. The latter is commonly assumed 

to be homogeneous. However, as noted in recent works [6,13], controls may often consist of 

subjects that are outside a normative range, and this may confound the actual pathological 

effect when comparing against the patient group. The confounding effect may be remedied 

by identifying a normative range and removing outliers that lie outside this range.

There have been two main directions of outlier detection in the context of neuroimaging. 

The first class of methods include parametric models that aim to select a subset of samples 

such that the determinant of the covariance matrix is minimized. This is in contrast to non-

parametric methods such as the one-class support vector machine (OC-SVM) [7,13,14] 

which attempt to separate a subset of samples from the origin with maximum margin in the 

Gaussian radial basis function (GRBF) kernel space. Another complementary non-

parametric approach is the support vector data description (SVDD) [15] whose objective is 
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to solve for the smallest radius hypersphere that encloses a subset of the samples (Fig. 1b). 

All of the aforementioned outlier detection methods effectively capture the main probability 

mass of a dataset and delineate samples outside this region as outliers. However, they do not 

provide further information about whether there are different types of outliers. In this work, 

we posit that there may be a structure by which outliers deviate from the normal population. 

Capturing this structure may be instrumental in characterizing and understanding how 

pathogenesis originates from those who are healthy. Thus, the overall aim of our approach is 

to learn the organization by which samples deviate from the main probability mass.

We resolve the limitation of prior methods regarding learning the structure of outliers by 

containing the high probability region of a dataset using convex polytopes [16]. The 

geometry of our formulation allows to simultaneously enclose the normative samples within 

the convex polytope while excluding outliers with maximum margin. The assignment of 

outliers to unique faces of the convex polytope permits our formulation to be posed as a 

clustering problem. This clustering allows to subtype the directions of deviation from the 

normal.

The remainder of this paper is organized as follows. In Sect. 2 we detail the proposed 

approach, while experimental validation follows in Sect. 3. Section 4 concludes the paper 

with our final remarks.

2 Method

To learn the organization by which samples deviate from the main probability mass, we aim 

to find the minimal convex polytope (MCP) that excludes ρ percent of the samples with 

maximum margin. The convex polytope is minimal in the sense that the radius of the largest 

hypersphere that is circumscribed within the polytope is the minimum possible. 

Furthermore, the convex polytope is maximum margin in the sense that the margin between 

samples within the polytope and the outliers surrounding the polytope is maximized (Fig. 

1c).

The previous problem involves two steps. The first step is to find the minimal hypersphere 

that excludes ρ percent of samples and the second is to find the convex polytope that 

circumscribes this hypersphere. Let  denote the ith d-dimensional 

sample in the dataset. The minimal hypersphere that excludes ρ percent of samples can be 

cast as the following optimization problem:

(1)

where R describes the radius and xc denotes the center of the hypersphere. This problem is 

convex [15] and can be solved using LIBSVM1.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/svdd/.
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Once the dichotomy between the outliers and normative samples has been established, the 

maximum margin convex polytope [16] that separates the outliers from the normative 

samples can be cast as the following objective:

(2)

This objective bears resemblance to standard large margin classifiers such as SVM. The first 

term encourages sparsity to capture focal directions of deviation which are often 

encountered in neuroimaging studies. The loss term is broken into one for normative 

samples and another for outliers. Specifically, the normative samples are constrained to be in 

the negative halfspace of all faces of the polytope while the outliers are constrained to be in 

the positive halfspace for at least one of the faces. This leads to an assignment problem 

which is encoded by the ai,j entries of the matrix A that inform us whether ith sample 

belongs to the jth face of polytope or not. The resulting formulation is non-convex and an 

iterative optimization between solutions of the faces, W, b and assignments, A is necessary.

When fixing the assignments, the problem can be solved by K applications of weighted 

LIBSVM2. On the other hand, when fixing the convex polytope, the outliers can be assigned 

to the face that yields the maximum value of . The overall optimization scheme is 

summarized in Algorithm 1.

