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Abstract. In this paper, we demonstrate that image reconstruction can
be expressed in terms of neural networks. We show that filtered back-
projection can be mapped identically onto a deep neural network archi-
tecture. As for the case of iterative reconstruction, the straight forward
realization as matrix multiplication is not feasible. Thus, we propose to
compute the back-projection layer efficiently as fixed function and its
gradient as projection operation. This allows a data-driven approach for
joint optimization of correction steps in projection domain and image
domain. As a proof of concept, we demonstrate that we are able to learn
weightings and additional filter layers that consistently reduce the recon-
struction error of a limited angle reconstruction by a factor of two while
keeping the same computational complexity as filtered back-projection.
We believe that this kind of learning approach can be extended to any
common CT artifact compensation heuristic and will outperform hand-
crafted artifact correction methods in the future.

1 Introduction

X-ray computed tomography scanning has become a standard procedure in diag-
nosis of certain diseases or trauma. In virtually every scanning system heuristic
steps exist to compensate for artifacts from scatter, beam-hardening, or other
sources of artifacts. A simple heuristic approach for compensation of limited
angle artifacts is shown in the work of Riess et al. [9]. The method introduces
heuristic compensation weights for the filtered back-projection (FBP) algorithm
that reduce the loss in mass from the reduced number of views. While demon-
strating significant improvements in image quality, the approach lacks any the-
oretical guarantees for the weighting procedure. The approach is one amongst
many “hand-crafted” artifact reduction methods.

Neural networks have been employed for reconstruction. Argyrou et al. [1]
already show an approach of learning 2-D reconstruction with a zero hidden layer
neural network. The main disadvantage of their approach is the large number of
synapses required. Thus, this method methods requires an impractical amount
of memory and training examples and an extension to 3-D seems impossible.

Recent developments in deep learning also suggest that deeper architectures
should be explored and regularization is necessary for training such networks. A
method presented by Cierniak [2] uses a back-projection then filtering approach
and employs a Hopfield neural network to solve the image deblurring problem.
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This approach bypasses the problem of too many parameters by fixing them
in the back-projection step and degenerates the reconstruction problem to an
image-based filtering approach.

A different approach by de Medeiros et al. [6] exploits the sparsity of the
back-projection matrix to fit it into memory. However, this approach is not able
to involve any training since the sparse structure would be undone in the training
step.

In MRI-reconstruction Hammernik et al. [5] have shown an approach of learn-
ing sparsifying transforms and potential functions.

In this paper, we propose a fully differentiable back-projection layer for
parallel-beam and fan-beam projection as well as a weighting layer. This enables
various neural network architectures for reconstruction to be trained end-to-
end. The distinctive advantage of our approach is that we are also able to learn
heuristics that are applied in the projection domain before back-projection. This
way we can replace heuristic correction methods with learned optimal solutions.
Also we can jointly optimize different correction methods to improve their results
when applied simultaneously. We present an example where we jointly optimize
compensation weights, the reconstruction filter and a non-linear image filtering
algorithm. In addition we propose a method for regularizing the optimization by
pre-training. We evaluate our method using realistic data.

2 Methodology

We first describe the mapping of a filtered back-projection algorithm to a basic
neural network architecture for reconstruction in Sect. 2.1. For this architecture
we derive the forward and backward computation of our novel back-projection
layer, cf. Sect. 2.2). In Sect. 2.3 we extend the architecture to fan-beam recon-
struction by deriving a novel weighting layer that implements the special topol-
ogy of this operation. and a fan-beam layer (Sect. 2.3). Eventually, we evaluate
these architectures in Sect. 2.5).

2.1 Mapping FBP to Neural Networks

The input-vector x to the neural network corresponds to the whole sinogram,
while the output-vector y corresponds to the whole reconstruction. As loss func-
tion every regression loss function is applicable, e. g., the l2 norm: ‖x − y‖2.
The filtering is a convolution with a high pass filter and can directly be mapped
to a convolutional layer. Typically, convolutional layers in neural networks use
comparably small filter kernels which are calculated in spatial domain. In com-
parison, a convolution in the Fourier domain is advantageous for reconstruction
because (i) the high pass filters have infinite support, thus, they are as large as the
number of detector pixels, and (ii) reduce computational complexity. Rectified
linear units (ReLU) as non-linear activation functions can enforce the constraint
of non-negativity of the reconstruction. As last step back-projection has to be
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mapped to a layer in a neural network. We begin with the discrete formulation
of FBP:

f(u, v) ≈ π

N

N∑

n=1

q(u cos(θn) + v sin(θn), θn) , (1)

where f(u, v) denotes the function to be reconstructed, s is a position on the
detector, N denotes the number of projections and q(s, θn) denotes the filtered
projections. Since we sample the function q(s, θn) only at discrete positions of s
(denoted as qm,n), a one-dimensional interpolation has to be performed, i. e.,:

f(u, v) ≈ π

N

N∑

n=1

M∑

m=1

wm(u, v, θn) · q�u cos(θn)+v sin(θn)−M+2
2 +m�,n, (2)

where wm(u, v, θn) are the interpolation weights and M is an even integer denot-
ing the number of interpolation coefficients.

