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Feature Sensitive Label Fusion with Random
Walker for Atlas-based Image Segmentation

Siqi Bao and Albert C. S. Chung

Abstract—In this paper, a novel label fusion method is pro-
posed for brain magnetic resonance image segmentation. This
label fusion method is formulated on a graph, which embraces
both label priors from atlases and anatomical priors from target
image. To represent a pixel in a comprehensive way, three kinds
of feature vectors are generated, including intensity, gradient
and structural signature. To select candidate atlas nodes for
fusion, rather than exact searching, randomized k-d tree with
spatial constraint is introduced as an efficient approximation for
high-dimensional feature matching. Feature Sensitive Label Prior
(FSLP), which takes both the consistency and variety of different
features into consideration, is proposed to gather atlas priors. As
FSLP is a non-convex problem, one heuristic approach is further
designed to solve it efficiently. Moreover, based on the anatomical
knowledge, parts of the target pixels are also employed as graph
seeds to assist the label fusion process and an iterative strategy
is utilized to gradually update the label map. The comprehensive
experiments carried out on two publicly available databases give
results to demonstrate that the proposed method can obtain
better segmentation quality.

Index Terms—Segmentation, Brain, Magnetic Resonance
Imaging

I. INTRODUCTION

The human brain is a complex neural system composing
many anatomical structures. To study the functional and struc-
tural properties of its subcortical regions, image segmentation
is a critical step in quantitative brain image analysis and
clinical diagnosis. However, segmenting subcortical structures
is difficult because they are small and often exhibit large
variations in shape. Moreover, some structural boundaries are
subtle or even missing in images. Although manual annotation
is a standard procedure for obtaining quality segmentation,
it is time-consuming and can suffer from inter- and intra-
observer inconsistencies. In recent years, researchers have
been focusing on developing automatic atlas-based segmen-
tation methods which can effectively incorporate expert prior
knowledge about the relationships between local intensity
profiles and tissue labels. And many softwares have become
available for brain image segmentation, such as FreeSurfer [1],
BrainSuite [2], BrainVoyage [3], BrainVisa [4] and so on.
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1. Image Registration
Global: rigid or affine transformation

Local: non-rigid deformation

2. Label Propagation
Propagate label maps from atlases to the target image

3. Label Fusion
Pixel representation, candidate selection and label voting

Fig. 1. Overview of the main components in atlas-based segmentation.

Atlas-based segmentation involves three main components,
image registration between atlases and a target image, label
propagation, and label fusion, as summarized in Fig. 1. To
register images of intra-subject generated by different modali-
ties, global transformation methods can be used, such as rigid
or affine transformation. As for the registration of inter-subject
or longitude analysis of intra-subject, global transformation is
insufficient to estimate an accurate deformation field due to
the high anatomical variabilities among these images. Local
transformation, represented by non-rigid registration, has been
proposed to deal with this problem. In non-rigid registration,
the deformation field can be estimated using control points on
the grid, with a combination of B-splines [5] or cosine basis
functions [6]. To further improve the quality of anatomical
or matching correspondences between two images, symmetric
diffeomorphism [7] moves both images simultaneously along
a geodesic path until meeting at the middle of normalization
domain and then the whole path or deformation field can be
obtained by uniting the two parts of geodesic paths. In the
evaluation of 14 nonlinear deformation algorithms [8], ANTs
based on symmetric diffeomophism is selected as one of the
best methods. While with a large number of target images
to be labeled, the pairwise non-rigid registration methods can
suffer from the expensive time consumption.

After image registration, the label maps can be propagated
from atlases to the target image and multiple tissue labels
can be collected for each image position, making label fusion
a crucial final aggregation step for the reliable labeling of
target images. A generative model for image segmentation
based on label fusion is proposed in [9] and different label
fusion strategies are discussed. Majority voting is commonly
used, while its accuracy can be adversely affected if the atlases
are dissimilar. In voting using global weights, the similarity
between each atlas and the target image is calculated and used
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Fig. 2. Effects of feature sensitivity. (a) Cropped target intensity image. (b) Manually labeled Hippocampus. (c) Color image to show the effects of feature
sensitivity, with RGB values standing for the feature coefficients of intensity, gradient and structural signature respectively. (d) Three selected examples to
illustrate their dominate features.

as a weight during the label fusion process. Recently, more
label fusion methods based on patches [10], [11], [12], [13],
[14], [15] have been proposed, which were first introduced for
image de-noising [16] and recently become more prevalent in
medical image segmentation.

Generally, there are three stages in patch-based label fusion.
First, it is necessary to determine which kind of feature to be
adopted as pixel representation. The conventional way is to
collect pixel values inside the surrounding patch to formulate
an intensity feature vector. To better reveal image changes,
gradient magnitude is another commonly used feature infor-
mation. However, it is not adequate enough to obtain quality
segmentation if just relying on the above two kinds of features,
as they can only capture local and low-level properties. Some
advanced approaches have been proposed to extract high-
level features to compensate for local limitations. In [17], the
contextual information, which estimates the relative relation
between intensity values, is appended to form an augmented
feature vector for cardiac image segmentation.

With feature representation established, the second stage is
to distinguish candidate pixels or patches for voting. In [12], to
label a centre pixel in the target image, all surrounding small
patches from atlases are utilized for weighted voting. To avoid
the adverse effects from dissimilar patches, an extension has
been proposed in [10] which involves first ranking the small
patches based on structure similarity, followed by combining
the selected ones in the final labeling. Another patch selection
method based on sparse representation was proposed by Liao
et al. [11], which selects patch-based signatures with sparse
logistic and the LASSO interface [18].

The third stage is to fuse the labels of candidate atlas
nodes and the fusion strategies fall into two main categories:
weighted voting and image patch reconstruction. It is a
common way to first estimate the similarity between two
patches by embedding their sum of squared difference to the
Gaussian function and then to utilize the similarity value as the
weight for voting [10], [12]. Besides the independent impact
on target pixel, Joint Label Fusion [13] also takes the error
correlation among atlas patches into consideration and tries to
find the optimal weight for voting. For the second category, to
reconstruct a target patch, the linear combination coefficients
of atlas patches need to be optimized first and the label of the
centre pixel can be then assigned to the class with a minimum
reconstruction error [14].

