Studies in Computational Intelligence

Volume 673

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk @ibspan.waw.pl

About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the worldwide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

Wojciech Wieczorek

Grammatical Inference

Algorithms, Routines and Applications

@ Springer

Wojciech Wieczorek

Institute of Computer Science

University of Silesia Faculty of Computer
Science and Materials Science

Sosnowiec

Poland

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence

ISBN 978-3-319-46800-6 ISBN 978-3-319-46801-3 (eBook)

DOI 10.1007/978-3-319-46801-3
Library of Congress Control Number: 2016952872

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Grammatical inference, the main topic of this book, is a scientific area that lies at
the intersection of multiple fields. Researchers from computational linguistics,
pattern recognition, machine learning, computational biology, formal learning
theory, and many others have their own contribution. Therefore, it is not surprising
that the topic has also a few other names such as grammar learning, automata
inference, grammar identification, or grammar induction. To simplify the location
of present contribution, we can divide all books relevant to grammatical inference
into three groups: theoretical, practical, and applicable. In greater part this book is
practical, though one can also find the elements of learning theory, combinatorics
on words, the theory of automata and formal languages, plus some reference to
real-life problems.

The purpose of this book is to present old and modern methods of grammatical
inference from the perspective of practitioners. To this end, the Python program-
ming language has been chosen as the way of presenting all the methods. Included
listings can be directly used by the paste-and-copy manner to other programs, thus
students, academic researchers, and programmers should find this book as the
valuable source of ready recipes and as an inspiration for their further development.

A few issues should be mentioned regarding this book: an inspiration to write it,
a key for the selection of described methods, arguments for selecting Python as an
implementation language, typographical notions, and where the reader can send any
critical remarks about the content of the book (subject-matter, listings etc.).

There is a treasured book entitled “Numerical recipes in C”, in which along with
the description of selected numerical methods, listings in C language are provided.
The reader can copy and paste the fragments of the electronic version of the book in
order to produce executable programs. Such an approach is very useful. We can
find an idea that lies behind a method and immediately put it into practice. It is a
guiding principle that accompanied writing the present book.

For the selection of methods, we try to keep balance between importance and
complexity. It means that we introduced concepts and algorithms which are
essential to the GI practice and theory, but omitted that are too complicated or too

vi Preface

long to present them as a ready-to-use code. Thanks to that, the longest program
included in the book is no more than a few pages long.

As far as the implementation language is concerned, the following requirements
had to be taken into account: simplicity, availability, the property of being firmly
established, and allowing the use of wide range of libraries. Python and FSharp
programming languages were good candidates. We decided to choose IronPython
(an implementation of Python) mainly due to its integration with the optimization
modeling language. We use a monospaced (fixed-pitch) font for the listings of
programs, while the main text is written using a proportional font. In listings,
Python keywords are in bold.

The following persons have helped the author in preparing the final version of
this book by giving valuable advice. I would like to thank (in alphabetical order):
Prof. Z.J. Czech (Silesian University of Technology), Dr. P. Juszczuk, Ph.D. stu-
dent A. Nowakowski, Dr. R. Skinderowicz, and Ph.D. student L. Strak (University
of Silesia).

Sosnowiec, Poland Wojciech Wieczorek
2016

Contents

1 Imtroduction......... 1
1.1 The Problem and Its Various Formulations 1
1.1.1 Mathematical Versus Computer Science Perspectives. 1

1.1.2 Different Kinds of Output. 2

1.1.3 Representing Languages 3

1.1.4 Complexity Issues. 5

LIS Summary. 6

1.2 Assessing Algorithms’ Performance 7
1.2.1 Measuring Classifier Performance. 7

1.22 McNemar’s Test.t 8

1.2.3 5 x 2 Cross-Validated Paired t Test. 9

1.3 Exemplary Applications 9
1.3.1 Peg Solitaire 10

1.3.2 Classification of Proteins. 12

1.4 Bibliographical Background 15
References. 16

2 State Merging Algorithms. 19
2.1 Preliminaries. 19
2.2 Evidence Driven State Merging 21
23 Gold’sIdea........ ... 23
2.4 Grammatical Inference with MDL Principle. 27
2.4.1 The Motivation and Appropriate Measures 28