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/weights/.
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Algorithm 1

Minimal (enclosing) Convex Polytope (MCP)

Input:  (loss penalty), ρ (outlier percentage), K (number of outlier subtypes)

Output:  (Outlier excluding convex polytope);  (Outlier subtype 
assignment)

Outlier delineation: Solve for R, xc in Eq. (1b) using LIBSVM-SVDD1

Initialization: Initialize outlier assignments A randomly

Loop: Repeat until convergence (or a fixed number of iterations)

•

Fix A — Solve for W, b with weighted LIBSVM with weights2: wi, j =
C
K if xi − xc 2 ≤ R

Cai, j if xi − xc 2 > R

•

Fix W, b − Solve for A:

ai, j = 1
K if xi − xc 2 ≤ R

ai, j = 1 if xi − xc 2 > R and j = arg max j w j
Txi + b j

ai, j = 0 otherwise

2.1 Model Selection

The proposed MCP model is ultimately a clustering method whose performance depends on 

the selection of the following three parameters: (1) K, the number of deviation subtypes; (2) 

ρ, the outlier amount; (3) C, the loss penalty for violating margin. We choose the parameter 

combination that yields the most stable clustering [2]. To measure stability, we compute the 

average pairwise adjusted Rand index (ARI) [8] in a 10-fold cross-validation setting. The 

considered parameter space is: K ∈ {1, …, 9}, ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and C ∈ {10−3, 

…, 101}.

3 Experimental Validation

3.1 Simulated Data

Due to lack of ground truth in clinical datasets and the need to quantitatively evaluate 

performance, we validated our method on two simulated datasets where the number of 

directions of deviations from the normal was a priori determined. Both datasets composed of 

1000 samples and 150 features. 130 out of 150 of the features were drawn from a zero mean, 

unit variance, multivariate Gaussian distribution. For the first dataset, the remaining 20 

features were replicates of the univariate random variable that is uniformly distributed within 

a unit side length equilateral triangle (as in Fig. 1a). Thus, the number of simulated 

deviations from the spherical white noise was three for this dataset. The second dataset was 

analogously generated except that the 20 signal-carrying features were replicates of the 

univariate random variable that is uniformly distributed within a unit side length square. 

Hence, this dataset was designed to yield four types of outliers.
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For the triangular dataset, the parameter selection revealed that the most stable clustering 

occurs at K = 3, ρ = 0.1, C = 0.01 (Fig. 2a), while for the square dataset, the most stable 

clustering occurred at K = 4, ρ = 0.5, C = 0.01 (Fig. 2b). For both of these datasets, the ARI 

values for the optimal K were comparable across varying ρ and C, which indicates that the 

most important directions of deviation were captured regardless of the amount of outliers 

searched. These results demonstrate the ability of MCP to capture the underlying directions 

of deviation.

For comparison, K-means clustering was applied to the same datasets (see Fig. 2a, b, dashed 

lines). For the triangular and square datasets, K = 2 and K = 3 yielded the most stable 

clusterings, respectively. This demonstrates that K-means was not able to accurately capture 

the main directions of deviation, but was most likely grouping outliers with the normative 

samples.

3.2 Application to a Study of Alzheimer’s Disease

The proposed method was applied to a subset of the ADNI study3 which is composed of 

magnetic resonance imaging (MRI) scans of 177 controls (CN), 123 Alzheimer’s disease 

(AD) patients and 285 mild cognitive impairment (MCI) patients. T1-weighted MRI 

volumetric scans were obtained at 1.5 Tesla. The images were pre-processed through a 

pipeline consisting of (1)alignment to the Anterior and Posterior Commissures plane; (2) 

skull-stripping; (3) N3 bias correction; (4) deformable mapping to a standardized template 

space. Following these steps, a low-level representation of the tissue volumes was extracted 

by automatically partitioning the MRI volumes of all participants into 153 volumetric 

regions of interest (ROI) spanning the entire brain. The ROI segmentation was performed by 

applying a multi-atlas label fusion method [4]. The derived ROIs were used as the input 

features for our method. Before training the model, all ROIs were linearly residualized to 

remove the effect of age and sex [5].

The method was applied only to the control group. The parameter selection revealed that K 
= 2 subtypes, and 30 % outliers with C = 1 yielded the highest clustering stability (Fig. 3a). 