A well known activation model of a neuron is [3]:

f(yi) = f

(
N∑

j=1

wijxj + wj0

)
. (3)

When we set our activation function to be the identity f(x) = x and all bias
weights wj0 to zero it follows f(yi) =

∑N
j=1 wijxj . Let us change the indexation

of f(yi) to f(xi, yj) which denotes a pixel of a reconstruction of Size I × J .
Similarly we change the indexation of x to that of the filtered sinogram qm,n:

f(xi, yj) =
N∑

n=1

M∑

m=1

wi+(j−1)·I,m+(n−1)·M · qm,n. (4)

We can compute Eq. (2) only at some discrete u, v positions and choose, without
loss of generality, the interpolation size big enough to cover the length of the
detector by zero-padding the signal as needed.

f(ui, vj) ≈ π

N

N∑

n=1

M∑

m=1

wm(ui, vj , θn) · qm,n (5)

Equation (5) is equivalent to Eq. (4) if we choose:

wi+j·I,m+(n−1)·M =
π

N
wm(ui, vj , θn). (6)

This general result holds for arbitrary interpolation techniques. The most impor-
tant case being the linear interpolation which will yield only up to two non-zero
coefficients for every M interpolation coefficients resulting in an extremely sparse
matrix.
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Fig. 1. Parallel-beam neural network architecture

Plugging in our convolution layer, the output for our neural network archi-
tecture is finally calculated as:

f(xi, yj) = max

[
0,

N∑

n=1

M∑

m=1

π

N
wm(ui, vj , θn) ·

( M/2∑

k=−M/2

wk · pm−k,n

)]
. (7)

This shows that our neural network architecture implements a filtered back-
projection algorithm. Note that the network’s weights for initialization are known
from the original derivation of the filtered back-projection. Figure 1 shows this
basic architecture for parallel-beam reconstruction. We mapped each step of the
FBP algorithm into a corresponding layer.

2.2 Parallel-Beam Back-Projection Layer

To solve the problem of fitting the parameters of the FCL, which represents the
back-projection operator, into memory we propose a novel back-projection layer.
This layer has no adjustable parameters. During the forward-pass of the network
the coefficients wi,j of the matrix Wl are computed, where l denotes the index
of this layer. This is calculated incrementally using the update rule

yl = Wlyl−1 (8)

similar to the traditional back-projector in FBP. Since this layer has no
adjustable weights in its backward pass only the gradient with respect to the
lower layers has to be calculated. For FCLs this corresponds to calculating:

El−1 = WT
l El, (9)

where El−1 represents the error of the next lower layer of the network. Since the
back-projection operator is the transpose of the projection operator [11], one
algorithm for the backward-pass is readily available. An alternative way is to
recalculate the weights as in the forward-pass and apply them to the error.
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Fig. 2. Fan-beam neural network architecture

2.3 Extension to Fan-Beam Reconstruction

The extension of the well known FBP algorithm to the fan-beam projec-
tion model consists of a cosine weighting of the projections and weighted
back-projection. Figure 2 shows this extended architecture for fan-beam
reconstruction.

Weighting Layer. A layer that performs only weighing has the very sparse
structure of a diagonal matrix. This can be exploited to construct a special
weighting layer that enforces sparsity. This layer has exactly N training para-
meters, where N is the dimensionality of the input and output vectors. The
forward-pass can be calculated using Eq. (8) which corresponds to an element-
wise multiplication of the input with the weights. For the backward-pass we
employ Eq. (9). Since WT = W holds for diagonal matrices, the backward-pass
of this layer is an element-wise multiplication of the weights with the error of the
next higher layer. The gradient with respect to the weights of a FCL is calculated
by Gl = Elyl−1 .

Fan-Beam Back-Projection Layer. The derivation of the forward and back-
ward pass of a fan-beam layer is identical to the parallel-beam layer. The weights
are calculated differently and a distance weighting is applied to every element
of the sum [11]. But the backward pass can also be implemented as fan-beam
projection.

