
Lecture Notes in Computer Science 10012

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Yliès Falcone • César Sánchez (Eds.)

Runtime Verification
16th International Conference, RV 2016
Madrid, Spain, September 23–30, 2016
Proceedings

123

Editors
Yliès Falcone
Université Grenoble Alpes, Inria
Grenoble
France

César Sánchez
IMDEA Software Institute
Madrid
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-46981-2 ISBN 978-3-319-46982-9 (eBook)
DOI 10.1007/978-3-319-46982-9

Library of Congress Control Number: 2016952525

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the proceedings of the 16th International Conference on Runtime
Verification (RV 2016), which was held September 23–30, 2016, at La Residencia de
Estudiantes of the Spanish Council for Scientific Research (CSIC) in Madrid, Spain.

During the first half of the twentieth century, La Residencia was a prestigious
cultural institution that helped foster and create the intellectual environment for young
thinkers, writers, and artists. It was one of the most vibrant and successful experiences
of scientific and artistic creation and exchange of interwar Europe. Some of the
brightest minds of the time, like Albert Einsten, Marie Curie, and Salvador Dali, visited
La Residencia in this early epoch. In the last few years there has been a very intense
attempt to recover the memory of La Residencia and its founding principles, and to
promote new cultural and scientific activities based on the spirit of cooperation and
sharing of knowledge. We hope that the attendees of RV 2016 enjoyed this unique
venue.

The RV conference is concerned with all aspects of monitoring and analysis of
hardware, sotfware, and more general system executions. Runtime verification tech-
niques are lightweight techniques to asses correctness, reliability, and robustness; these
techniques are significantly more powerful and versatile than conventional testing, and
more practical than exhaustive formal verification.

RV started in 2001 as an annual workshop and turned into an annual conference in
2010. The proceedings from 2001 to 2005 were published in the Electronic Notes in
Theoretical Computer Science. Since 2006, the RV proceedings have been published in
Springer’s Lecture Notes in Computer Science. The previous five editions of the RV
conference took place in San Francisco, USA (2011), Istanbul, Turkey (2012), Rennes,
France (2013), Toronto, Canada (2014), and Vienna, Austria (2015).

RV 2016 received 72 submissions, 49 of which were regular papers, ten short
papers, six regular tool papers, two tool demonstration papers, and five tutorial pro-
posals. Most papers were reviewed by four reviewers. The Program Committee
accepted 18 regular papers, four short papers, three regular tool papers, two tool
demonstration papers, and the five submitted tutorials.

The evaluation and selection process involved thorough discussions among the
members of the Program Committee and external reviewers through the EasyChair
conference manager, before reaching a consensus on the final decisions.

This year, the RV conference also included the organization of The First Interna-
tional Summer School on Runtime Verification, co-organized and sponsored by
EU COST Action IC1402 “ArVi: Runtime Verification Beyond Monitoring.” Addi-
tionally, the Third International Competition on Runtime Verification, also sponsored
by EU COST Action IC1402, was colocated with RV 2016.

The conference program included the presentation of the peer-reviewed papers and
tool demonstrations, tutorials, and invited keynote speeches. The conference program
spanned over four rich days (see http://rv2016.imag.fr).

http://rv2016.imag.fr

We are pleased to have hosted three top invited speakers:

– Gul Agha, Professor of Computer Science at the University of Illinois at
Urbana-Champaign, talked about how to build dependable concurrent systems
through probabilistic inference, predictive monitoring, and self-adaptation.

– Oded Maler, Research Director of CNRS at Verimag, talked about how to monitor
qualitative and quantitative properties, in real and virtual executions of systems, in
the online and offline approaches of runtime verification.

– Fred B. Schneider, Professor of Computer Science and Chair of Cornell’s CS
Department, talked about tag specification languages for policy enforcement.

