Skip to main content

Patch Matching with Polynomial Exponential Families and Projective Divergences

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9939))

Abstract

Given a query patch image, patch matching consists in finding similar patches in a target image. In pattern recognition, patch matching is a fundamental task that is time consuming, specially when zoom factors and symmetries are handled. The matching results heavily depend on the underlying notion of distances, or similarities, between patches. We present a method that consists in modeling patches by flexible statistical parametric distributions called polynomial exponential families (PEFs). PEFs model universally arbitrary smooth distributions, and yield a compact patch representation of complexity independent of the patch sizes. Since PEFs have computationally intractable normalization terms, we estimate PEFs with score matching, and consider a projective distance: the symmetrized \(\gamma \)-divergence. We demonstrate experimentally the performance of our patch matching system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://user2015.math.aau.dk/presentations/invited_steffen_lauritzen.pdf.

References

  1. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. (TOG) 28(3), 24 (2009)

    Article  Google Scholar 

  2. Barnes, C., Shechtman, E., Goldman, D.B., Finkelstein, A.: The generalized PatchMatch correspondence algorithm. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 29–43. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15558-1_3

    Chapter  Google Scholar 

  3. Li, Y., Dong, W., Shi, G., Xie, X.: Learning parametric distributions for image super-resolution: where patch matching meets sparse coding. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 450–458, December 2015

    Google Scholar 

  4. Kuglin, C.: The phase correlation image alignment method. In: Proceedings of the International Conference on Cybernetics and Society, pp. 163–165 (1975)

    Google Scholar 

  5. Foroosh, H., Zerubia, J.B., Berthod, M.: Extension of phase correlation to subpixel registration. IEEE Trans. Image Process. 11(3), 188–200 (2002)

    Article  Google Scholar 

  6. Patraucean, V., Gioi, R., Ovsjanikov, M.: Detection of mirror-symmetric image patches. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 211–216 (2013)

    Google Scholar 

  7. Wang, Z., Tang, Z., Zhang, X.: Reflection symmetry detection using locally affine invariant edge correspondence. IEEE Trans. Image Process. 24(4), 1297–1301 (2015)

    Article  MathSciNet  Google Scholar 

  8. Cobb, L., Koppstein, P., Chen, N.H.: Estimation and moment recursion relations for multimodal distributions of the exponential family. J. Am. Stat. Assoc. 78(381), 124–130 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rohde, D., Corcoran, J.: MCMC methods for univariate exponential family models with intractable normalization constants. In: 2014 IEEE Workshop on Statistical Signal Processing (SSP), pp. 356–359, June 2014

    Google Scholar 

  10. Amari, S.: Information Geometry and Its Applications. Applied Mathematical Sciences. Springer, Tokyo (2016)

    Book  MATH  Google Scholar 

  11. Brown, L.D.: Fundamentals of Statistical Exponential Families: With Applications in Statistical Decision Theory, vol. 9. Institute of Mathematical Statistics, Hayward (1983). 283 pages. ISSN 0749-2170. https://projecteuclid.org/euclid.lnms/1215466757

  12. Hyvärinen, A.: Estimation of non-normalized statistical models by score matching. J. Mach. Learn. Res. 6, 695–709 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Forbes, P.G., Lauritzen, S.: Linear estimating equations for exponential families with application to Gaussian linear concentration models. Linear Algebra Its Appl. 473, 261–283 (2015). Special Issue on Statistics

    Article  MathSciNet  MATH  Google Scholar 

  14. Nielsen, F., Nock, R.: A closed-form expression for the Sharma-Mittal entropy of exponential families. J. Phys. A Math. Theor. 45(3), 032003 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nielsen, F.: Closed-form information-theoretic divergences for statistical mixtures. In: 21st International Conference on Pattern Recognition (ICPR), pp. 1723–1726. IEEE (2012)

    Google Scholar 

  16. Nielsen, F., Nock, R.: On the chi square and higher-order chi distances for approximating \(f\)-divergences. IEEE Sig. Process. Lett. 1(21), 10–13 (2014)

    Article  Google Scholar 

  17. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Fujisawa, H., Eguchi, S.: Robust parameter estimation with a small bias against heavy contamination. J. Multivariate Anal. 99(9), 2053–2081 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Notsu, A., Komori, O., Eguchi, S.: Spontaneous clustering via minimum gamma-divergence. Neural Comput. 26(2), 421–448 (2014)

    Article  MathSciNet  Google Scholar 

  20. Chen, T.L., Hsieh, D.N., Hung, H., Tu, I.P., Wu, P.S., Wu, Y.M., Chang, W.H., Huang, S.Y., et al.: \(\gamma \)-SUP: a clustering algorithm for cryo-electron microscopy images of asymmetric particles. Ann. Appl. Stat. 8(1), 259–285 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ehm, W.: Unbiased risk estimation and scoring rules. Comptes Rendus Mathématiques 349(11), 699–702 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Crow, F.C.: Summed-area tables for texture mapping. ACM SIGGRAPH Comput. Graph. 18(3), 207–212 (1984)

    Article  Google Scholar 

  23. Rother, C., Kolmogorov, V., Blake, A.: GrabCut: Interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (TOG) 23(3), 309–314 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully thank Quei-An Chen (École Polytechnique, France) for implementing our patch matching system and performing various experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Nielsen, F., Nock, R. (2016). Patch Matching with Polynomial Exponential Families and Projective Divergences. In: Amsaleg, L., Houle, M., Schubert, E. (eds) Similarity Search and Applications. SISAP 2016. Lecture Notes in Computer Science(), vol 9939. Springer, Cham. https://doi.org/10.1007/978-3-319-46759-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46759-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46758-0

  • Online ISBN: 978-3-319-46759-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics