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Preface

Grammatical inference, the main topic of this book, is a scientific area that lies at
the intersection of multiple fields. Researchers from computational linguistics,
pattern recognition, machine learning, computational biology, formal learning
theory, and many others have their own contribution. Therefore, it is not surprising
that the topic has also a few other names such as grammar learning, automata
inference, grammar identification, or grammar induction. To simplify the location
of present contribution, we can divide all books relevant to grammatical inference
into three groups: theoretical, practical, and applicable. In greater part this book is
practical, though one can also find the elements of learning theory, combinatorics
on words, the theory of automata and formal languages, plus some reference to
real-life problems.

The purpose of this book is to present old and modern methods of grammatical
inference from the perspective of practitioners. To this end, the Python program-
ming language has been chosen as the way of presenting all the methods. Included
listings can be directly used by the paste-and-copy manner to other programs, thus
students, academic researchers, and programmers should find this book as the
valuable source of ready recipes and as an inspiration for their further development.

A few issues should be mentioned regarding this book: an inspiration to write it,
a key for the selection of described methods, arguments for selecting Python as an
implementation language, typographical notions, and where the reader can send any
critical remarks about the content of the book (subject-matter, listings etc.).

There is a treasured book entitled “Numerical recipes in C”, in which along with
the description of selected numerical methods, listings in C language are provided.
The reader can copy and paste the fragments of the electronic version of the book in
order to produce executable programs. Such an approach is very useful. We can
find an idea that lies behind a method and immediately put it into practice. It is a
guiding principle that accompanied writing the present book.

For the selection of methods, we try to keep balance between importance and
complexity. It means that we introduced concepts and algorithms which are
essential to the GI practice and theory, but omitted that are too complicated or too
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long to present them as a ready-to-use code. Thanks to that, the longest program
included in the book is no more than a few pages long.

As far as the implementation language is concerned, the following requirements
had to be taken into account: simplicity, availability, the property of being firmly
established, and allowing the use of wide range of libraries. Python and FSharp
programming languages were good candidates. We decided to choose IronPython
(an implementation of Python) mainly due to its integration with the optimization
modeling language. We use a monospaced (fixed-pitch) font for the listings of
programs, while the main text is written using a proportional font. In listings,
Python keywords are in bold.

The following persons have helped the author in preparing the final version of
this book by giving valuable advice. I would like to thank (in alphabetical order):
Prof. Z.J. Czech (Silesian University of Technology), Dr. P. Juszczuk, Ph.D. stu-
dent A. Nowakowski, Dr. R. Skinderowicz, and Ph.D. student L. Strak (University
of Silesia).

Sosnowiec, Poland Wojciech Wieczorek
2016
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