The conference included the following five tutorials:

– Doron Peled presented a tutorial on “Using Genetic Programming for Software
Reliability”

– Nikolaï Kosmatov and Julien Signoles presented a tutorial on “Frama-C, a Col-
laborative Framework for C Code Verification”

– Philip Daian, Dwight Guth, Chris Hathhorn, Yilong Li, Edgar Pek, Manasvi Sax-
ena, Traian Florin Serbanuta, and Grigore Rosu presented a tutorial on “Runtime
Verification at Work”

– Sylvain Hallé presented a tutorial on “When RV Meets CEP”
– Borzoo Bonakdarpour and Bernd Finkbeiner presented a tutorial on “Runtime

Verification for HyperLTL”

We would like to thank the authors of all submitted papers, the members of the
Program Committee, and the external reviewers for their exhaustive task of reviewing
and evaluating all submitted papers. We would like to thank Christian Colombo for
co-organizing the Summer School and Sylvain Hallé and Giles Reger for co-organizing
the third edition of the competition on Runtime Verification (CRV 2016).

We would also like to thank Universidad Carlos III and the IMDEA Software
Institute for their administrative support and their generous monetary contribution to
the conference, the Laboratoire d’Informatique de Grenoble for its IT support, and La
Residencia for sharing their facilities to hold the conference at reduced prices. We
highly appreciate EasyChair for its system to manage submissions. Finally, we would
like to extend our special thanks to the chair of the Steering Committee, Klaus
Havelund, for his support during the organization of RV 2016.

August 2016 Yliès Falcone
César Sánchez

VI Preface

Organization

Program Chairs

Yliès Falcone Université Grenoble Alpes, Inria, Grenoble, France
César Sánchez IMDEA Software Institute, Madrid, Spain

Tool Track Chair

Klaus Havelund Nasa Jet Propulsion Laboratory, USA

Tool Committee

Steven Arzt EC Spride, Germany
Howard Barringer The University of Manchester, UK
Ezio Bartocci TU Wien, Austria
Martin Leucker University of Lübeck, Germany
Gordon Pace University of Malta, Malta
Giles Reger The University of Manchester, UK
Julien Signoles CEA, France
Oleg Sokolsky University of Pennsylvania, USA
Bernhard Steffen University of Dortmund, Germany
Nikolai Tillmann Microsoft Research, USA
Eugen Zalinescu ETH Zurich, Switzerland

CRV’16 Chairs

Yliès Falcone Université Grenoble Alpes, Inria, France
Sylvain Hallé Université du Québec à Chicoutimi, Canada
Giles Reger University of Manchester, Manchester, UK

Local Organization Chair

Juan Tapiador Universidad Carlos III de Madrid, Madrid, Spain

Program Committee

Erika Abraham RWTH Aachen University, Germany
Steven Artz EC SPRIDE
Howard Barringer The University of Manchester, UK
Ezio Bartocci TU Wien, Austria
Andreas Bauer NICTA and Australian National University, Australia

Saddek Bensalem VERIMAG, France
Eric Bodden Fraunhofer SIT and Technische Universität Darmstadt,

Germany
Borzoo Bonakdarpour McMaster University, Canada
Laura Bozzelli Technical University of Madrid (UPM), Spain
Juan Caballero IMDEA Software Institute, Spain
Wei-Ngan Chin National University of Singapore, Singapore
Christian Colombo University of Malta, Malta
Jyotirmoy Deshmukh Toyota Technical Center
Alexandre Donzé UC Berkeley, USA
Ylies Falcone University Grenoble Alpes, Inria, Laboratoire

d’Informatique de Grenoble, France
Bernd Finkbeiner Saarland University, Germany
Adrian Francalanza University of Malta, Malta
Vijay Garg University of Texas at Austin, USA
Patrice Godefroid Microsoft Research
Susanne Graf Joseph Fourier University/CNRS/VERIMAG, France
Radu Grosu Vienna University of Technology, Austria
Sylvain Hallé Université du Québec à Chicoutimi, Canada
Klaus Havelund Jet Propulsion Laboratory, California Institute

