
Decision-Theoretic Monitoring of Cyber-Physical Systems

by

Andrey Yavolovsky
B.S. (Ivane Javakhishvili Tbilisi State University) 2006
M.S. (Ivane Javakhishvili Tbilisi State University) 2009

THESIS

submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2018

Chicago, Illinois

Defense Committee:
Miloš Žefran, Chair and Advisor, Electrical and Computer Engineering
A. Prasad Sistla, Advisor, Computer Science
Piotr Gmytrasiemicz, Computer Science
Venkat Venkatakrishnan, Computer Science
Mojtaba Soltanalian, Electrical and Computer Engineering

Copyright by

Andrey Yavolovsky

2018

ACKNOWLEDGMENTS

This work would never be possible without the guidance and help from my advisors Prof.

Miloš Žefran and Prof. A. Prasad Sistla. Your supportive guidance led me through the field

that was totally new to me in the beginning but became a part of my common language in

the end. Your suggestions and recommendations helped me to achieve the results that I could

publish and present in this thesis.

I’m forever thankful for the continuous financial support to the University of Illinois At

Chicago (UIC) Computer Science Department, UIC Electrical and Computer Engineering De-

partment, National Science Foundation (NSF), Prof. Žefran and Prof. Sistla. I would never be

able to complete this work without your input.

My interest in robotics has originated from the time when I was working in Tbilisi, Georgia

for the EMCoS (Electromagnetic Compatibility Consulting and Software) company. I’m in-

debted to Prof. Roman Jobava for all the opportunities and skills that I have developed while

I was part of EMCoS team. All of my motivation for joining the UIC for the Ph.D. program

took a start at that time, and I’m exceptionally happy that I was able to make it happen.

Many thanks go to my friends from UIC, especially my labmates from Robotics Lab. Being

a member of Robotics lab, where I got exposed to all the beauty of Robotics, a field that I

was always truly admiring, was a delightful experience. I extremely value all the discussions

that we had internally with Ehsan Noohi and Yao Feng, that helped me to move forward and

find the answers to a number of hard problems. I thank all of my labmates: Wen Jiang, Sina

iii

ACKNOWLEDGMENTS (Continued)

Parastegari, Maria Javaid and Bahareh Abbassi. Your support and help were very important

to me.

I thank my parents, grandmother and my sister who always believed in me. Everything

that I was able to achieve is due to all the efforts that you put in raising me with the love

of technology and engineering in mind. To my wife, Natasha, for the unconditional love that

made all of this possible. To my daughter who made me the happiest father in the world, and

constantly reminded me that I need to take breaks from work and spend time with her. Being in

love and being loved was the most important factor that helped me to constantly move forward

towards my goals.

AY

iv

CONTRIBUTION OF AUTHORS

A version of Chapter 3, 4, 5, 8 has been published in Runtime Verification Conference as:

Yavolovsky A., Žefran M., Sistla A.P. (2016) Decision-Theoretic Monitoring of Cyber-

Physical Systems. In: Falcone Y., Sánchez C. (eds) Runtime Verification. RV 2016. Lecture

Notes in Computer Science, vol 10012. Springer, Cham

For this paper [1] I was the first author and primary investigator, responsible for the develop-

ment of methodology, implementation of the algorithm, design of the experiment and collection

of data. Miloš Žefran and A. Prasad Sistla have been supervisory authors, who contributed in

the concept formation and paper editing.

v

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Cyber-Physical Systems . 1
1.2 Motivation . 2
1.3 Real-Time Monitoring . 3
1.4 Hypothesis . 4
1.5 Thesis Organization . 5

2 BACKGROUND AND RELATED WORK 8
2.1 Assembling Monitoring of CPS 8
2.1.1 Sequences . 8
2.1.2 Safety Properties . 8
2.1.3 Automata . 9
2.1.4 Markov Chains . 9
2.1.5 Hidden Markov Chains . 10
2.1.6 Extended Hidden Markov Model 11
2.1.7 Probabilistic Hybrid Systems . 12
2.1.8 Monitors . 14
2.1.9 Accuracy Measures . 14
2.1.10 Monitoring Time . 14
2.1.11 Monitorability . 15
2.1.12 Threshold-Based Monitors . 16
2.2 Assembling a Decision-Theoretic Approach 18
2.2.1 Intelligent Agents and Decision Theory 18
2.2.2 Sequential Decision Problems 19
2.2.3 Sequential Decision Problems in Partially Observable Environ-

ments . 21
2.3 Related Work . 25

3 DECISION-THEORETIC MONITORING OF CPS 27
3.1 Decisions in Run-Time Monitoring Problems 27
3.2 Monitoring Safety Properties . 28
3.3 Monitoring Liveness Properties 29
3.4 Monitoring Rewards . 30
3.5 Approximation to Threshold-Based Monitors 31