Moreover, as shown in [10], [12], the patch-based la-

bel fusion methods do not necessarily depend on the time-
consuming non-rigid registration. While given the poor con-
trast condition in the brain Magnetic Resonance (MR) images
and similar histogram profiles among adjacent structures, the
label fusion with only affine transformation as processing
becomes more challenging. As such, to compensate for the
quality loss caused by the affine transformation, it raises the
demand to design a more elegant label fusion process for brain
MR image segmentation. Under the assumption that distinct
features can assist the segmentation in a complementary way,
in this paper, Feature Sensitive Label Prior (FSLP) is designed
to capture label priors from atlases, whose process is distinct
with the conventional label fusion at every stage.

As suggested in the segmentation of cardiac MR images,
embracing more features besides intensity, such as contextual
information, can help improve the segmentation quality [17].
For pixel representation, besides conventional intensity and
gradient features, structural signature is introduced to extract
the high-level property of each subcortical structure based on
the Convolutional Neural Networks. During candidate node
selection, rather than exact searching within a confined scope,
the random k-d tree with a spatial constraint is put forward as
an efficient approximation for high dimensional data matching.
In the fusion stage, feature sensitivity is taken into account
for the variance and consistency among various features. As
FSLP is a non-convex problem, one heuristic method is further
proposed to solve it by alternately dealing with two convex
problems.

The motivations to introduce FSLP are two-fold. On the
one hand, the contributions of distinct features are expected
to be consistent during label fusion, i.e., they can reach an
agreement when labeling a pixel. On the other hand, the impact
of different features can change according to image conditions.
For the flat regions away from structural boundaries, inten-
sity and gradient are supposed to be more essential. As for
the complex region near tissue bounders, structural signature
should play a more significant role. The experimental result
with our method also justifies the initial motivation, as shown
in Fig. 2. The sub-figures (a) and (b) are a cropped target
intensity image and its corresponding label map of the Hip-
pocampus. In (c), for the pixels where atlases cannot make an
agreement, the optimal feature coefficients estimated in FSLP
are displayed as three channels of RGB. Three representative
examples are selected to explain the dominant features in each
pattern in (d). The color image in (c) demonstrates that the
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role of structural signature is more essential around tissue
protrusions. For the other relatively flat regions, intensity and
gradient matter more, which phenomenon also justifies our
motivation to introduce feature sensitivity for label fusion.

In addition to FSLP from atlases, anatomical priors from
target image are also utilized to assist our graph-based label
fusion process. Based on anatomical knowledge, to label a
pixel which is deep inside or outside a subcortical structure is
easier, while to label one which is located around the boundary
is challenging. As such, rather than updating labels for all
target pixels, those far away from structural border are selected
as graph seeds and their influence can be propagated to other
pixels through image lattice. Unlike the graph-based labeling
constructed with both atlas and target nodes [19], we further
infer an equal but more concise graph to encode FSLP and
anatomical prior, which only relies on target nodes. The objec-
tive energy function on the graph is formulated with Random
Walker and can be solved as a discrete Dirichlet problem. To
evaluate the proposed method, experiments have been carried
out on two image databases and results demonstrate that our
approach can obtain better performance as compared with
other state-of-the-art methods.

Note that the preliminary version of this work has been
published in the 19th International Conference on Medical
Image Computing and Computer Assisted Intervention, MIC-
CAI 2016. In this paper, 1) we extend our previous work by
generating multiple features and introducing randomized k-
d tree with spatial constraint for efficient high dimensional
feature matching; 2) additional mathematical proofs, solutions
together with illustrative examples are given in this work;
3) intensive experiments has been carried out to evaluate
each component of our proposed method and comprehensive
evaluations have been done with the state-of-the-art methods.

II. METHODOLOGY

In this paper, to obtain a more discriminative representation,
three kinds of features are extracted and candidate nodes are
selected for each pixel, which will be explained in Section
II-A and Section II-B. Given the demands of consistency and
variety among distinct feature vectors during label fusion,
a novel method FSLP is proposed in Section II-C to deal
with this dilemma, by collecting priors from atlases with
feature sensitivity. Moreover, the pixels from target image
are also selected based on anatomical knowledge, acting as
anatomical prior. The whole label fusion process is modeled
on an undirected graph and formulated under the framework
of Random Walker, which is summarized in Section II-D.

A. Feature Generation

In medical images, the conventional feature utilized to
represent a pixel is intensity values or gradient magnitudes
in its surrounding cube. While these features are limited to
local information and susceptible to adverse impacts from
similar histogram profiles among tissues. As each subcortical
structure in the brain has its own shape characteristics and
structural properties, this kind of high-level features can be
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Fig. 3. Illustration of convolution and pooling layers. With three images from
layer l−1 as input, two feature maps generated in layer l, each corresponding
to one pair of W and b, as stated in Equation (1).

used to formulate a more discriminative representation. Re-
cently it has been proven that the feature extraction ability
of Convolutional Neural Networks (CNN) [20] has surpassed
hand-crafted features, like SIFT [21], and CNN has brought
significant improvements in image classification [22], semantic
segmentation [23], acoustic analysis [24] and so on. As such,
in this paper, we propose to encode the high-level property for
brain MR images with a feature vector extracted automatically
using CNN.

CNN is inspired from a biological visual mechanism, where
neurons in the higher layer operate on a subregion of neurons
in the lower layer. In CNN, there are two basic components:
convolution and pooling layers, as illustrated in Fig. 3. To
estimate the convolutional response a1 or a2 in layer l,
pixels within the subregion of images in the last layer (Red
Region, namely the receptive field) are chosen as input. The
convolution step consists of linear operation and non-linear
activation, which can be formulated as follows:

a = f(Wx+ b), (1)

where a is the convolutional response, f(·) refers to the non-
linear activation function, x is the flattened input from the
receptive field, W is the weight vector and b is the bias
associated with the convolutional kernel.

It is notable that each feature map in the convolution layer
is assigned with a specific pair of W and b. For the Purple
pixel in the first feature map, its value can be estimated with
f(W1x + b1) and for the Green pixel in the second feature
map, its value should be f(W2x+ b2). The number of feature
maps in each layer can be preset during the design of the
network architecture, while the parameters W and b need to
be learned through training.

For the non-linear activation f(·), the conventional way is
to employ a sigmoid or tanh function. However, both can
encounter the saturation problem and kill the gradients dur-
ing backpropagation. Recently, non-saturated functions have
become prevalent, such as Rectified Linear Unit (ReLU) [25],
leaky ReLU [26] and some other variants. The experiment in
[22] demonstrates that ReLU can accelerate the training speed
up to 6 times faster than the tanh function. As such, in the
paper, ReLU is chosen as the activation function and Equation
(1) can then be rewritten as:

a = max(0,Wx+ b). (2)
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Feature	VectorC1
C2
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Fig. 4. CNN architecture. Red: 2D input patch; Blue: convolution layers;
Green: output layer; Orange: feature vector to the output layer.