of Technology, USA
Joxan Jaffar National University of Singapore, Singapore
Thierry Jéron Inria Rennes - Bretagne Atlantique, France
Johannes Kinder Royal Holloway, University of London, UK
Felix Klaedtke NEC Europe Ltd.
Kim Larsen Aalborg University, Denmark
Axel Legay IRISA/Inria, Rennes, France
Martin Leucker University of Lübeck, Germany
Benjamin Livshits Microsoft Research
Joao Lourenço Universidade Nova de Lisboa, Portugal
Rupak Majumdar MPI-SWS
Oded Maler CNRS-VERIMAG, France
Leonardo Mariani University of Milano-Bicocca, Italy
David Naumann Stevens Institute of Technology, USA
Gordon Pace University of Malta, Malta
Doron Peled Bar-Ilan University
Lee Pike Galois, Inc.
Giles Reger University of Manchester, UK
Grigore Rosu University of Illinois at Urbana-Champaign, USA
Gwen Salaün Grenoble Alpes University, Inria, France
Cesar Sanchez IMDEA Software Institute, Spain
Sriram Sankaranarayanan University of Colorado, Boulder, USA
Gerardo Schneider Chalmers University of Gothenburg, Sweden
Julien Signoles CEA LIST
Scott Smolka Stony Brook University, USA
Oleg Sokolsky University of Pennsylvania, USA

VIII Organization

Bernhard Steffen University of Dortmund, Germany
Scott Stoller Stony Brook University, USA
Volker Stolz University of Oslo, Norway
Jun Sun Singapore University of Technology and Design,

Singapore
Juan Tapiador Universidad Carlos III de Madrid, Spain
Serdar Tasiran Koc University, Turkey
Nikolai Tillman Microsoft Research
Michael Whalen University of Minnesota, USA
Eugen Zalinescu Technical University of Munich, Germany
Lenore Zuck University of Illinois in Chicago, USA

Additional Reviewers

Assaf, Mounir
Azzopardi, Shaun
Bertrand, Nathalie
Dabaghchian, Maryam
Daian, Philip
Decker, Normann
Della Monica, Dario
Duan, Lian
Duc Hiep, Chu
Evrard, Hugues
Faymonville, Peter
Gossen, Frederik
Hedin, Daniel
Jaksic, Stefan
Khoury, Raphael
Komp, John
Kopetzki, Dawid

Kuester, Jan-Christoph
Le, Ton-Chanh
Lee, Benedict
Li, Yilong
Matar, Hassan Salehe
Maubert, Bastien
Mens, Irini-Eleftheria
Mikučionis, Marius
Mohammad Hasani,

Ramin
Mutlu, Erdal
Neubauer, Johannes
Quilbeuf, Jean
Ratasich, Denise
Rodionova, Alena
Ruething, Oliver
Scheffel, Torben

Schmitz, Malte
Selyunin, Konstantin
Serwe, Wendelin
Siddique, Umair
Sirjani, Marjan
Srivastav, Abhinav
Tan, Tian Huat
Tekle, Tuncay
Torfah, Hazem
Traonouez, Louis-Marie
Ulus, Dogan
Vorobyov, Kostyantyn
Walulya, Ivan
Yong, Chang
Zadok, Erez
Zhang, Yi

Organization IX

Invited Papers

Building Dependable Concurrent Systems
Through Probabilistic Inference, Predictive
Monitoring and Self-adaptation (Abstract)

Gul Agha

University of Illinois at Urbana-Champaign, Champaign, USA
http://osl.cs.illinois.edu

Abstract. The infeasibility of statically verifying complex software is well
established; in concurrent systems, the difficulty is compounded by nondeter-
minism and the possibility of ‘Heisenbugs’. Using runtime verification, one can
not only monitor a concurrent system to check if it has violated a specification,
but potentially predict future violations. However, a key challenge for runtime
verification is that specifications are often incomplete. I will argue that the safety
of concurrent systems could be improved by observing patterns of interaction
and using probabilistic inference to capture intended coordination behavior.
Actors reflecting on their choreography this way would enable deployed systems
to continually improve their specifications. Mechanisms to dynamically add
monitors and enforce coordination constraints during execution would then
facilitate self-adaptation in concurrent systems. I will conclude by suggesting a
program of research to extend runtime verification so systems an evolve
robustness through such self-adaptation.