4 POMDP-BASED MONITORING . 36
4.1 Monitor Design . 36

vi

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4.2 Monitoring Decision Rule . 38
4.3 POMDP-Monitor Policy . 41
4.4 Monitoring Autonomous Systems 45

5 PARAMETRIZATION AND PERFORMANCE OF POMDP-
BASED MONITORS . 47
5.1 Parametrization of POMDP-Based Monitor 47
5.2 Equivalent POMDP-Based Monitors 49
5.3 Simplest Reward Functions and Monitor Performance 50
5.3.1 Reward Functions with Single Non-Zero Reward Parameter . 51
5.3.1.1 Case 1: Gc is the Only Non-Zero Parameter 51
5.3.1.2 Case 2: Ga is the Only Non-Zero Parameter 52
5.3.1.3 Case 3: Lc is the Only Non-Zero Parameter 54
5.3.1.4 Case 4: La is the Only Non-Zero Parameter 55
5.3.2 Reward Functions with Multiple Non-Zero Reward Parameters 55
5.4 Performance of POMDP-Based Monitors 57
5.4.1 POMDP-Based Monitor with Horizon 1 60
5.4.2 POMDP-Based Monitor with Horizon 2 62
5.4.2.1 Lower and Upper bound for the Expected Reward 63
5.4.2.2 Reward Configurations Deteriorating Monitoring Performance. 67

6 MONITORING SYSTEMS WITH TERMINAL STRONGLY CON-
NECTED COMPONENTS . 70
6.1 Systems with Terminal Strongly Connected Components . . . 70
6.2 Monitoring-POMDP in Systems with TSCCs 73
6.3 Monitoring-POMDP in Simplified Case of Systems with TSCCs 76

7 DECISION-THEORETIC MONITORING TOOL 87
7.1 Purpose and Applications . 87
7.2 Architecture Design . 88
7.3 Monitoring Decision Rule Representation 91
7.4 Model Representation . 94
7.5 Using the Tool . 96
7.6 Availability . 98

8 EXPERIMENTAL EVALUATION . 99
8.1 Monitoring of Transmission System 99
8.2 Experiment Setup . 102
8.3 Results . 104

9 FUTURE WORK . 108
9.1 Alternative Monitoring Decision Rules 108

vii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

9.1.1 Adding More Non-Determinism into the Monitoring Decision
Rule . 108

9.1.2 Combining Multiple Decision Rules 110
9.2 Inverse Reinforcement Learning for Monitoring-POMDP . . . 113

10 CONCLUSIONS . 115

APPENDICES . 118
Appendix A . 119
Appendix B . 122
Appendix C . 124
Appendix D . 131

CITED LITERATURE . 135

VITA . 141

viii

LIST OF FIGURES

FIGURE PAGE
1 Monitoring algorithm. 29
2 POMCP search tree. 44
3 Linear functions in decision rule. 83
4 DTMT architecture. 90
5 Experimental model. 100
6 Experimental robot. 102
7 Acceptance accuracy vs. monitoring time. 106
8 Monitoring performance when combining multiple rejection conditions. 113

ix

LIST OF ABBREVIATIONS

API Application Programming Interface

CPS Cyber-Physical System

DTMT Decision-Theoretic Monitoring Tool

EHMM Extended Hidden Markov Model

EU Expected Utility

HMC Hidden Markov Chain

HS Hybrid System

IDE Integrated Developmental Environment

IoT Internet-of-Things

IRL Inverse Reinforcement Learning

LTL Linear Temporal Logic

MDP Markov Decision Process

MEU Maximum Expected Utility

NSF National Science Foundation

OS Operating System

PHA Probabilistic Hybrid Automata

PHS Probabilistic Hybrid System

x

LIST OF ABBREVIATIONS (Continued)

POMCP Partially Observable Monte-Carlo Planning

POMDP Partially Observable Markov Decision Process

PTSCC Persistent Terminal Strongly Connected Component

ROS Robot Operating System

RPM Revolutions Per Minute

TSCC Terminal Strongly Connected Component

QA Quality Assurance

UCB1 Upper Confidence Bounds

UIC University of Illinois at Chicago

xi

SUMMARY

Cyber-physical systems (CPS) represent ”engineered systems that are built from, and de-

pend upon, the seamless integration of computational algorithms and physical components”.

