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Abstract. The emerging era of ultra-high-field MRI using 7T MRI
scanners dramatically improved sensitivity, image resolution, and tis-
sue contrast when compared to 3T MRI scanners in examining vari-
ous anatomical structures. The advantages of these high-resolution MR
images include higher segmentation accuracy of MRI brain tissues. How-
ever, currently, accessibility to 7T MRI scanners remains much more
limited than 3T MRI scanners due to technological and economical con-
straints. Hence, we propose in this work the first learning-based model
that improves the segmentation of an input 3T MR image with any con-
ventional segmentation method, through the reconstruction of a higher-
quality 7T-like MR image, without actually acquiring an ultra-high-field
7T MRI. Our proposed framework comprises two main steps. First, we
estimate a non-linear mapping from 3T MRI to 7T MRI space, using
random forest regression model with novel weighting and ensembling
schemes, to reconstruct initial 7T-like MR images. Second, we use a
group sparse representation with a new pre-selection approach to further
refine the 7T-like MR image reconstruction. We evaluated our 7T MRI
reconstruction results along with their segmentation results using 13 sub-
jects acquired with both 3T and 7T MR images. For tissue segmentation,
we applied two widely used segmentation methods (FAST and SPM) to
perform the experiments. Our results showed (1) the improvement of
WM, GM and CSF brain tissues segmentation results when guided by
reconstructed 7T-like images compared to 3T MR images, and (2) the
outperformance of the proposed 7T MRI reconstruction method when
compared to other state-of-the-art methods.

1 Introduction

In the past years, a number of methods have been proposed to improve the
segmentation of MR brain images into different tissues such as white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF). However, besides the
robustness and good accuracy of the used segmentation tools, the quality of
the MR images highly affects image segmentation quality. Recently, numerous
improvements have been proposed in strengthening the magnetic field of Mag-
netic Resonance Imaging (MRI) to obtain higher quality MR images. This has
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led to the emergence of ultra-high-field (7T) MR images that yield better seg-
mentation results in comparison to the routine 3T MRI, as can be observed in
Fig. 1. This can be explained by the increase in the resolution of 7T MRI com-
pared to 3T MRI. Also, 7T MRI has higher sensitivity to tissue changes and
anatomical details, thereby generating higher tissue contrast and clearer WM,
GM, and CSF tissue boundaries [1,2]. However, 7T MRI scanners are currently
more expensive and less available in hospitals and clinical centers, and thus the
majority of MR images are still acquired using routine 3T MRI scanners. In this
paper, we take on a new perspective for improving brain tissue segmentation by
reconstruction of 7T-like images from 3T MR images.

Fig. 1. (a) 3T MRI and (b) 7T MRI of the same subject, together with their segmen-
tation results. 7T shows better segmentation quality when compared with 3T.

The recent advances in the development of learning-based sparse representa-
tion methods result in the reconstruction of high-resolution (HR) images from
low-resolution (LR) images using paired LR and HR dictionaries, so that the
high-frequency details lost in the LR image can be predicted from the corre-
sponding HR dictionaries [3]. HR reconstruction from different image modalities
was also investigated in [4], where they introduced a MR image example-based
contrast synthesis (MIMECS) approach based on sparse representation. How-
ever, the learning-based sparse representation methods assume a high correla-
tion between LR and HR images, which may not be completely valid in practice.
To address this problem, Bahrami et al. [5] proposed multi-level canonical cor-
relation analysis (CCA) transform, called M-CCA, to increase the correlation
between LR and HR spaces. However, as a linear transformation, CCA may not
necessarily capture the non-linear nature of the mapping from LR to HR space.

In our paper, to overcome the problem of the large distribution gap between
LR (3T) and HR (7T) spaces, we propose a two-step framework. In the first
step, we generate a non-linear mapping from 3T to 7T MRI using random forest
(RF) regression to produce the initial 7T-like images with higher correlation and
similarity to the ground-truth 7T MRI. However, solely relying on RF non-linear
mapping may lead to fuzzy results due to the averaging operation across different
trees of RF. So, in the second step, we use a sparse representation between
the initial 7T-like images (i.e., outputted by the RF) and the ground-truth 7T
MRI to produce the final high-quality 7T-like image, which can be inputted to
any segmentation algorithm for tissue segmentation. Our key contributions are
as follows: (1) We proposed a framework, which capitalizes on a high-quality
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reconstruction of 7T-like image, for improving 3T MR image segmentation. (2)
We combined RF non-linear mapping with sparse representation to reconstruct
the 7T-like images in two steps. Such framework addresses the flaws of both
RF and SR. Particularly, the main flaw of RF’s mapping is that it causes fuzzy
results, due to the built-in averaging of the 7T patches. The key flaw of SR
resides in the estimated sparse coefficients in the 3T space that are then directly
applied to the 7T space; however, this may not be true due to large distribution
gap between 3T and 7T image spaces. (3) For the RF, we introduced a weighting
scheme by assigning higher weights to the more representative training samples
and also a new ensembling strategy based on the distribution of the outputs
of the training trees to remove outliers and avoid unreliable RF contributions.
(4) For the sparse representation, we proposed a novel pre-selection scheme and
also incorporated group-sparsity to share the sparsity among the outputs of RF
regressions for a more reliable and accurate 7T-like image reconstruction.