Acknowledgements. The work on this paper has been supported in part by Air Force
Research Laboratory and the Air Force Office of Scientific Research under agreement
number FA8750-11-2-0084, and by National Science Foundation under grant number
CCF-1438982 and NSF CCF 16-17401.

References

1. Astley, M., Sturman, D.C., Agha,G.: Customizable middleware for modular distributed
software. Communun. ACM, 44(5), 99–107 (2001)

2. Donkervoet, B., Agha, G.: Reflecting on aspect-oriented programming, metaprogramming,
and adaptive distributed monitoring. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever,
W.P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 246–265. Springer, Heidelberg (2007)

3. Frolund, S., Agha, G.: A language framework for multi-object coordination. In: Nierstrasz, O.
(ed.) ECOOP 1993. LNCS, vol. 707, pp. 346–360. Springer, Heidelberg (1993)

4. Sen, K., Rosu, G., Agha, G.: Online efficient predictive safety analysis of multi-threaded
programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 123–138.
Springer, Heidelberg (2004)

http://osl.cs.illinois.edu

5. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of safety in
distributed systems. In: Finkelstein, A., Estublier, J., Rosenblum, D.S. (eds.) ICSE 2004,
Edinburgh, United Kingdom, 23–28 May 2004, pp. 418–427. IEEE Computer Society (2004)

6. Sturman, D.C., Agha, G.: A protocol description language for customizing semantics. In: 13th
Symposium on Reliable Distributed Systems (SRDS 1994), Dana Point, California, 25–27
October 1994, pp. 148–157. ACM (1994)

XIV G. Agha

Why Tags Could be It?
Keynote Lecture
Extended Abstract

Fred B. Schneider

Department of Computer Science, Cornell University, Ithaca,
New York, 14853, USA
fbs@cs.cornell.edu

Abstract. Reference monitors embody specifications about permitted and pro-
hibited operation invocations. That limits what policies they can enforce. Those
limitations have prompted us to explore alternative approaches to policy
enforcement—specifically, expressive classes of labels that give permitted and
prohibited uses for a piece of information. These reactive information flow
(RIF) labels will be described, along with means for static and run-time veri-
fication of programs that process such labelled data. Use of RIF labels for
specifying use-based privacy also will be discussed.

1 Introduction

Security policies can be enforced by defining guards on operations or by associating
labels with values, as follows.

– A guard on an operation Op is checked each time Op is invoked; the guard blocks
any invocation that would not comply with the policy.

– A security label on a value or variable V is checked before V is read or written; the
access is blocked when it is inconsistent with what the security label allows.

Today’s systems tend to be built in terms of guards on operations rather than in
terms of security labels on values. This is unfortunate, because security labels specify
and provide end-to-end guarantees about information use, whereas guards on opera-
tions do not.

For example, consider a system that creates and maintains a replica F′ of some file
F. A guard that prevented principal Alice from invoking a read operation naming F is
not obliged to prevent Alice from invoking a read operation naming F′. But an
end-to-end guarantee that stipulates Alice not read the contents in F would have to

Joint work with Cornell Ph.D. students Elisavet Kozyri and Eleanor Birrell.
F.B. Schneider—Supported in part by AFOSR grant F9550-16-0250 and grants from Microsoft. The
views and conclusions contained herein are those of the author and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of these
organizations or the U.S. Government.

prevent attempts by Alice to learn the contents of F′ or other values derived directly or
indirectly from the contents in F. In addition, security tags can afford providers of
information with flexibility to choose security policies after a system has been devel-
oped, deployed, or put into operation. Policy now accompanies a system’s inputs
instead of being fixed in the code.

2 Reactive Information Flow Specifications

The prevalence today of guards over security labels is not surprising, given limitations
in the expressive power of currently available classes of security labels. To help
overcome those limitations, we have been developing a new class of security labels:
reactive information flow (RIF) specifications. Informally, a RIF specification for a
value V gives

(i) allowed uses for V, and
(ii) the RIF specification for any value that might be directly or indirectly derived

from V.