They can be found in such areas as aerospace, manufacturing, transportation, entertainment,

healthcare, and automotive. For some of these systems the top priority is correct functioning;

incorrect operation of systems like autonomous vehicles, medical devices or aircraft may lead

to catastrophic consequences. But formally proving system correctness is a challenging prob-

lem. In recent years, runtime monitoring, where a monitor observes the outputs of the system

and determines whether a system specification has been violated, has emerged as an attractive

alternative.

In this thesis, we focus on the decision-theoretic approach to monitoring of safety properties

in CPS. In particular, we formulate the monitoring problem as a Partially Observable Markov

Decision Process (POMDP) whereby deciding whether a run is safe corresponds to executing

the optimal policy of the monitoring POMDP. We show how Monte-Carlo planning algorithm

(POMCP) can be used to compute the optimal policy of the monitoring POMDP. The moni-

toring POMDP reward structure is naturally described with four parameters and an important

question is how it affects the monitoring performance, quantified through acceptance accuracy,

rejection accuracy and monitoring time. We analyze the performance of the POMDP-based

monitors for special choices of the reward structure and compare them with the performance of

the traditional threshold-based monitors. Our results show that using POMDPs we can some-

xii

SUMMARY (Continued)

times simultaneously improve both accuracies of the monitor while decreasing the monitoring

time.

Further, we study POMDP-based monitors for systems with terminal strongly connected

components. For this class of systems, we derive the expressions for the POMDP value function.

The expressions allow us to demonstrate how the POMDP-policy can take advantage of the

properties of the monitored system and thus provide an enhanced monitoring performance.

In order to study decision-theoretic monitors and experiment with them, we have developed

a software called Decision-Theoretic Monitoring Tool (DTMT). This tool implements the ar-

chitecture that allows easy integration of new monitoring decision rules and experimentation

with an arbitrary user-defined system and property models.

Finally, we evaluate POMDP monitors on an experimental robotic system. We simulate

the operation of a simplified transmission system on a mobile robot that was developed specif-

ically for this purpose. The experiments confirm that POMDP-based monitors provide an

improvement over traditional threshold-based approaches. Further, we show that POMDP-

based monitors implemented through POMCP can be used online even for large problems and

thus provide an attractive and flexible alternative to traditional threshold-based monitors.

xiii

CHAPTER 1

INTRODUCTION

1.1 Cyber-Physical Systems

The term Cyber-Physical System (CPS) became widely used in a recent decade. Cyber-

physical systems represent ”engineered systems that are built from, and depend upon, the

seamless integration of computational algorithms and physical components” [2].

Cyber-physical systems are all around us and more are being added every day. Examples

include completely autonomous self-driving vehicles, complex surgical robotic systems, smart

home systems, Internet of Things (IoT) devices and many more. Cyber-physical systems can

be found in such areas as aerospace, manufacturing, transportation, entertainment, healthcare,

and automotive.

Despite extensive research on the cyber and the physical aspects of systems, there are a

lot of challenges that have to be addressed when these components are integrated into a single

system. Physical and behavioral interactions involved at a system level combined with a number

of theoretical models and formal representations make it exceptionally hard to verify safety and

correctness. [3].

Generally, complexity that arises during a design, analysis, and validation of CPS is caused

by several reasons [4]. An interactive and inter-dependent behavior of cyber and physical

parts have to be considered when a system is designed. Also, typically, the semantic domains of

1

2

physical and cyber parts are very different. It is often the case that a physical system represents

continuous dynamics modeled with differential equations. Meanwhile, a cyber part represents

a discrete dynamics. Integration and abstraction of such systems pose a major challenge.

CPS technology is expected to transform the way people interact with engineered systems.

With a development and better understanding of the benefits of ”Smart Cities” and the IoT we

are able to take our life to a totally new level, that once could be imagined only in science-fiction

novels. Research advances in CPS promise to give answers on how to develop systems that have

a faster response time, are precise, dependable, highly efficient and exceptionally reliable [2].

1.2 Motivation

Both hardware and software parts of any CPS must be highly dependable and configurable.

However, for some systems the top priority is correct functioning under any external or inter-

nal conditions. Inconsistent operation of systems like autonomous vehicles, weapons, medical

devices, and aircrafts may lead to catastrophic consequences. In order to guarantee correct

functioning of the developed systems a lot of engineering resources are used. For example, in

aviation, over 50% of all required development resources are dedicated on certification [5]. A

special attention is dedicated to the systems, which if failed may lead to conditions that are

determined to be unacceptable. Such systems are called safety-critical systems [6].

It’s crucial that correctness and safety are guaranteed for the safety-critical systems, but

proving such properties is a challenging problem. Some systems might be exceedingly large and

have great complexity caused by the number of different involved domains. At the same time,

3

another challenge is to define an approach that will be easy to configure and fast enough to be

applicable for large systems.

1.3 Real-Time Monitoring

In some cases, a requirement that the system operation is correct in any circumstance may

be slightly relaxed. Instead, a substantial list of test scenarios may be generated and used

during the quality assurance (QA) process. Clearly, even though it may be shown that system

performs correctly for these testing scenarios, it does not verify in general the complete system.

Formal verification techniques represent a class of approaches that may be used to prove

the correctness of a system. However, those techniques might not be feasible for some large

real-world applications, especially those including numerous controls and networked micropro-

cessors. It has been shown that the problem of verification is in general undecidable [7].

An alternative way to guarantee correctness is to monitor the behavior in real-time. This is

particularly practical for a sufficiently large number of systems that may be implemented using

fail-safe procedures. A number of different challenges arise for the monitoring, e.g. whether the

system is fully or partially observable, and whether transitions are non-deterministic.

In previous work, real-time safety monitoring of CPS is based on the probability estimation

that an execution is ”bad” [8–10]. In our work, we are looking to develop decision rules that

are able to improve on existing monitoring approaches. We are interested in seeing the monitor

as a decision system, which is penalized for acting incorrectly and rewarded for performing

well. This represents a traditional decision-theoretic view of the monitoring problem. Our goal

4

is to define, solve and analyze properties of the decision-theoretic monitors for cyber-physical

systems.

1.4 Hypothesis

Every monitoring technique leads to a certain expectation of the set of outcomes, which pri-

marily are defined by the accuracy and monitoring time. In this thesis, the primary focus was

towards decision-theoretic monitoring approach, specifically the application of Partially Observ-

able Markov Decision Processes (POMDPs). The monitoring accuracy and time to correctly

distinguish a failure are determined by the rewards and penalties used to guide the decision of

the monitoring POMDP. The central claim of this thesis is:

The decision-theoretic monitoring approach based on POMDPs may significantly improve

performance measures of safety properties monitoring in CPS, when compared to threshold-

based approach.

While threshold-based monitors employ the probability whether a perceived set of system

outputs was generated in a ”good” or ”bad” execution, this might not capture certain aspects

of monitored systems, and, therefore, would not take advantage of that. Our expectation is

that POMDP-based monitors declare decision rule which is more advanced, as it considers a

combination of current data together with predicted variants of the future.

5

1.5 Thesis Organization

Chapter 2 starts by listing the background topics and theoretical foundations that are

needed for the further development of the thesis subject. In the same chapter, we list and

discuss related work on the relevant subjects, and identify how our work is different.

In Chapter 3 we initiate a general discussion on the decision-theoretic approach for CPS. We

define the set of actions for decision-theoretic monitors, and propose a set of rewards that are

required in order to derive the decision rule of a rational decision-theoretic monitoring agent.

We continue by describing the previously studied threshold-based monitors in the decision-

theoretic framework and formally define a way to approximate such monitors using a finite set

of computations.

POMDP-based monitoring is introduced in Chapter 4. First of all, we introduce the set of

general building blocks used to specify a POMDP, and specifically indicate how a monitoring

problem may be formally represented as a monitoring-POMDP. We present the decision rules

of the monitoring-POMDP and continue with the search of the optimal POMDP policy that

maximizes the total cost of each monitoring action. We show that monitoring problem defined in

the form of the POMDP is rather complex while solving even small POMDPs exactly is known to

be computationally intractable. Thus, we define an adapted Partially Observable Monte Carlo

Planning (POMCP) algorithm for monitoring, which we propose as a recommended approach

considering specifics of the monitoring problem. At this time we also explain that to make

POMDP-based monitoring applicable it is required that systems are fully autonomous or a set

of control inputs is fully given in advance.