TABLE I
DETAILED PARAMETER SETTINGS OF CNN NETWORK TO EXTRACT

STRUCTURAL SIGNATURE.

Index 1 2 3 4 5 6 Output

Layer conv pool conv pool conv pool full

Feature maps # 6 6 12 12 18 18 2

Filter size 5×5 2×2 5×5 2×2 2×2 1×1 -

Spatial input 
size 20×20 16×16 8×8 4×4 2×2 1×1 1×1

In CNN, the convolution and pooling layers are usually
interwoven. The feature maps generated in the convolution
layer can be regarded as input for the next pooling layer. As
shown in Fig. 3, the patch in the i-th feature map of layer
l polls for the corresponding pixel in the i-th feature map
of layer l + 1. The pooling strategy used here can be either
maximum or average pooling. From the example in Fig. 3, it
can also be noticed that pooling can only shrink the feature
maps, while leaving their amounts unchanged.

In this paper, to capture the high-level properties of sub-
cortical structures, CNN is utilized to extract the structural
signature from brain MR images. Fig. 4 illustrates the archi-
tecture of the employed network. There are seven layers in
the network, including six alternating convolution (C1, C2 and
C3) and average pooling (omitted as dashed lines) layers, and
one output layer. The input to the network is a 2D patch with
the size of 20 × 20 pixels and the two nodes in the output
layer refer to the probability of each class. The feature vector
to the output layer is extracted and regarded as the structural
signature. Detailed parameter settings of the network can be
found in Table I.

To train the above network, each database is separated into
two parts randomly in the experiments, with equal number of
images as training (atlas) and testing (target) data sets. For the
atlas pixels within region of interest (ROI), their surrounding
patches (with the size of 20 × 20 pixels) are extracted as
training data, together with their corresponding labels. With
the well trained network, we can obtain the structural signature
for each pixel, by using its surrounding patch as input and
extracting the feature vector before the output layer.

As demonstrated in [27], the performance of mitosis detec-
tion can be further improved by combining the discriminative
CNN features with conventional handcrafted features, like
morphology or color information. The method [17] also sug-
gests that embracing high-level and low-level features yields
better results in label fusion for cardiac image segmentation.

TABLE II
SUMMARY OF GENERATED FEATURES FOR EACH PIXEL.

Type Input Feature Vector Length 
Intensity 5 × 5 × 5 125 
Gradient 5 × 5 × 5 125 

Structural Signature 20 × 20 18 

Target

Atlas 1 Atlas M

⋅	⋅	⋅

Atlas 2

Fig. 5. Illustration of Feature Matching. For a considered pixel (Gray Square)
in the target image, similar pixels are searched from the atlases using each
kind of feature vector. Red, Purple and Green Squares represent similar pixels
found with intensity, gradient and structural signature respectively. Dashed
Gray Square is the spatial constraint and those outside similar pixels will not
be involved as candidate nodes.

Under the assumption that distinct features can assist the
segmentation in a complementary way, in this paper, we extract
multiple features from brain MR images and will consider the
feature sensitivity during label fusion. For each pixel, besides
the structural signature, the intensity values and gradient
magnitudes in the surrounding cube are also assembled as
feature vectors. In total, three kinds of feature vectors are
generated in the proposed method, which is summarized in
Table II.

B. Feature Matching

After feature generation, the second stage in label fusion is
to select candidate nodes from atlases. For each pixel in the
target image, similar pixels can be selected from atlases using
each kind of feature vector. In fact, it is the nearest neighbor
(NN) problem to find similar points in real d-dimensional
space from N samples. As shown in Table II, the dimension
d of our generated features (intensity, gradient and structural
signature) has a value of 125, 125 and 18 respectively. Using
the brute force approach to check each sample in a sequential
order, the computation complexity can be O(dN2). Given the
expensive computational cost of exact searching, approximate
nearest neighbor (ANN) has been introduced to accelerate the
searching speed. In [28], the (1+ε)-approximation to k nearest
neighbors can be obtained in O(kd logN) time. However,
the performance of this algorithm degrades rapidly along
with the dimension increase and it cannot be applied well
to high dimensional data. The matching results can become
patchy when d becomes as high as 20. To tackle this issue,
several advanced ANN approaches have been proposed for
the application on high dimensional data, such as randomized
k-d tree [29], locality sensitive hashing [30] and so on. In
[31], it demonstrates that randomized k-d tree and priority
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Fig. 6. (a) FSLP illustration. y is the feature vector for the target pixel, con-
catenating intensity (Red), gradient (Purple) and structural signature (Green).
αi is feature coefficient and A is a dictionary constructed with atlas feature
vectors. β is the vector storing reconstruction weights. (b) Feature sensitive
matrix Wα. Each diagonal sub-matrix (Red W1, Purple W2, Green W3)
corresponds to one kind of feature vector.

search k-means tree [32] can obtain the best results through
comprehensive experiments. Therefore, the feature matching
component of the proposed method is carried out on the
foundation of the randomized k-d tree provided by fast library
for approximate nearest neighbors (FLANN) toolbox [31].

As shown in Fig. 5, similar pixels are selected from the
atlases using randomized k-d tree with each kind of feature
vector. Considering the poor contrast condition in MR brain
images and similar histogram profiles among adjacent tissues,
the atlas pixels selected with randomized k-d tree can belong to
other structures and mislead the subsequent fusion procedure.
As such, a spatial constraint is enforced in the proposed
method to filter out the pixels which are too far away from
the considered target pixel. For those atlas pixels which cannot
meet the spatial constraint (i.e., outside Dashed Gray Square),
they tend to be deceptive similar pixels and therefore are not
involved in the pool of candidate nodes.