RIF specifications thus give allowed uses for the value produced by evaluating a
function, where those restrictions may differ from the allowed uses for inputs to that
evaluation. For instance, using RIF specifications as labels, the output of an encryption
function can be public even though is inputs (plaintext and a key) are secret. In general,
RIF specifications support reclassifiers that increase restrictions, decrease restrictions,
or associate incomparable restrictions.

Various carriers can be instantiated to embody RIF specifications. A carrier must
accept a language of reclassifiers, and it must associate a set of restrictions with each
word in that language. Carriers for which language-inclusion is decidable are a good
choice when we wish to treat RIF specifications as types, since the resulting type
system will be statically checkable. To date, we have experience with two classes of
(decidable) carriers.

– Finite state automata suffice for many common security needs. Here, each
automaton state gives a set of use restrictions; reclassifiers label transitions between
automaton states, with the successor automaton state giving the new set of use
restrictions for a derived value.

– A simple form of push-down automata suffice for handling confidentiality when
encryption and decryption are used to transform values (typically from secret to
public and back). Encryption pushes a key onto the stack; decryption causes pop if
the key being provided matches the key contained in top entry on the stack (and
otherwise the decryption causes a push).

Type systems have been formulated for both kinds of carriers, where type correctness
ensures that certain non-interference properties are satisfied. The conservative nature of
type checking, however, is now leading us to contemplate run-time monitors for programs
having RIF specifications as labels for values and variables. We also have been exploring
practical aspects of using RIF specifications. For this, the information-flow type system in
the JIF programming language has been replaced by a RIF type system based on

XVI F.B. Schneider

finite-state automata. Prototype applications that we programmed in this JRIF language
have given us experience with defining RIF specifications.

3 What RIF Tags May Restrict

Security labels traditionally have been interpreted as characterizing sets of principals.
For confidentiality, a label specifies principals that are allowed to read a value (or any
value derived); for integrity, a label describes principals that must be trusted for the
labeled value to be trusted (which implies that the label defines a set of principals that
may update the labeled value).

In practice, other forms of use restrictions are important too. In use-based security,
pieces of information are labeled—actually or notionally—with tags that specify use
restrictions, and principals who hold or process such pieces of information are obliged
to comply with those restrictions. Use restrictions may come from those who submit or
control the information, systems that process the information, and/or regulations
imposed by the jurisdiction in which a system is located, the data originates, or its
owners reside.

Use-based security can be quite general if we are given an expressive enough
language for specifying the use restrictions. By choosing a suitable language, for
example, we can support the various definitions of privacy that are being discussed,
now that the failings of classical “notice and consent” have become apparent. We can
also support regimes where data collection and use are limited by legislative authorities
that specify when and how data may used, combined, how long it must be saved, etc.

RIF specifications seem well suited for defining restrictions for use-based security.
Here, restrictions are not limited to being sets of principals; the restrictions instead can
be permissions, prohibitions, and/or obligations for invoking arbitrary classes of
operations. Reclassifiers, as before, allow derived values to be subject to different use
restrictions. This capability, for example, would enable a RIF specification to assert that
an individual’s value must be kept confidential, but any derived value produced by
statistical aggregation is public.

4 Enforcement

Formal verification, automated analysis, and run-time monitoring all are time-honored
methods to ensure that a program will satisfy some property of interest. The trade-offs
between expressiveness, conservatism, and automation are likely to be the same for
RIF specifications as has been found for other classes of program properties. In con-
nection with privacy, however, audit, with deterrence through accountability is sensi-
ble. So instead of preventing violations, a system detects violations and recovers.
Prevention is not necessary, here.

