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Abstract

Effective utilization of heterogeneous multi-modal data for Alzheimer’s Disease (AD) diagnosis 

and prognosis has always been hampered by incomplete data. One method to deal with this is low-

rank matrix completion (LRMC), which simultaneous imputes missing data features and target 

values of interest. Although LRMC yields reasonable results, it implicitly weights features from 

all the modalities equally, ignoring the differences in discriminative power of features from 

different modalities. In this paper, we propose stability-weighted LRMC (swLRMC), an LRMC 

improvement that weights features and modalities according to their importance and reliability. 

We introduce a method, called stability weighting, to utilize subsampling techniques and outcomes 

from a range of hyper-parameters of sparse feature learning to obtain a stable set of weights. 

Incorporating these weights into LRMC, swLRMC can better account for differences in features 

and modalities for improving diagnosis. Experimental results confirm that the proposed method 

outperforms the conventional LRMC, feature-selection based LRMC, and other state-of-the-art 

methods.

1 Introduction

Effective methods to jointly utilize heterogeneous multi-modal and longitudinal data for 

Alzheimer’s Disease (AD) diagnosis and prognosis often need to overcome the problem of 

incomplete data. Data are incomplete due to various reasons, including cost concerns, poor 

data quality, and subject dropouts. Most studies deal with this issue by simply discarding 

incomplete samples, hence significantly reducing the sample size of the study.

A more effective approach to deal with missing data is by imputing them using k-nearest 

neighbor, expectation maximization, low-rank matrix completion (LRMC) [2], or other 

methods [8,13]. However, these methods perform well only if a small portion, but not a 

whole chunk, of the data is missing. To avoid propagation of the imputation error to the 

diagnosis stage, Goldberg et al. [3] propose to simultaneously impute the missing data and 

the diagnostic labels using LRMC. This approach, along with other variants [9], however, 

inherently assumes that the features are equally important. This might not be the case 

especially when the data are multi-modal and heterogeneous, with some features being more 

discriminative than others [4,6, 10]. For example, in our study involving magnetic resonance 

imaging (MRI) data, positron emission tomography (PET) data, and cognitive assessment 
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data, we found that clinical scores, though fewer in dimension, are more discriminative than 

PET data, and within the PET data, only few features are related to the progression of mild 

cognitive impairment (MCI), a prodromal stage of AD. To address this issue, the method in 

[9] shrinks the data via selection of the most discriminant features and samples using sparse 

learning methods and then applies LRMC. Although effective, this approach still neglects 

the disproportionate discriminative power of different features, when employing LRMC.

In this paper, we explicitly consider the differential discriminative power of features and 

modalities in our formulation of LRMC by weighting them using a procedure called stability 
weighting. We first explain feature weighting, where each feature is assigned a weight 

according to its feature-target relationship, i.e., more discriminative features are assigned 

higher weights, and vice versa. For instance, in sparse feature weighting [14], the feature-

target regression coefficients are used as feature weights. Feature weighting like [14] always 

involves tuning one (or multiple) regularizing hyper-parameter(s), which is (are) normally 

determined via cross-validation. However, as pointed out in [7], it is difficult to choose a 

single set of hyper-parameter that is able to retain all the discriminative features while 

removing the noisy features.

Stability weighting avoids the difficulties of proper regularization [7] in feature weighting by 

going beyond one set of hyper-parameters. It utilizes multiple sets of hyper-parameters and 

subsampled data to compute a set of aggregated weights for the features. Using random 

subsampling and aggregation, stability weighting estimates the weights based on the 

“stability” of the contribution of a feature. More specifically, we perform a series of logistic 

regression tasks, involving different hyper-parameters and different data subsets, for each 

modality. Regression coefficients corresponding to the hyper-parameters that yield higher 

prediction performance are then aggregated as feature weights. We use the term 

“importance” and “reliability” to denote how good a feature and a modality are in the 

prediction task, respectively. In the context of stability weighting, feature importance is 

quantified by the aggregated weight values while modality reliability is quantified by the 

performance measures. We then incorporate the feature importance and modality reliability 

into LRMC, giving us stability-weighted LRMC (swLRMC) for greater prediction accuracy.