C. Feature Sensitive Label Prior

In this paper, a novel method named Feature Sensitive
Label Prior (FSLP) is proposed to capture label prior from
atlases by seeking for the optimal linear combination of atlas
nodes to reconstruct the feature vector of the target pixel, as
illustrated in Fig. 6(a). For each considered pixel from the
target image, its three kinds of features are extracted and
concatenated together to formulate one augmented vector y. Its
similar pixels selected from the atlases with Feature Matching
are assembled as dictionary A. Given that the confidence and
significance of different features can vary considerably, the
feature coefficient ai is introduced to balance their influences.
The optimal weight to reconstruct y with dictionary A is stored
in vector β. The formulation of FSLP is given as follows:

min
α,β

1

2
|Wα(y −Aβ)|22 + λ|α|22,

s.t.
∑
i

αi = 1, αi ≥ 0.
(3)

Wα is the feature sensitive matrix, with its definition illustrated
in Fig. 6(b). Wα is split into three subregions (Red W1, Purple
W2 and Green W3), each corresponding to one kind of feature
vector. The diagonal elements in the sub-matrix Wj are defined
as:

∀wii ∈Wj , wii =
αj√
nj
, (4)

where nj is the length of the j-th feature vector. Through the
division between the coefficient αj and√nj , the normalization
on various features is enforced in the feature sensitive matrix.
In Equation (3), with the regularization term on the coefficient
vector α, it guarantees that no feature dominates the whole
optimization procedure.

By solving Equation (3), optimal feature coefficient α
and reconstruction weight β can be obtained and label prior
can be then estimated with grouped reconstruction error.
However, Equation (3) is one non-convex problem, which
may have multiple local optima and can be difficult to solve.
The details of the proof are given in the Appendix. To solve
Equation (3) efficiently, we also propose one solution for it
in the following.

Problem Solution
As discussed above, when optimizing α and β simulta-

neously, Equation (3) is not a convex problem. To solve
this non-convex problem efficiently, one heuristic approach is
proposed in this paper by seeking optimal solutions for α and
β alternately. The first step is to fix α and Equation (3) turns
into one least square problem:

min
β
|Wα(y −Aβ)|22. (5)

This optimization problem is convex and its solution is
β̂ = (WαA)\(Wαy). With updated β, the second step is
to fix it and Equation (3) is then simplified to one quadratic
programming problem:

min
α

1

2
αTΛα, s.t.

∑
i

αi = 1, αi ≥ 0, (6)

where

Λ =


∑
f2
1j

n1
+ λ 0 0

0
∑
f2
2j

n2
+ λ 0

0 0
∑
f2
3j

n3
+ λ

 ,

f = y −Aβ =

 f1
f2
f3

 .
The newly introduced variables f1, f2 and f3 are vectors
related to three kinds of features, with length of n1, n2 and
n3 respectively. Equation (6) is also a convex problem and
can be solved efficiently. The proposed heuristic algorithm
iterates the above two steps until either one of the following
two conditions are met: the change of α is below a threshold
or iterations exceed the predefined number.

With α and β acquired, the reconstruction error using each
class can be estimated as follows:

eF = |Wα(y −AβF )|2, eB = |Wα(y −AβB)|2, (7)

where F and B refers to the foreground and background re-
spectively. βF and βB refers to the weights for the foreground
and background atlas nodes respectively. With the estimated
reconstruction error, FSLP is encoded as edge weight on the
graph during label fusion, which will be explained in next
subsection.
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D. Label Fusion with Random Walker

Besides the FSLP gathered from atlases, the anatomical
knowledge from target images is also encoded in the pro-
posed label fusion method. As mentioned in the Introduction
section, to label pixels which locate deep inside or outside
a subcortical structure is relatively easier as compared with
those around structural boundary. Thanks to the location
advantage, even with a rough initial label map generated by
affine transformation, the labels of these pixels (far away from
the object boundary) can be treated as confident results. This
kind of confidence can be propagated to less confident pixels
(near boundary) through image lattice, which is regarded as
anatomical prior in our method.

In this paper, label fusion is formulated on an undirected
graph G = (V,E), where V refers to a set of nodes consisting
of foreground seeds VF , background seeds VB and candidate
nodes VC . As both label and anatomical priors are employed
in the proposed framework, two kinds of foreground seeds are
included in VF : VFa

from atlases and VFT
from the target

image, similarly for VB . As for VC , it represents the set of
nodes whose labels need to be determined during label fusion
and these candidate nodes are selected from the target image.
E ⊆ V × V is the set of edges eij connecting nodes vi and
vj , with wij as edge weight.

Since the number and location of nodes are critical to the
efficiency of segmentation algorithms, the strategy for node
selection needs to be deployed carefully. As the prior from
atlases has been encoded to FSLP, VFa

and VBa
can be

represented with two terminal nodes and the consideration of
node selection can be limited to the target image. As discussed
in our previous work [33], segmentation errors mainly lie
around structural boundaries and those pixels which are far
from the border can have higher label confidences. As such,
in this paper, node selection is performed based on the Signed
Distance Map (SDM), as illustrated in Fig. 7. With multiple
label maps provided by a set of atlases, these maps are
first fused with majority voting to produce the initial label
map for the target image. Then its corresponding SDM can
be estimated by calculating the Euclidean distance between
a pixel and its nearest neighbour on the object boundary,
with positive or negative value for outside (background) or
inside (foreground) respectively. Using SDM and pre-defined
distance threshold dT , the target seeds and candidate nodes
can be identified, as displayed in Fig. 7(d).

With seeds and candidate nodes settled, the graph for
label fusion can be constructed with edge connections, as
shown in Fig. 8(a). The Orange and Purple nodes represent
the atlas seeds VFa and VBa . Red and Black nodes refer
to the foreground VFT

and background VBT
seeds selected

from the target image. The influences of target seeds can
be propagated to candidate nodes through image lattice. The
affinity between nodes with lattice connection is defined using
classical Gaussian function as follows:

∀ vj ∈ N (vi), wij = exp(−δ(IT (vi)− IT (vj))
2), (8)

where vi is one candidate node, N (vi) refers to its 6-nearest
neighbours in 3D image, IT (·) is the pixel intensity value in

(a) (b) (c)

(d)
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−(!"+') ≤ !$ ≤ −!"

−!"< !$ < !"
Zoom In

Fig. 7. Node selection. (a) 2D slice of target intensity image; (b) Initial
label map fused with majority voting; (c) Signed Distance Map of b; (d) Red
(inner) layer: target foreground seeds −(dT +ε) ≤ di ≤ −dT ; Black (outer)
layer: target background seeds dT ≤ di ≤ (dT + ε); Blue (middle) layer:
candidate nodes −dT < di < dT .
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Fig. 8. Graph construction for label fusion. (a) Orange and Purple nodes:
atlas seeds. Red and Black nodes: target foreground and background seeds.
vi is one candidate node and vj is one of its neighbours, with wij as edge
weight. FSLP is encoded to wiFa and wiBa . (b) An equal graph of a.

the target image and δ is one tuning parameter. The FSLP is
encoded as the edge weight between vi and atlas seeds, with
the following definition:

wiFa =
eB

eF + eB
, wiBa =

eF
eF + eB

. (9)

Given that VFa
and VFT

are all foreground seeds, the edge
weights between them are supposed to be infinity. In this case,
setting up an edge between vi and VFa

is equal to appending
an edge for vi with any target foreground seed, as illustrated
in Fig. 8. In other words, the function of the atlas seeds can be
replaced and FSLP can be assigned to the edges of wiFT

and
wiBT

instead. In this way, the graph for label fusion can be
constructed only with target nodes and the graph complexity
can be greatly reduced.