Why Tags Could be It? XVII

Contents

Invited Paper

Some Thoughts on Runtime Verification . 3
Oded Maler

Satellite Events Papers

First International Summer School on Runtime Verification:
As Part of the ArVi COST Action 1402 . 17

Christian Colombo and Yliès Falcone

Third International Competition on Runtime Verification: CRV 2016 21
Giles Reger, Sylvain Hallé, and Yliès Falcone

Tutorial Papers

Runtime Verification for HyperLTL . 41
Borzoo Bonakdarpour and Bernd Finkbeiner

Runtime Verification at Work: A Tutorial . 46
Philip Daian, Dwight Guth, Chris Hathhorn, Yilong Li, Edgar Pek,
Manasvi Saxena, Traian Florin Şerbănuţă, and Grigore Roşu

When RV Meets CEP . 68
Sylvain Hallé

Frama-C, A Collaborative Framework for C Code Verification:
Tutorial Synopsis . 92

Nikolai Kosmatov and Julien Signoles

Using Genetic Programming for Software Reliability 116
Doron Peled

Regular Papers

Predicting Space Requirements for a Stream Monitor
Specification Language . 135

David M. Cerna, Wolfgang Schreiner, and Temur Kutsia

A Stream-Based Specification Language for Network Monitoring 152
Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer,
and Hazem Torfah

http://dx.doi.org/10.1007/978-3-319-46982-9_1
http://dx.doi.org/10.1007/978-3-319-46982-9_2
http://dx.doi.org/10.1007/978-3-319-46982-9_2
http://dx.doi.org/10.1007/978-3-319-46982-9_3
http://dx.doi.org/10.1007/978-3-319-46982-9_4
http://dx.doi.org/10.1007/978-3-319-46982-9_5
http://dx.doi.org/10.1007/978-3-319-46982-9_6
http://dx.doi.org/10.1007/978-3-319-46982-9_7
http://dx.doi.org/10.1007/978-3-319-46982-9_7
http://dx.doi.org/10.1007/978-3-319-46982-9_8
http://dx.doi.org/10.1007/978-3-319-46982-9_9
http://dx.doi.org/10.1007/978-3-319-46982-9_9
http://dx.doi.org/10.1007/978-3-319-46982-9_10

On the Complexity of Monitoring Orchids Signatures 169
Jean Goubault-Larrecq and Jean-Philippe Lachance

Input Attribution for Statistical Model Checking Using Logistic Regression . . . 185
Jeffery P. Hansen, Sagar Chaki, Scott Hissam, James Edmondson,
Gabriel A. Moreno, and David Kyle

Quantitative Monitoring of STL with Edit Distance 201
Stefan Jakšić, Ezio Bartocci, Radu Grosu, and Dejan Ničković

Extended Code Coverage for AspectJ-Based Runtime Verification Tools 219
Omar Javed, Yudi Zheng, Andrea Rosà, Haiyang Sun,
and Walter Binder

nfer – A Notation and System for Inferring Event Stream Abstractions 235
Sean Kauffman, Klaus Havelund, and Rajeev Joshi

Accelerated Runtime Verification of LTL Specifications
with Counting Semantics . 251

Ramy Medhat, Borzoo Bonakdarpour, Sebastian Fischmeister,
and Yogi Joshi

Non-intrusive Runtime Monitoring Through Power Consumption:
A Signals and System Analysis Approach to Reconstruct the Trace. 268

Carlos Moreno and Sebastian Fischmeister

An Automata-Based Approach to Evolving Privacy Policies
for Social Networks. 285

Raúl Pardo, Christian Colombo, Gordon J. Pace,
and Gerardo Schneider

TrackOS: A Security-Aware Real-Time Operating System 302
Lee Pike, Pat Hickey, Trevor Elliott, Eric Mertens, and Aaron Tomb

Leveraging DTrace for Runtime Verification . 318
Carl Martin Rosenberg, Martin Steffen, and Volker Stolz

Finite-Trace Linear Temporal Logic: Coinductive Completeness 333
Grigore Roşu

Wireless Protocol Validation Under Uncertainty . 351
Jinghao Shi, Shuvendu K. Lahiri, Ranveer Chandra,
and Geoffrey Challen

Dynamic Determinacy Race Detection for Task Parallelism with Futures 368
Rishi Surendran and Vivek Sarkar