Once the MCP that captured the normative controls was found, it was used to subtype the 

rest of the ADNI dataset consisting of AD and MCI subjects into three groups denoted by 

normative (N), deviation subtype 1 (D1) and deviation subtype 2 (D2).

The distribution of the entire ADNI dataset with respect to the MCP is illustrated in Fig. 3b. 

Furthermore, the demographic and clinical biomarker information of CN, MCI and AD 

subjects within their respective subgroup is summarized in Table 1. 56 % of AD and 62 % of 

MCI patients were categorized into the normative group. This indicated that the main type of 

AD and MCI neuropathology was dissimilar to the deviations exhibited by the normal 

population. However, a non-negligible portion, 37 % of AD and 28 % of MCI was found to 

deviate along the second subtype direction along with 18 % of CN. This suggested that a 

sizeable portion of the normal population might have the propensity to deviate towards AD-

like pathology.

3http://adni.loni.usc.edu/data-samples/mri/.
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To better understand and interpret the neuroanatomical directions of these deviations from 

the normative range, voxel-based analysis was performed on all subjects in the normative 

group versus either of the two subtypes of deviations using gray matter tissue density maps. 

The group differences are visualized in Fig. 3.

There has been a substantial amount of research in the past that has demonstrated that the 

normal pattern of aging consists of prefrontal and motor cortex thinning along with 

increased ventricle size [11,12]. Corresponding manifestations of these patterns can be 

observed in group D2 (Fig. 3d). The significantly younger ages of AD and MCI subjects 

(Table 1) that fall into this subtype may indicate that the cognitive decline they exhibit may 

be caused by early and accelerated aging that follows this pattern. Furthermore, the 

relatively lower CSF amyloid-β and t-tau concentrations (Table 1) of these patients is 

another strong indicator of AD [3].

On the other hand, the patterns seen in group D1 (Fig. 3c) indicate cerebellar degeneration 

which is usually accompanied by brain stem atrophy [10]. Although cerebellar thinning has 

been demonstrated to be part of normal aging, our findings suggest that the increased rate of 

this degenerative pattern may be a type of deviation. Lastly, it should be mentioned that the 

majority of the AD and MCI subjects were not designated to be moving along either of the 

directions of deviations of normal subjects. A possible explanation is that for these particular 

subjects, the deviation towards AD may have begun at an earlier time point, which was not 

represented by the control subjects present in the study.

4 Conclusion

In summary, we have introduced a method that can simultaneously detect a homogeneous 

normative group and define subtypes of outliers. This allows a better understanding of the 

structure of deviations in control groups in neuroimaging cohorts. This, in turn, aids in the 

better interpretation of the pathological processes, which occur when subjects diverge from 

the normative region.
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Fig. 1. 
(a) A simulated dataset with three deviations from normal; (b) the minimum hypersphere 

that excludes ρ percent of samples; (c) Proposed solution: minimum convex polytope (MCP) 

that excludes ρ percent of samples. Note that the MCP characterizes the types of deviations 

by associating outliers to different faces (indicated by colors orange, green and blue).
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Fig. 2. 
The parameter selection for (a) triangular simulated dataset, and (b) square simulated 

dataset. (a) K = 3, ρ = 0.1, C = 0.01 were selected, (b) K = 4, ρ = 0.5, C = 0.01 were 

selected. Different solid lines indicate the ARI of MCP at different values of ρ at the 

maximum ARI yielding C parameter. Black dashed lines indicate the ARI of K-means for 

comparison. Note that MCP yields more stable clusterings that align with the ground truth.

Varol et al. Page 9

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2017 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
(a) The parameter selection for ADNI control group, K = 2, ρ = 0.3, C = 1 yielded the 

highest clustering stability. (b) The projections of all ADNI subjects along the two faces of 

the MCP. Normative samples (N) are in the negative orthant while deviated subtypes are on 

the upper left (subtype 2) and lower right (subtype 1). (c, d) The voxel-based group 

differences between all normative samples and deviation subtype 1 (c), and deviation 

subtype 2 (d) are shown. Warmer colors indicate that the normative group volume is greater, 

while colder colors indicate that the deviated group volume is greater.
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