For graph-based image segmentation, the general energy
function [34] can be defined as follows:

E(x) = Eunary(x) + Ebinary(x),

=
∑
vi

(wqiF |xi − 1|p + wqiB |xi − 0|p) +
∑
eij

wqij |xi − xj |
p,

(10)

where xi stands for the probability that node vi belongs to the
foreground, with xF = 1 and xB = 0. The first unary term
considers the data fidelity of each node independently and the
second binary term takes the impact between connected nodes
into account. By minimizing the above energy function, the
optimal solution for x can be obtained and the label of each
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Fig. 9. Overview of the proposed feature sensitive label fusion.

node can be updated accordingly: L(vi) = 1 if xi ≥ 0.5 and
L(vi) = 0 otherwise.

As pointed out in [35], by assigning different values to p
and q, Equation (10) can be adapted to several popular image
segmentation models, including Graph Cuts, Random Walker,
Power Watershed, and so on. However, as Graph Cuts prefers
a surface with minimum energy, it can suffer from surface
shrink [36]. In brain MR images, as a result of poor contrast
conditions around structural boundaries, the shrinkage problem
can be more serious. With Power Watershed, due to the fact
that edge weights dominate the optimization procedure (q set
to infinity), the generated boundary can be rough [35]. As
such, to obtain a smooth and quality segmentation result, we
choose to employ Random Walker (RW), with p and q set
to 2. Then the minimization problem discussed above can be
reformulated as follows:

min
x

∑
vi

[w2
iFT

(xi − 1)2 + w2
iBT

x2i ] +
∑
eij

w2
ij(xi − xj)2,

s.t. xFT
= 1, xBT

= 0.
(11)

This equation can be viewed as a discrete Dirichlet problem
and solved by using the Laplace equation with Dirichlet
conditions through Graph Analysis Toolbox [37].

Considering RW is sensitive to seed positions [38], the
foreground and background seeds need to be chosen carefully.
As mentioned above, one fundamental step for node selection
is the initial label map, whose quality depends on the choice of
registration methods, for example, non-rigid or affine transfor-
mation. To increase the robustness of the proposed label fusion
approach to registration procedure, an iterative RW scheme is
introduced to update the label map and gradually improve the
quality of node selection. The experimental results shown in
Fig. 10 also demonstrate that the segmentation accuracy can
benefit from this iterative strategy and tends to be stable after
several iterations.

The overview of the proposed method is summarized in
Fig. 9. With atlas intensity IA and label maps IT , affine
transformation is first carried out and an initial label map for
the target image LTinit is obtained with majority voting. Node
selection can be performed based on the SDM of the initial
label map and the graph for label fusion can be constructed
with these target nodes. With intensity values, gradient mag-
nitude and structural signature as augmented feature vector,
candidate nodes are selected from atlases and the atlas prior
is gathered in the form of FSLP. With the label prior from
atlases and anatomical prior from the target itself, label fusion
is formulated on a graph with Random Walker and the label
map LT is updated gradually through iterations until stable.

TABLE III
DESCRIPTION OF IBSR AND LPBA40 DATABASES.

Database Subjects Ages (! = mean) Volume Resolution (""#)

IBSR 18 7-71 256×256×128 8: 0.94×0.94×1.5

(14� & 4 �) % = 38.4 4: 0.84×0.84×1.5

6:  1.0 × 1.0	×1.5

LPBA40 40 19-40 256×256×124 38: 0.86×0.86×1.5

(20� & 20 �) % = 29.2 2: 0.78×0.78×1.5

III. EXPERIMENTS

A. Databases and Preprocessing

To evaluate the performance of the proposed method, ex-
periments have been carried out on two publicly available MR
brain image databases – IBSR1 and LPBA402 [39]. The IBSR
v2.0 database, consisting of 18 T1-weighted images with 84
manually labeled structures, is provided by the Center for
Morphometries Analysis at Massachusetts General Hospital,
U.S.A.. Three kinds of voxel resolutions (mm3) are utilized
in the IBSR database: 0.97× 0.97× 1.5, 1.0× 1.0× 1.5 and
0.84×0.84×1.5. 18 healthy subjects, including 14 males and 4
females, took part in the image acquisition, with ages ranging
between 7 and 71. All 18 images have been normalized to
Talairach orientation and the bias field has been corrected.

The LPBA40 database, consisting of 40 images with 56
manually labeled structures and skull-stripped, is provided by
the UCLA Laboratory of Neuro Imaging, U.S.A.. 40 human
volunteers, including 20 males and 20 females, took part in
the image acquisition, with ages ranging between 19 and 40.
The 40 skull-stripped volumes have been rigidly registered
to the MNI305 atlas and the intensity inhomogeneity has
been corrected. Detailed description of these two databases
is presented in Table III.

Given the significance of subcortical structures in clinical
diagnosis, surgical planning and therapeutic assessment, in this
paper, we focus on the extraction of subcortical structures from
brain MR images. There are six subcortical structures labeled
in IBSR database, including Amygdala, Caudate, Hippocam-
pus, Pallidum, Putamen and Thalamus. As for the LPBA40
database, three subcortical structures are delineated: Caudate,
Hippocampus and Putamen. Each of the subcortical structure
has two sub-parts, located in the left and right hemispheres
respectively.

In the experiments, each database was separated into two
parts randomly, with equal number of images as training
(atlas) and testing (target) data sets. Considering the intensity
inconsistency among images, histogram matching was first
conducted with the Insight Toolkit3. Then pair-wise registra-
tions between each target image and all atlases were performed
based on affine transformation, using FLIRT [40] provided by
FSL toolbox [41]. With multiple label maps generated with
various atlases, majority voting was applied to generate the

1http://www.nitrc.org/projects/ibsr
2http://www.loni.usc.edu/atlases/Atlas Detail.php?atlas id=12
3http://www.itk.org/
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Fig. 10. Segmentation results by our method at each iteration on LPBA40
database, measured with DC.

initial label map and the results were also employed as the
baseline during comparison.

B. Segmentation Results

In the Methodology section, the label fusion method with
Random Walker was initially designed for binary segmenta-
tion. While in the experiments, there are several remarkable
subcortical structures in one brain volume and some of them
can be adjacent with each other. Directly applying binary
segmentation for each structure independently may cause some
inconsistencies around the neighboring areas. As such, it is
necessary to extend the binary segmentation to multi-class
segmentation in a refined way.

Distinct with other graph-based approaches (like Graph
Cuts or Markov Random Field), Random Walker produces a
probability map rather than a discrete label map, indicating
the probability that each pixel belongs to the foreground.
After applying Random Walker to each structure, we can
obtain a vector (pi1, pi2, · · · , piK) for each pixel vi, where
K is the total number of subcortical structures. pij represents
the probability that vi belongs to the j-th subcortical struc-
ture. As for the background probability, pi0 is assigned as
1−max(pi1, pi2, · · · , piK). Then the probability distribution
over the K+1 classes, including the background and multiple
structures, can be estimated with the softmax function (nor-
malized exponential function). The category with the largest
probability is assigned as the final label for each pixel.

Dice Coefficient (DC) is utilized to evaluate the quality of
label fusion. In the proposed framework, the iterative strategy
is exploited to update target label map LT gradually. To
test the iterative effects, experiments have been conducted
on LPBA40 database with available subcortical structures and
the segmentation results at each iteration are recorded and
displayed in Fig. 10. It can be observed that the segmentation
accuracy increases with the number of iterations and tends to
remain stable after three iterations.

Another set of experiments has been carried out to check
how the amount of candidate nodes can influence the seg-
mentation quality. As discussed in Feature Matching, with
each kind of feature vector, a set of similar pixels can be
collected from atlases with randomized k-d tree and the pool
of candidate nodes can be further determined with a spatial
constraint. In Fig. 11, the horizontal direction refers to the
settings of how many similar pixels need to be selected with
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Fig. 11. The effects of the setting of similar pixel amount on candidate nodes
and segmentation quality with LPBA40 database. (a) Blue curve, amount
of candidate nodes; Green curve, the percentage of candidate nodes among
similar pixels. (b) Segmentation result measured with DC.

one kind of feature. In the Upper subfigure, the Bule curve
displays the count of candidate nodes with three features,
which indicates that with spatial constraint, only a portion of
similar pixels can be kept in the candidate nodes pool. The
Green curve shows the percentage of candidate nodes among
similar pixels and the percentage decreases along with the
increase of similar pixel amount, which can be caused by the
disturbances from adjacent tissues with similar profiles. In the
Bottom subfigure, the segmentation accuracy measured with
DC is displayed and the peak of the performance lies around
32 similar pixels. Fig. 11 demonstrates that segmentation
quality is not proportional to the number of candidate nodes
and the setting of 32 similar pixels gives the best performance.

Based on the preliminary test on LPBA40, for the experi-
ments on IBSR, the iteration was set to 3 and the number of
similar atlas nodes was set to 32. The input patch size for
various features follows Table II and the spatial constraint
during Feature Matching was set to 9 × 9 × 9. In FSLP
estimation, rather than choosing a fixed λ value in Equation
(6), it was set to be adaptive λ = 1

3 (
∑
f2
1j

n1
+

∑
f2
2j

n2
+

∑
f2
3j

n3
)

in each iteration. The settings of the rest parameters are listed
as follows: signed distance threshold dT = 2 and ε = 1 for
node selection, and the tuning parameter used in Equation (8)
was set to δ = 5.

There are several existing softwares which support the
automatic segmentation function for brain MR images, for
example, BrainSuite [2] or FreeSurfer [1]. Therefore, we
decided to utilize BrainSuite, one of the available softwares, to
label images in the IBSR and LPBA40 databases as a reference
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TABLE IV
EXPERIMENTAL RESULTS ON IBSR AND LPBA DATABASES, MEASURED WITH DC. HIGHEST VALUES ARE WRITTEN IN RED.

Database IBSR LPBA40

Methods BrainSuite MV PBL PBAF OurMethod BrainSuite MV PBL PBAF Our	Method

Thalamus 0.771-0.760 0.809-0.812 0.877-0.881 0.891-0.894 0.898-0.900 - - - - -

Caudate 0.695-0.658 0.590-0.641 0.806-0.830 0.833-0.853 0.836-0.849 0.609-0.586 0.743-0.750 0.850-0.852 0.853-0.851 0.858-0.855

Putamen 0.741-0.756 0.772-0.762 0.814-0.832 0.834-0.861 0.887-0.893 0.567-0.624 0.787-0.797 0.841-0.844 0.865-0.862 0.867-0.866

Pallidum 0.680-0.691 0.679-0.700 0.730-0.746 0.738-0.748 0.802-0.805 - - - - -

Hippocampus 0.559-0.596 0.568-0.532 0.736-0.726 0.774-0.758 0.814-0.806 0.238-0.387 0.749-0.759 0.838-0.832 0.834-0.829 0.849-0.846

Amygdala 0.639-0.615 0.538-0.494 0.656-0.612 0.678-0.657 0.722-0.709 - - - - -

Average 0.680±0.069 0.658±0.114 0.770±0.084 0.793±0.080 0.827±0.064 0.508±0.155 0.764±0.022 0.843±0.007 0.849±0.014 0.857±0.009
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(a) Effects of Gaussian kernel values with PBL

(b) Effects of pre-selected atlas nodes with PBAF

Fig. 12. Parameters selection for compared methods, measured with DC.

during evaluation. BrainSuite first runs surface/volume regis-
tration using the high-resolution (0.5mm×0.5mm×0.8mm)
BCI-DNI brain atlas and then warps the label map from the
atlas to the target image. Besides the reference BrainSuite and
the baseline majority voting (MV), the comparison with the
conventional patch-based label fusion (PBL) [10] has been
made for evaluation. Considering multiple features employed
in the proposed method, it was also compared with the state-
of-the-art method – patch-based label fusion with augmented
features (PBAF) [17]. In addition to intensity information, the
spatial and context features are also appended for label fusion
in PBAF. The implementations of PBL and PBAF provided
by [17] were used in the experiments. To keep consistent in
the evaluation, the patch size for PBL and PBAF was set to
5× 5× 5 and the size of search volume was set to 9× 9× 9.
For PBL, the key parameter is the Gaussian kernel value
and it was tested from {1, 10, 100, 1000, 10000, 100000} on

two databases, measured with DC. From Fig. 12(a), it can
be observed that 10 and 10000 gives the best performance
on IBSR and LPBA40 respectively. For PBAF, the parameter
setting of pre-selected atlas nodes amount was tested from
{2, 16, 32, 64, 128, 256, 512} on two databases. Fig. 12(b) in-
dicates that 128 can obtain the best result and the accuracy
starts to decrease a little after the peak.