XX Contents

http://dx.doi.org/10.1007/978-3-319-46982-9_11
http://dx.doi.org/10.1007/978-3-319-46982-9_12
http://dx.doi.org/10.1007/978-3-319-46982-9_13
http://dx.doi.org/10.1007/978-3-319-46982-9_14
http://dx.doi.org/10.1007/978-3-319-46982-9_15
http://dx.doi.org/10.1007/978-3-319-46982-9_16
http://dx.doi.org/10.1007/978-3-319-46982-9_16
http://dx.doi.org/10.1007/978-3-319-46982-9_17
http://dx.doi.org/10.1007/978-3-319-46982-9_17
http://dx.doi.org/10.1007/978-3-319-46982-9_18
http://dx.doi.org/10.1007/978-3-319-46982-9_18
http://dx.doi.org/10.1007/978-3-319-46982-9_19
http://dx.doi.org/10.1007/978-3-319-46982-9_20
http://dx.doi.org/10.1007/978-3-319-46982-9_21
http://dx.doi.org/10.1007/978-3-319-46982-9_22
http://dx.doi.org/10.1007/978-3-319-46982-9_23

Runtime Monitoring for Concurrent Systems . 386
Yoriyuki Yamagata, Cyrille Artho, Masami Hagiya, Jun Inoue, Lei Ma,
Yoshinori Tanabe, and Mitsuharu Yamamoto

Decision-Theoretic Monitoring of Cyber-Physical Systems 404
Andrey Yavolovsky, Miloš Žefran, and A. Prasad Sistla

Precision, Recall, and Sensitivity of Monitoring Partially Synchronous
Distributed Systems. 420

Sorrachai Yingchareonthawornchai, Duong N. Nguyen,
Vidhya Tekken Valapil, Sandeep S. Kulkarni, and Murat Demirbas

Short Papers

Falsification of Conditional Safety Properties for Cyber-Physical Systems
with Gaussian Process Regression . 439

Takumi Akazaki

Reactive Property Monitoring of Hybrid Systems with Aggregation. 447
Nicolas Rapin

Integration of Runtime Verification into Metamodeling for Simulation
and Code Generation (Position Paper) . 454

Fernando Macias, Torben Scheffel, Malte Schmitz, and Rui Wang

Applying Runtime Monitoring for Automotive Electronic Development 462
Konstantin Selyunin, Thang Nguyen, Ezio Bartocci, and Radu Grosu

Regular Tool Papers

A Monitoring Tool for a Branching-Time Logic . 473
Duncan Paul Attard and Adrian Francalanza

SMEDL: Combining Synchronous and Asynchronous Monitoring 482
Teng Zhang, Peter Gebhard, and Oleg Sokolsky

Tool Exhibition Papers

Runtime Visualization and Verification in JIVE . 493
Lukasz Ziarek, Bharat Jayaraman, Demian Lessa, and J. Swaminathan

An Overview of MARQ . 498
Giles Reger

Runtime Analysis with R2U2: A Tool Exhibition Report 504
Johann Schumann, Patrick Moosbrugger, and Kristin Y. Rozier

Author Index . 511

Contents XXI

http://dx.doi.org/10.1007/978-3-319-46982-9_24
http://dx.doi.org/10.1007/978-3-319-46982-9_25
http://dx.doi.org/10.1007/978-3-319-46982-9_26
http://dx.doi.org/10.1007/978-3-319-46982-9_26
http://dx.doi.org/10.1007/978-3-319-46982-9_27
http://dx.doi.org/10.1007/978-3-319-46982-9_27
http://dx.doi.org/10.1007/978-3-319-46982-9_28
http://dx.doi.org/10.1007/978-3-319-46982-9_29
http://dx.doi.org/10.1007/978-3-319-46982-9_29
http://dx.doi.org/10.1007/978-3-319-46982-9_30
http://dx.doi.org/10.1007/978-3-319-46982-9_31
http://dx.doi.org/10.1007/978-3-319-46982-9_32
http://dx.doi.org/10.1007/978-3-319-46982-9_33
http://dx.doi.org/10.1007/978-3-319-46982-9_34
http://dx.doi.org/10.1007/978-3-319-46982-9_35

	Preface
	Organization
	Invited Papers
	Building Dependable Concurrent Systems Through Probabilistic Inference, Predictive Monitoring and Self-adaptation (Abstract)
	Why Tags Could be It? Keynote Lecture Extended Abstract
	Contents