2.4 Convergence and Overfitting

The advances in deep learning have shown that regularization is crucial to the
performance of neural networks. Because of the high dimensionality of our recon-
struction networks, regularization is important to achieve convergence and to
prevent overfitting. Popular methods are weight-decay, dropout [10] and pre-
training. Weight-decay is not effective for this learning problem because the
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scaling of the data is crucial when using the l2 norm as a loss function. Dropout
is normally very effective for fully connected layers because it can prevent co-
adaptation of features. However for this large scale regression problem, co-
adaptation is required and all weights depend upon each other. Pre-training
can be applied directly using knowledge of existing FBP algorithms. Discretized
solutions are known for all layers: the convolutional layer uses the ramp filter,
and the weighting layer accounts for cosine-weighting or redundancy weighting.
These initializations can be used for a very effective pre-training.

2.5 Experiments

We present two applications of our proposed neural network architecture. For
both we use slices of reconstructions of real patient data of size 512 × 512.
These slices are downsized by a factor of 0.7 and embedded into a zero image
of the original size to prevent truncation artifacts. We perform a ten-fold cross
validation on 2378 slices of ten different patients.

The presented layers have been implemented with GPU-acceleration using
the Caffe Framework. We also implemented the weight initializations used as
pre-training as so called weight-fillers in the framework. The implementation
will be released upon publication of the paper.

Limited Angle Parallel-Beam Reconstruction. In our first experiment, we
explore improvements of parallel-beam architectures for limited angle reconstruc-
tion with five degree of missing data. We use 175 projections with an angular
increment of one degree. The training target is the original image, which was
used to simulate the projections. Our neural network architecture is the pre-
sented basic architecture for parallel beam reconstruction, with an additional
weighting layer between the filtering and the back-projection operation. Since
the data is incomplete, this problem can only be solved approximately without
any regularizing assumptions. Thus, we place a maxout [4] filtering cascade on
top of the network to introduce a non-linear filtering. We change the reconstruc-
tion filter to a 2D filter with a kernel size of 5. The values of the reconstruction
kernel outside the third column are initialized to zero. The weighting layer is
initialized with every value set to one, while the reconstruction filter is set to the
well known Ramachandran-Lakshminarayan filter [8] discretization. The maxout
network is initialized with Gaussian distributed random values.

Limited Angle Fan-Beam Reconstruction. In the second experiment, we
learn compensation weights for a limited-angle problem with 180 projections
up to 180 degree. We use our basic architecture for fan-beam reconstruction.
The weights of the weighting layer are initialized with the well known Parker
weights [7] multiplied with cosine weights. The reconstruction filter is set to
the Ramachandran-Lakshminarayan filter discretization. As training target we
employ a reconstruction with 360 projections of full scan data. During the train-
ing, only the weights receive a non-zero learning rate.
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3 Evaluation

We found experimentally that the different layers require individual learn-
ing rates. The reconstruction filter was found to be extremely sensitive. The
weighting-layer before the back-projection layer generally tolerates large learn-
ing rates.

For the parallel-beam problem we found Caffe’s “RMSPROP” solver with
the decay of 0.02 effective. The global learning rate was set to 10−6 while the
reconstruction filter’s learning rate had to be set to 10−15 to prevent divergence.
For this problem online training turned out to be more effective than mini-batch
or batch learning. The relative root-mean-square error, averaged over the test
sets, drops from 6.78e−03 % for the classical FBP to only 3.54e−3 %. Hereby,
our method outperforms the conventional FBP with enforcing the non-negativity
constraint for every case by a factor of nearly two.

For the fan-beam experiment, we used Caffe’s “ADAGRAD” solver and
online training. We could set our learning rate for the weighting layer to 2 · 102

without divergent behaviour. The relative root-mean-square error averaged over
the test sets dropped from 5.31e−03 % for FBP to 3.92e−03 % for our method.

Ground Truth FBP NN

Fig. 3. Reconstruction results using 360◦, 180◦ FBP, and 180◦ NN.

Fig. 4. Cross sections through the images of Fig. 3
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Figures 3 and 4 show that the loss of mass could be corrected well, despite the
architecture being equivalent to FBP.

4 Conclusion

We propose to use deep learning techniques to replace heuristic compensation
steps in CT reconstruction. This enables various new architectures which can
account for many artifact types. Evaluations of the reconstruction results show
improved image quality compared to FBP while still retaining the same compu-
tational demands. We could successfully learn compensation layers for limited-
angle tomography. Presumably, most artifact compensation methods in CT can
be mapped to convolutional neural networks which will also enable to learn
scatter compensation and beam-hardening.
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