The quantitative segmentation results on two databases
generated with our method and compared methods are listed
in Table IV, with highest DC values written in Red. For the
six subcortical structures delineated in the IBSR database, the
accuracy on the left and right subcortical structures are listed
respectively, separated by hyphen. The segmentation quality
with available subcortical structures on the LPBA40 database
is also reported in this Table. Although BrainSuite utilizes a
high-resolution atlas, those patch-based methods (PBL, PBAF
and our method) which rely on the low-resolution atlases
inside the database, obtain much better performances. When
compared with the baseline MV, our approach can create the
considerable increase of 16.7 % and 9.3% respectively on
two databases. The proposed method can still outperform the
preeminent label fusion method PBAF by 3.2% and 0.8%.

In Fig. 13, we also present some visual results of 2D slices
selected from 3D brain MR image volumes. Each row shows
the original intensity slice, its corresponding ground truth, the
segmentation results generated with compared methods and
our method. The figures in the upper 3 rows are selected
from IBSR database and those in the bottom 2 rows are
from LBPA40 database. The first column (a) displays the 2D
intensity slices from brain MR images, with the ground truth
shown in column (b) for reference. The segmentation results
generated with MV, PBL, PBAF and our method are shown
in column (c) to (f). It can be observed that our method can
obtain better segmentation quality. As compared with MV, the
shapes of labeled subcortical structures by our method are
closer to the ground truth. For the labeling results of the patch-
based methods PBL and PBAF, some structures have isolate
segments and the structural boundaries are relatively rough as
compared with those of our method.
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(a) (b) (c) (d) (e) (f)

Fig. 13. Visual segmentation results of 2D slices selected from 3D brain image volumes. Each row presents the original intensity slice, corresponding ground
truth, the segmentation results generated with our method and other compared methods. The figures in the upper 3 rows are selected from IBSR database and
those in the bottom 2 rows are from LBPA40 database. (a) 2D intensity slices from brain MR images; (b) Ground truth for reference; (c) Majority voting;
(d) Patch-based label fusion (PBL); (e) Patch-based label fusion with augmented features (PBAF); (f) Our method.

C. Further Discussion

There is an underlying assumption for the proposed Feature
Sensitive Label Prior (FSLP): distinct features can assist the
segmentation in a complementary way. To test the effects of
utilizing multiple features, we compare the preliminary FSLP
results with the label fusion using structural signature alone,
as displayed in Fig. 14. In FSLP, besides the discriminative
feature – structural signature extracted by CNN, the less dis-
criminative features – intensity and gradient are also employed
during label fusion. To further evaluate our feature sensitivity
strategy, we also compare with the label fusion using fixed
uniform feature coefficients, i.e., α1 = α2 = α3, and the
results with equal weights (EW) are included in Fig. 14.
These results demonstrate that embracing distinct features can
yield better performance and the feature sensitivity strategy
can consistently improve the segmentation quality. It is noting
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Fig. 14. Comparison of the segmentation results on IBSR database using
structural signature (extracted by CNN) alone, multiple features with equal
weights (EW) and Feature Sensitive Label Prior (FSLP), measured with DC.
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that FSLP is a general method to capture label prior from
multiple features and its usage is not limited to the three kinds
of features. Other features, such as Local Binary Pattern (LBP)
[42] or Histogram of Oriented Gradients (HoG) [43], can be
also encoded in FSLP to improve the performance.

For the computation cost of the proposed method, there
are four main components to be considered: feature gener-
ation, feature matching, FSLP and label fusion with Random
Walker. During feature generation, three kinds of features
are generated: intensity, gradient and structural signature. The
complexity of intensity and gradient extraction is O(dN),
where d is the feature length. As for the structural signature,
it only needs one forward pass through the CNN network
to obtain the feature vector. As discussed in Section II-B,
the feature matching process is carried out with the efficient
randomized k-d tree algorithm. The FSLP is a non-convex
problem and one heuristic approach is designed for it by
alternately solving two convex problems. Given that the value
of objective function will decrease strictly during each iter-
ation and this non-singular function is lower-bounded by a
finite value, the heuristic approach will converge after several
iterations [44]. As both two convex problems (least square and
quadratic programming) can be solved efficiently, the process
to estimate FSLP can be finished in a short time. The last
step is the label fusion with Random Walker, which is a
discrete Dirichlet problem and can be solved efficiently using
the Laplacian equation with the Dirichlet conditions. In total,
the running time for labeling one sub-cortical structure in one
target image is around 1.5 minutes using the proposed label
fusion method (on a 3.1GHz, Quad-Core CPU with 8GB RAM
machine), as compared with 10 minutes using PBAF.

Besides the volume overlap measurement Dice Coefficient
(DC), we also evaluate the segmentation quality on IBSR
database with one distance measurement – Hausdorff Distance
(HD). The segmentation results of six subcortical structures
are shown in Fig. 15, measured with HD. Although PBL can
obtain higher DC values than MV, its performance is a little
worse when measured with HD. This phenomenon may be
caused by the lack of label consistency within the subcortical
structures, as many holes and outliers exist in the labeled
region (as shown in Fig. 13(d)). The results measured with
HD demonstrate that our method can still obtain competitive
performance as compared with the state-of-the-art methods.

In the proposed method, we collect FSLP from atlases to
capture the relationships between local intensity profiles and
tissue labels, and utilize anatomical priors from target image
to assist graph-based label fusion. To check the effects of two
priors in detail, the preliminary segmentation with FSLP is
estimated and compared with the result after label fusion.
Based on Equation (7), the intermediate labeling result by
FSLP can be generated by assigning labels to pixels with
minimum reconstruction error. The comparison has been car-
ried out on IBSR database, with quantitative results measured
with DC. Fig. 16 indicates that embracing anatomical priors
during label fusion can bring consistent improvements for the
labeling of each subcortical structure. Some visual segmenta-
tion results for each subcortical structure on IBSR database
are displayed in Fig. 17. Each row presents the 3D labeled
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Fig. 15. Segmentation quality on IBSR database, measured with HD.
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Fig. 16. Comparison of the labeling result generated with FSLP and the
complete proposed method on IBSR database, measured with DC.

volumes provided by ground truth for reference, intermediate
labeling by FSLP and the final segmentation after graph-based
label fusion with anatomical priors. As shown in column (b),
the labeling result by FSLP also suffers from the holes and
outliers problems (Red Circles) as conventional patch-based
methods. By introducing anatomical priors as graph seeds
and lattice connections to enforce label consistency, although
there are still some defects, the structural boundary becomes
more smooth and the segmentation quality can be improved
significantly as shown in column (c). The graph-based label
fusion with Random Walker is an essential component in the
proposed method, which can be also utilized to improve the
labeling result by other conventional patch-based methods in
the future.