2.4.2 The Proposed Algorithm. 28

2.5 Bibliographical Background, 30
References. 31

3 Partition-Based Algorithms. 33
3.1 Preliminaries. 33
32 The k-tails Method 36
3.3 Grammatical Inference by Genetic Search 37
3.3.1 What Are Genetic Algorithms?. 37

vii

viii

6

7

Contents

3.3.2 Basic Notions of the Genetic Algorithm for GL. 37
3.3.3 Our Implementation 39

3.4 CFG Inference Using Tabular Representations 40
34.1 Basic Definitions. 41
34.2 The Algorithm 41
3.4.3 Our Implementationo..... 43

3.5 Bibliographical Background 45
References. 45
Substring-Based Algorithms. 47
4.1 Error-Correcting Grammatical Inference. 47
4.1.1 The GI Algorithm. 47
4.1.2 Our Implementation 49

4.2 Alignment-Based Learning 50
4.2.1 Alignment Learning 51
4.2.2 Selection Learning 54
423 Our Implementation 54

4.3 Bibliographical Background 55
References. 56
Identification Using Mathematical Modeling. 57
5.1 From DFA Identification to Graph Coloring. 57
5.1.1 Encoding. 57
5.1.2 Our Implementation 58

5.2 From NFA Identification to a Satisfiability Problem............ 61
52.1 Encoding. 61
5.2.2 Our Implementation 62

5.3 From CFG Identificationtoa CSP 64
5.3.1 Encoding............. ... 64

5.3.2 Our Implementation 65

5.4 Bibliographical Background 67
References. 67
A Decomposition-Based Algorithm. 69
6.1 Prime and Decomposable Languages 69
6.1.1 Preliminaries. it 69

6.1.2 Cliques and Decompositions. 70

6.2 CFGlInference 71
6.2.1 The GI Algorithm. 71
6.2.2 Our Implementation 72

6.3 Bibliographical Background, 75
References. 75
An Algorithm Based on a Directed Acyclic Word Graph Tl
7.1 Definitionsov i 77

7.2 Constructing a DAWG Froma Sample 78

Contents

7.3 Our Implementation,

7.4 Bibliographical Background

References.

8 Applications of GI Methods in Selected Fields

8.1 Discovery of Generating Functions.

8.1.1 Generating Functions

8.1.2 The Schiitzenberger Methodology.

8.1.3 Applications

8.2 Minimizing Boolean Functions.

8.2.1 Background and Terminology.......................

8.2.2 The Algorithm

8.2.3 Our Implementation

824 Examples

8.3 Use of Induced Star-Free Regular Expressions.

8.3.1 Definitions and an Algorithm
8.3.2 An Application in Classification of Amyloidogenic

Hexapeptides.

8.3.3 An Application in the Construction of Opening Books. . . .

8.4 Bibliographical Background

References.

Appendix A: A Quick Introduction to Python

Appendix B: Python’s Tools for Automata, Networks, Genetic
Algorithms, and SAT Solving.

Appendix C: OML and its Usage in IronPython

Acronyms

CFG
CGT
CNF
CNF
CSP
DFA
DNF
EDSM
GA
GI
GNF
ILP
LP
MDL
MILP
NFA
NLP
NP
OGF
OML
PTA
RPNI
SAT
TSP
XML

Context-free grammar
Combinatorial game theory
Chomsky normal form
Conjunctive normal form
Constraint satisfaction problem
Deterministic finite automaton
Disjunctive normal form
Evidence driven state merging
Genetic algorithm

Grammatical inference

Greibach normal form

Integer linear programming
Linear programming

Minimum description length
Mixed integer linear programming
Non-deterministic finite automaton
Non-linear programming
Non-deterministic polynomial time
Ordinary generating function
Optimization modeling language
Prefix tree acceptor

Regular positive and negative inference

Boolean satisfiability problem
Traveling salesman problem
Extensible markup language

xi

	Preface
	Contents
	Acronyms