2 Materials and Methods

2.1 MRI Dataset and Preprocessing

We used a dataset of 13 subjects acquired with both 3T and 7T MR images,
with respective resolutions of 1×1×1 mm3 and 0.65×0.65×0.65 mm3. First, we
corrected the bias field of each image followed by performing the skull stripping
to remove non-brain tissues. Afterwards, all 7T images were linearly aligned to
the MNI space guided by an individual template. Then, each 3T MRI was rigidly
aligned to its corresponding 7T MRI.

2.2 Method

Figure 2 shows the conventional segmentation (top) v.s. our proposed method
(bottom), which includes (1) the initial RF-based reconstruction, and (2) the
sparse reconstruction-based refinement steps. In the following sections, these
steps are explained in details.

2.2.1 RF-based Initial Reconstruction
In this step, the objective is to produce the initial 7T-like images with higher
correlation and similarity to the ground-truth 7T MRI. Using the dataset of
N = 13 pairs of 3T and 7T MR images, we use a leave-one-out strategy to use
one pair for testing, and the remaining N − 1 = 12 pairs for the training. First,
using the training set, we generate non-linear mappings between the training 3T
MR and 7T MR images based on random forest (RF). To do so, we apply the
leave-one-out strategy to the training dataset (N −1 images) to learn a mapping
for each training 3T image by using the remaining N − 2 training images. Each
resulted mapping is used to generate the initial 7T-like training image from each
3T training image. Finally, we respectively apply the learned mappings to the
testing 3T image to construct N − 1 initial 7T-like testing images.
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Fig. 2. (a) Conventional segmentation. (b) Our proposed 7T-Guided learning frame-
work for the reconstruction of 7T-like images from 3T MRI to improve segmentation. In
RF-based initial reconstruction, a leave-one-out cross-validation on the N − 1 training
images generates N−1 learned mappings and also N−1 initial 7T-like training images.
The N−1 learned mappings are also applied to each input 3T image to generate N−1
initial 7T-like testing images. Red dashed and blue solid arrows indicate the testing
and training steps, respectively.

RF has been widely used for classification and regression problems [6]. In
this work we use RF for regression by mapping the input feature space onto the
output target value space, where each input feature vector represents a vectorized
3T MRI patch and the output target value represents the voxel intensity in the
corresponding 7T MRI patch. To map the 3T onto the 7T space at a given voxel
location, we need to construct the 3T and 7T dictionaries. We define x to be
a column vector representing a 3T patch of size m × m × m extracted from
the input 3T MR image X. Then, for each 3T patch x, we build both local 3T
and 7T dictionaries (D3T and D7T ) by extracting the overlapped patches at the
same location and also neighboring locations within a search window of size W
from all N − 1 pairs of aligned 3T and 7T training MR images.

Weighting Scheme. In the traditional RF regression, all the patches in the
local dictionary are assumed to equally contribute to the generation of the map-
ping. However, in practice, the patches in the local dictionary may not have the
same importance in the estimation of the mapping from 3T to 7T images. Here,
we propose a weighting scheme to address this problem. Let u ∈ D3T be an
input feature vector and v ∈ D7T its corresponding target values for regression.
RF regression generates a mapping from the atoms of D3T to the atoms of D7T .
Hence, we define a weighting scheme for the patches in the local dictionary based
on their similarity to the input 3T patch. To calculate the weights, we define an
exponential function using L2-norm distance between the input 3T patch x and
each atom u in D3T , as w = exp(− ||x−u||22

h ), where h is used for adjusting the
weight decay speed and is calculated based on the variance of the distribution
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of the similarity between the input 3T patch x and each atom u. To apply this
weighting scheme, first, for each atom u in D3T , we normalize the weight w to be
an integer in the range of [0, 5]. Then, proportionally to the weight, we replicate
the training patches in the dictionary. In such case, the patches with higher sim-
ilarity to the input patch will be largely replicated in the trees, thereby highly
affecting the final RF result.