IV. CONCLUSION

In this paper, a novel framework for atlas-based image
segmentation is proposed. It can effectively encode both the
label priors from atlases and anatomical prior from the target
image. Three kinds of features are employed to represent
a pixel, including conventional intensity values and gradient
magnitudes, together with the newly designed structural sig-
nature.

Besides the FSLP from atlases, the anatomical prior from
the target itself is also employed for final label estimation. The
label fusion process is formulated on a graph with Random
Walker, with priors encoded as edge weights. Although
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Fig. 17. Some visual segmentation results of each subcortical structure on IBSR database. Each row presents the 3D labeled volumes for one selected
subcortical structure. (a) Ground truth for reference; (b) Intermediate labeling result by FSLP; (c) Final segmentation after graph-based label fusion with
anatomical priors.
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atlas seeds involved in graph construction, an equal but
simpler graph can be inferred which just relies on nodes from
target image. The iterative strategy is employed to update
the target label map gradually. The proposed framework
has been compared with other state-of-the-art methods for
comprehensive evaluation and experimental results indicate
that it can obtain better label fusion quality consistently on
two publicly available databases.

APPENDIX

Proof of Non-convexity
To demonstrate the non-convexity of Equation (3), one

simple instance is first proven to be non-convex and then it can
be derived that the original is also non-convex. Considering
this simplified scenario – the length of each feature vector is
1, the formulation of Wα becomes

Wα =

 α1 0 0
0 α2 0
0 0 α3

 .
By defining a new variable f = y−Aβ =

 f1
f2
f3

, the format

of the initial problem turns into:

min E = α2
1f

2
1 + α2

2f
2
2 + α2

3f
2
3 + λ(α2

1 + α2
2 + α2

3),

s.t.
∑
i

αi = 1, αi ≥ 0. (12)

Let us consider a special case f1 = f2 = f3 = f∗ and use
η2 to represent α2

1 +α2
2 +α2

3 for simplification. Equation (12)
can be rewritten as follows:

min E = η2f2∗ + λη2,

s.t. 0 ≤ η2 ≤ 1.
(13)

Given the constraints
∑
i αi = 1 and αi ≥ 0, the range of η2

becomes 0 ≤ η2 ≤ 1. If the special case shown in Equation
(13) is non-convex, it can be inferred that Equation (12) is
also non-convex. For this special case, it is much easier to
determine whether it is convex or not. A problem is convex if
and only if its Hessian matrix is positive semidefinite [45]. The
Hessian matrix of Equation (13) can be calculated as follows:

H =

[
∂2E
∂η2

∂2E
∂η∂f∗

∂2E
∂f∗∂η

∂2E
∂f2

∗

]
=

[
2f2∗ + 2λ 4f∗η

4f∗η 2η2

]
(14)

If H is positive semidefinite, all of its eigenvalues have to be
non-negative. The determinant of H − γI is:

det(H − γI) = γ2 − 2(f2∗ + η2 + λ)γ + 4λη2 − 12f2∗η
2.

The eigenvalues of H are

γ = (f2∗ + η2 + λ)±
√

(f2∗ + η2 + λ)2 − (4λη2 − 12f2∗η
2).

As it is not guaranteed that λ > 3f2∗ , one negative eigenvalue
can appear. In this case, the Hessian matrix is not positive
semidefinite and the special case shown in Equation (13) is
non-convex. It can be inferred that the original Equation (3)
is also a non-convex problem.

REFERENCES

[1] B. Fischl, “Freesurfer,” Neuroimage, vol. 62, no. 2, pp. 774–781, 2012.
[2] D. W. Shattuck and R. M. Leahy, “Brainsuite: an automated cortical

surface identification tool,” Medical image analysis, vol. 6, no. 2, pp.
129–142, 2002.

[3] R. Goebel, F. Esposito, and E. Formisano, “Analysis of functional
image analysis contest (fiac) data with brainvoyager qx: From single-
subject to cortically aligned group general linear model analysis and
self-organizing group independent component analysis,” Human brain
mapping, vol. 27, no. 5, pp. 392–401, 2006.

[4] D. Geffroy, D. Rivière, I. Denghien, N. Souedet, S. Laguitton, and
Y. Cointepas, “Brainvisa: a complete software platform for neuroimag-
ing,” in Python in neuroscience workshop. Euroscipy, Paris, 2011, pp.
15–16.

[5] J. A. Schnabel, D. Rueckert, M. Quist, J. M. Blackall, A. D. Castellano-
Smith, T. Hartkens, G. P. Penney, W. A. Hall, H. Liu, C. L. Truwit et al.,
“A generic framework for non-rigid registration based on non-uniform
multi-level free-form deformations,” in Med. Image Comput. Computer-
Assist. Intervent. Springer, 2001, pp. 573–581.

[6] J. Ashburner and K. J. Friston, “Nonlinear spatial normalization using
basis functions,” Human Brain Mapping, vol. 7, no. 4, pp. 254–266,
1999.

[7] B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, “Symmetric
diffeomorphic image registration with cross-correlation: evaluating au-
tomated labeling of elderly and neurodegenerative brain,” Med. Image
Anal., vol. 12, no. 1, pp. 26–41, 2008.

[8] A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-
C. Chiang, G. E. Christensen, D. L. Collins, J. Gee, P. Hellier et al.,
“Evaluation of 14 nonlinear deformation algorithms applied to human
brain mri registration,” NeuroImage, vol. 46, no. 3, pp. 786–802, 2009.

[9] M. R. Sabuncu, B. T. Yeo, K. Van Leemput, B. Fischl, and P. Golland,
“A generative model for image segmentation based on label fusion,”
IEEE Trans. Med. Imag., vol. 29, no. 10, pp. 1714–1729, 2010.
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