The contribution of our work is two-fold. (1) We propose a stability weighting procedure to 

quantify the importance of features and the reliability of modalities. (2) We incorporate this 

information into the formulation of the proposed swLRMC for more robust and accurate 

prediction using incomplete heterogeneous multi-modal data.

2 Materials, Preprocessing and Feature Extraction

In this study, we focus on MCI and use the baseline multi-modal data from ADNI dataset1, 

including MRI, PET, and clinical scores (i.e., Mini-Mental State Exam (MMSE), Clinical 

Dementia Rating (CDR-global, CDR-SOB), and Alzheimer’s Disease Assessment Scale 

(ADAS-11, ADAS-13)). Only MRI data is complete, the other two modalities are 

incomplete. MCI subjects who progressed to AD within 48 month are retrospectively 

1http://adni.loni.ucla.edu.
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labeled as pMCI, whereas those who remained stable are labeled as sMCI. MCI subjects 

who progressed to AD after the 48th month are excluded from this study. Table 1 shows the 

demographic information of the subjects involved.

We use region-of-interest (ROI)-based features from the MRI and PET images in this study. 

The processing steps involved are described as follows. Each MRI image was AC-PC 

aligned using MIPAV2, corrected for intensity inhomogeneity using the N3 algorithm, skull 

stripped, tissue segmented, and registered using a template to obtain subject-labeled image 

with 93 ROIs [11]. Gray matter (GM) volumes, normalized by the total intracranial volume, 

were extracted from 93 ROIs as features [9, 10]. We also linearly aligned each PET image to 

its corresponding MRI image, and used the mean intensity values of each ROI as PET 

features.

3 Method

Figure 1 gives an overview of the proposed swLRMC framework. The main difference 

between swLRMC and LRMC is the introduction of a stability weight matrix W, which is 

computed via stability weighting. W is then used in swLRMC to simultaneously impute the 

missing feature values and the unknown target values (i.e., diagnostic labels and conversion 

times). We provide the details of each step in the following.

3.1 Notation

Let X = [X(1) ⋯ X(m)] ∈ ℝN × d denotes the feature matrix of N samples. The features from 

m modalities (i.e., MRI, PET and clinical scores (Cli)) are concatenated to give d features 

per sample. Since, for each sample, not all the modalities are available, X is incomplete with 

some missing values. We use Y = [y1 ⋯?yt] ∈ ℝN × t to denote the corresponding target 

matrix with two targets (t = 2), i.e., the diagnostic labels (1 for pMCI and −1 for sMCI), and 

the conversion time (i.e., number of months prior to AD conversion). The conversion time of 

an sMCI subject should ideally be set to infinity. But for feasibility, we set the conversion 

time to a large value computed as 12 months plus the maximum conversion time over all 

pMCI samples. Throughout the paper, we use bold upper-case to denote matrices and bold 

lower-case to denote column vectors.

3.2 Low-Rank Matrix Completion (LRMC)

Prediction using LRMC is based on several assumptions. First, it assumes linear relationship 

between X and Y, i.e., Y = [X 1] * β, where 1 is a column vector of all 1’s, and β is the 

coefficient matrix. Second, it assumes X is low-rank, i.e., rows (columns) of X could be 

represented by other rows (columns). It can be inferred then that the concatenated matrix M 
= [X 1 Y] is also low-rank [3]. Hence, it follows that LRMC can be applied on M to impute 

the missing feature values and the unknown output targets simultaneously, without knowing 

β. This is achieved by solving minZ{‖Z‖* | ℘Ω(M) = ℘Ω(Z)} [2], where Z is the completed 

version of M, Ω is the set of indices of known values in M, ℘ is the projection operator, and 

‖ ·‖* is the nuclear norm (i.e., sum of singular values), which is used as a convex surrogate 

2http://mipav.cit.nih.gov.
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for matrix rank. In the presence of noise, and using different loss functions for X and Y, this 

problem is reformulated as [3]:

(1)

where ℒi(·, ·) is the loss function for the i-th column of Y. Since the first target is the 

diagnostic label (binary) and the second target is the conversion time (continuous), we use 

logistic loss (ℒ1(u, v) = ∑j log(1+exp(−ujυj))) and mean square loss (ℒ2(u, v) = ∑j 1/2(uj − 

υj)2) functions for the first and second targets, respectively. ΩX and Ωyi are the index sets of 

the known feature values and target outputs in M, respectively. |·| denotes the cardinality of a 

set, and ‖·‖F is the Frobenius norm. Parameters μ and λi are the tuning hyper-parameters that 

control the effect of each term. The features fitting term (second term) in (1) shows that the 

conventional LRMC treats all the features equally, without considering the importance of 

each feature in relation to the target(s). In the following, we propose to modulate this fitting 

term according to the feature-target relationship.

3.3 Stability-Weighted LRMC (swLRMC)

Due to missing feature values for some modalities, conventional feature selection methods 

cannot be applied to the whole data. Thus, we compute the weights separately for each 

modality. Denoting the importance of features in the j-th modality as vector w(j) and the 

reliability of the j-th modality as s(j), we reformulate the second term of (1) as follows:

(2)

where ZX(j) is the j-th modality feature part of Z, ΩX(j) is the known value indices of X(j), 

and diag(·) is the diagonal operator. Each element in w(j) quantifies the importance of the 

corresponding feature in X(j) in terms of discriminative power. More important features are 

given higher values, so that they are less affected by the smoothing effect of the low rank 

constraint (first term of (1)), and play more dominant roles in the optimization process. In 

the following, we explain how w(j) and s(j) are obtained via stability weighting.

Stability Weighting—Stability weighting uses data subsampling and sparse feature 

weighting with multiple hyper-parameters (similar to stability selection [7]), to improve 

robustness in feature weighting. Any feature weighting method can be used for stability 

weighting. In this paper, we choose logistic elastic net [14]. First, we use elastic net to 

compute a weight vector for each modality:

(3)
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where y1 is a column vector of diagnostic labels, ⊙ is element-wise multiplication, α1 and 

α2 are the tuning hyper-parameters, and β(i) is a sparse coefficient vector. The magnitude of 

each element in β(i) can be seen as an indicator of the importance of the corresponding 

feature in X(i). Note that, in this process one needs to determine the hyper-parameter α = [α1 

α2], which is normally done through cross-validation. However, instead of limiting ourselves 

to just one hyper-parameter and one set of data, we use a range of hyper-parameters and the 

subsamples of training data to determine the feature weights. More specifically, we solve (3) 

using a range of α values using 5-fold cross-validation on the training data with 10 

repetitions. For each α, we therefore have 50 versions of β(i), and one average F-score3. We 

choose three α values that give us highest F-score values, and compute the weight vector for 

the i-th modality as w(i) = β̄(i)/ max(β̄(i)) + ε, where ε is a small constant and β̄(i) is the mean 

absolute vector of all (50 × 3 = 150) β(i)’s that correspond to the α’s with the highest 

average F-scores. We then use the best average F-score to quantify the reliability of using 

X(i) in predicting target y1, which is denoted as s(i). Note that s(i) and w(i) in (2) can be 

combined into a single weight matrix as W = diag([s(1)w(1); ⋯; s(m)w(m)]). Finally, the 

compact equivalent form of swLRMC is given as

(4)

Optimization—Equation (4) can be solved to obtain matrix Z by iterating through l in the 

two steps below until convergence [3]:

1 Gradient Step: Gl = Zl − τg (Zl), where G is a intermediate matrix, τ is the step 

size, and g(Zl) is the matrix gradient defined as

(5)

2 Shrinkage Step [2]: Zl+1 = Sτμ(Gl) = P(max(Λ − τμ, 0))QT, where S(·) is the 

matrix shrinkage operator, P Λ QT is the SVD of Gl, and max(·) is the element-

wise maximum operator.

4 Results and Discussions

We evaluated the proposed method, swLRMC, using multi-modal data for the ADNI 

database. We evaluated two versions of swLRMC: (1) swLRMC on the original feature 

matrix without removing any features, and (2) swLRMC on feature-selected matrix (fs-

swLRMC) by discarding the features that were selected less than 50% of the time in stability 

selection. We compared our methods with two baseline LRMC methods: (1) LRMC without 

3We use F-score as performance measure as our dataset is unbalanced.
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feature selection, and (2) LRMC with sparse feature selection (fs-LRMC). The hyper-

parameters μ, λ1, λ2 for all methods were selected automatically using Bayesian hyper-

parameter optimization [1] in the ranges of {10−6, ⋯, 10−2}, {10−4,⋯, 10−1}, and {10−4,⋯, 

10−1}, respectively. For sparse feature selection, we used the SLEP package4 and performed 

5-fold cross validation on the training data to select the best hyper-parameter.

Since the dataset we used was unbalanced, we used the F-score and the area under the ROC 

curve (AUC) to measure the classification performance, and correlation coefficient (CC) to 

measure the accuracy of conversion time prediction. All the results reported are the averages 

of 10 repetitions of 10-fold cross validation. The results shown in Fig. 2 indicate that 

swLRMC (blue bars) performs consistently better than baseline LRMC (orange bar), for all 

the performance metrics and modality combinations. It is worth noting that swLRMC and 

fs-swLRMC seem to be performing almost equally well, but fs-swLRMC is faster in 

computation, due to its smaller matrix size during imputation. It is also interesting to see that 

swLRMC performs better than fs-LRMC in terms of F-score and CC values, indicating that 

penalizing less discriminative features is better than removing them. Another encouraging 

observation is that swLRMC is less sensitive to “noisy” features in the multi-modal data. 

This can be seen in MRI+PET combination, where performance of LRMC drops, compared 

to the case where only MRI is used, whereas the performance of swLRMC improves. A 

similar pattern can be observed for MRI+PET+Cli, where LRMC performs poorer than MRI

+Cli case, whereas swLRMC maintains its performance.

We also show in Table 2 a comparison of swLRMC with two methods that works with 

incomplete dataset: (1) incomplete data multi-task learning [12], and (2) Ingalhalikar’s 

ensemble method [5]. We selected the best hyper-parameters for these methods using 5-fold 

cross validation. We used logistic loss and meansquare loss function for classification and 

regression, respectively, for [12]. The highest score for each category is highlighted in bold. 

The results show that swLRMC outperforms both methods in F-score and CC for all the 

combinations of modalities. In terms of AUC, swLRMC gives comparable performance.

To test the significance of the results, we perform paired t-test between the best result and 

the other results in each category. The outcomes of the paired t-test are included in Fig. 2 

and Table 2, where statistically significantly difference results in comparison with the best 

method, at 95% confidence level, are marked with asterisks. The results show that the 

improvement of the proposed method is statistically significant in terms of F-score and CC 

values, in all the combinations of multi-modal data.

5 Conclusion

We have demonstrated that the proposed method, swLRMC, which explicitly considers 

feature importance and modality reliability using stability weighting procedure, outperforms 

conventional LRMC, fs-LRMC, and two state-of-the-art methods that were designed for 

incomplete multi-modal data. Experimental results show that our proposed method is 

4http://www.yelab.net/software/SLEP/.
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effective when dealing with incomplete multi-modal data, where not all the feature values 

are equally important.
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Fig. 1. 
Stability-weighted low-rank matrix completion (swLRMC).
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Fig. 2. 
Comparisons between the baseline LRMC and the proposed swLRMC methods using multi-

modal data. The first two plots: pMCI/sMCI classification results (first target), the last plot: 

conversion time prediction results (second target). Error bars: standard deviations, *: 

statistically significant.
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Table 1

Demographic information of MCI subjects involved in this study. (Edu.: Education)

# Subjects Gender (M/F) Age (years) Edu. (years)

pMCI 169 103/66 74.6 ± 6.7 15.8 ± 2.8

sMCI 61 45/16 73.9 ± 7.7 14.9 ± 3.4

Total 230 148/82 - -

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2017 March 09.
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