Averaging-Voting Ensembling. In the RF, the feature vector of each 3T
intensity patch passes through each tree, and finally reaches one particular leaf
node per decision tree. To derive the final prediction result, the traditional
approach averages all the training samples in the arrived leaf nodes across all
decision trees. However, this ensemble method may not be sufficiently robust
and accurate, especially when there are some outliers or large variations in the
outputs of different decision trees. To address this problem, we propose a new
ensemble model, called averaging-voting ensembling, to reduce the effect of the
outliers and unreliable results. Specifically, in our approach, we first split all
T trees into G groups T1, ..., TG using K-means clustering per patch. To do
so, the feature vector of the 3T image patch passes through each tree, and
reaches one particular leaf node per decision tree. We use the target value
of that leaf node as a feature to categorize trees into groups. Then, for each
group g (g = 1, ..., G), we estimate its output initial 7T-like intensity value, as
yg = 1∑

t∈Tg
Lt

∑
t∈Tg

∑
l∈{1,...,Lt} vt

l , where vt
l denotes the 7T MRI voxel value of

the l-th training sample contained in the arrival leaf node of decision tree t ∈ Tg

of the g-th group, and Lt is the number of training samples contained in the
arrival leaf node of the decision tree t. Next, we generate a histogram with B
bins to estimate the distribution of the outputted values by all groups of decision
trees. Finally, we output 7T-like intensity value by the bin with maximum count,
which denotes the value that the majority of groups of trees produced.

2.2.2 Sparse Reconstruction-Based Refinement
Using the generated N − 1 initial 7T-like testing images by RF, the goal in
this step is to reconstruct the final 7T-like image from all initial 7T-like testing
images based on group sparsity. Hence, we build a local dictionary D′

7T for each
patch by extracting the patches from all the initial 7T-like training images using
a search window around the same location.

Clustering-based Pre-selection. In the local dictionary, all patches may
not necessarily have the same importance in representing the input 3T patch.
To select the best patches, we propose a method based on K-means clus-
tering to divide the local dictionary D′

7T into P local sub-dictionaries D′
7T,p

(p = 1, ..., P ) by minimizing the intra-cluster variance. In our method, we use
both LR and HR patches as input features for clustering the local dictionary into
local sub-dictionaries. In such case, we exploit the high-quality 7T patches to
improve the clustering results. Correspondingly, we divide D7T into P local sub-
dictionaries D7T,p (p = 1, ..., P ) using the same indices as D′

7T,p. In this way, P

paired local sub-dictionaries {D′
7T,p,D7T,p}Pp=1 are established. Then, the local
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sub-dictionary whose elements have the minimum L2-norm distance to the ini-
tial 7T-like patch is selected for the sparse representation of the initial 7T-like
patch, denoted as D′

7T,pmin
(pmin ∈ {1, ..., P}). Different from the previous pre-

selection methods, which often use only the similarity of the training LR patches
to the input LR patch, we benefit from the high-quality HR patches for better
pre-selection by using both LR patches and HR patches as input features to
cluster each local dictionary into local sub-dictionaries.

Group Sparse Representation. In the case of using sparse representation,
each initial 7T-like image patch denoted as y can be sparsely represented using
the local sub-dictionary D′

7T,pmin
via α̂ = arg min||y − D′

7T,pmin
α||22 + λ||α||1,

where pmin ∈ {1, ..., P} as mentioned above and α̂ is the column vector of the
sparse coefficients. Then, the estimated α̂ can be utilized to reconstruct the
final 7T-like patch, as z = D7T,pmin

α̂. Different from the previous methods,
here we incorporate N − 1 initial 7T-like testing images, denoted as Yi(i =
1, ..., N−1), to reconstruct the final 7T-like image Z. To do so, instead of sparsely
representing every initial 7T-like patch independently, we incorporate the group
sparsity using all initial 7T-like testing patches to allow them to share the same
sparsity, thereby making the local structure consistent for the reconstructed
patches. We reformulate the sparse representation to have group sparsity as
Â = arg min

∑N−1
i=1 ||yi − D′

7T,pmin,iαi||22 + λ||A||2,1, where the first term is a
multi-task least square minimizer for N − 1 patches from N − 1 initial 7T-like
testing images Yi, with D′

7T,pmin,i, yi, and αi denoting the initial local 7T sub-
dictionary, a patch of the image Yi, and sparse coefficient vector of the i-th
patch in the group, respectively. The second term is a regularizer, which is a
combination of L1 and L2 norms on Â = [α1, ...,αN−1], where each column
of Â includes the sparse coefficients of a patch in the group. The L2 norm is
imposed on each row of Â for making the patches at the same location have
similar sparsity, while imposing the L1 norm on all rows of Â to make them
sparse.

3 Experimental Results

We evaluated our method for the 7T-like image reconstruction and segmenta-
tion of the reconstructed 7T-like images into WM, GM, and CSF tissues. We
compared the segmentation results based on 3T MRI and the reconstructed
7T-like images by different methods, including histogram-based, sparse repre-
sentation [3], random forest [6], MIMECS [4] and M-CCA [5] and our method.
We employed widely-used FAST in FSL package [7] and SPM [8] for tissue seg-
mentation, where the segmentation result of 7T MR images is considered as
ground-truth. For all the methods, we evaluated and reported the best results
based on a grid search on the parameters. E.g., we used 100 trees in the random
forest regression. For the averaging-voting ensembling, we used the K-means
clustering with G = 10 clusters and the histogram with B = 5 bins. For sparse
representation, we set λ = 0.1 and the K-means clustering with P = 5 clusters
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Fig. 3. (a) Visual and numerical (average PSNR across subjects) comparison of the
reconstructed 7T-like MR images by different methods. (b) and (c) are segmentations
of 3T, the reconstructed 7T-like MR images by different methods, and ground-truth
7T MRI by FAST and SPM methods, respectively.

(a) GM (b) WM (c) CSF

(d) GM (e) WM (f) CSF

Fig. 4. Box plot of the average Dice ratio of (a)-(c) FAST and (d)-(f) SPM methods in
segmentation of 3T MRI and also the reconstructed 7T-like MR images by histogram-
based, sparse representation, Random Forest, MIMECS, M-CCA and our method.

for dividing the local dictionary into local sub-dictionary. We chose a patch size
of 5 × 5 × 5 and a search window size of 9 × 9 × 9.
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Figure 3 compares the reconstruction and segmentation results of our method
and the previous methods. Compared to the previous methods, our method
has better visual and numerical reconstruction results as reflected by the aver-
age PSNR value across subjects (Fig. 3 (a)). We evaluated the impact of
RF (Random Forest), SR (Sparse Representation), WI (Weighted Input), AV
(Averaging-Voting), CP (Clustered-based Pre-selection), GS (Group Sparsity)
on performance of our method. The performance improvement in terms of aver-
age PSNR includes, RF+SR: 24.9; RF+SR+WI: 25.2; RF+SR+WI+AV: 25.6;
RF+SR+WI+AV+CP: 25.8; RF+SR+WI+AV+CP+GS: 26.1, which reveals
the importance of the proposed contributions.

Figure 3 (b) and (c) display the segmentation results using FAST and SPM,
respectively, together with the close-up views of selected regions, for 3T MRI,
the reconstructed 7T-like images by different methods, and the ground-truth 7T
MRI. Compared to 3T MRI, the segmentation result by our method is much
closer to the segmentation of the ground-truth 7T MRI. Also, our method has
better WM, GM, and CSF brain tissue segmentation results than those using
other 7T MRI reconstruction methods. For a quantitative comparison, the aver-
age Dice ratio of segmentation maps for WM, GM, and CSF for all 13 subjects
based on FAST and SPM methods are displayed in Fig. 4 (a)-(c) and (d)-(f),
respectively. Generally, our method has superior results compared to the previ-
ous reconstruction methods (p < 0.01 by two-sample test), and our segmentation
results outperformed the direct segmentation results from 3T MRI.

4 Conclusion

We proposed a learning framework for reconstructing 7T-like MR image from 3T
MRI to improve the segmentation accuracy of brain tissues using any conven-
tional segmentation method. The experimental results showed that our proposed
method outperformed the previous 7T-like MRI reconstruction methods both
visually and numerically. Furthermore, our reconstructed 7T-like MR images led
to significantly higher accuracy of WM, GM, and CSF brain tissue segmenta-
tions compared to directly using 3T MRI. Although we used FAST and SPM for
segmentation, one could combine our framework with any segmentation method
for better segmenting tissues from 3T MRI.
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