6

In Chapter 5 we focus on the parametrization of POMDP-based monitors. We identify that

POMDP-based monitoring decision depends on the cost of taking a specific action and a depth

of POMDP horizon. We show how to reduce the total number of reward values participating

in the monitoring-POMDP value function, and identify classes of reward assignments that lead

to equivalent monitoring performance. Here we start comparing the class of POMDP-based

monitors with a class of threshold-based monitors. In order to do so, we give a definition that

formalizes how a pair of monitoring approaches can be compared. We show that POMDP-

based monitors represent a class of conservative monitors, i.e. detect a failure eventually in

every ”bad” execution, when configured rationally to do so. We study POMDP-based monitors

with horizons h = 1 and h = 2 and give the conditions on rewards that provably make POMDP-

based monitors equivalent or less efficient when compared to an approximation of threshold-

based monitors.

From considering a general set of problems we continue into a specific class of systems, which

are characterized by the terminal strongly connected components (TSCCs). This is discussed

in Chapter 6. We use the property of TSCC in conjunction with the specifics of the monitoring

problem to simplify the decision rule of POMDP-based monitors. As a result, we obtain a

set of expressions for the POMDP value functions, that are independent of the probability

functions on the system outputs, which are commonly present in the case of general POMDP.

We introduce further assumptions that allow us to reduce decision rules of POMDP-based

monitor to a condition that compares a probability that system has not yet failed with some

probability interval. We discuss how resulting decision rule is related to the decision procedure

7

of threshold-based monitors, and what are the conditions when POMDP-based approach may

take the lead.

Chapter 7 is dedicated to a Decision-Theoretic Monitoring Tool (DTMT), which is a tool

that was developed and implemented to support our experimental study. We present the

architecture design of DTMT, and show how it may be used with an arbitrary decision rule,

system, and a monitored property. We list the parameters and modes in which DTMT may

be used and give the instructions on how the tool may be accessed on the Internet for a local

deployment.

In Chapter 8 we present an experimental analysis of the POMDP-based monitor. To perform

an experiment we came up with the model of a simplified transmission system. We present

details about the way the experiment was conducted and the hardware components that have

been built together to collect real sensor data. We show and discuss the experimental results,

that confirm that POMDP-based monitors may be configured to perform better than tradition

threshold-based approach.

Chapter 9 discusses few possible extensions to our work. In particular, we suggest investiga-

tion of the variation of threshold-based monitors such that multiple decision rules are combined

together in a deterministic or non-deterministic fashion. We also include discussion about the

Inverse Reinforcement Learning (IRL) technique as an approach for recovering the POMDP

reward function from the policy.

Finally, we present a concluding summary of the thesis in Chapter 10.

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Assembling Monitoring of CPS

In this section we present the notions necessary for a development of a core theory behind

a formal representation of CPS and a monitored property. Most of the definitions, unless

explicitly indicated, are based on the work done in [8–10].

2.1.1 Sequences

For the given set S, let S∗ and Sω represent the set of finite and infinite sequences over the

elements of S respectively. The length of a finite sequence α over the set S is represented as

|α|. For a potentially infinite sequence σ = s0, s1, . . . of elements from S and for any arbitrary

value of i ≥ 0, σ[0, i] represents the prefix of σ up to si. The concatenation of two sequences α1

and α2 is denoted as α1α2, where α1 is a finite sequence, and α2 is either a finite or an infinite

sequence over S.

2.1.2 Safety Properties

For any infinite sequence σ ∈ Sω the set of all prefixes of σ is represented as prefixes(σ).

If we consider any subset C ⊆ Sω, then the set of all prefixes of C is represented by a union

prefixes(C) = ∪σ∈C
(

prefixes(σ)
)
. A set C ⊆ Sω is a safety property if for any σ ∈ Sω satisfying

the condition prefixes(σ) ⊆ prefixes(C) it also holds that σ ∈ C.

8

9

2.1.3 Automata

A deterministic Streett automaton A is a tuple (Q,Σ, δ, q0, F). The set Q represents a set

of states, while the set Σ defines an input alphabet. A transition function of the automaton

is δ : Q × Σ → Q, q0 is the initial state and F gives a collection of pairs of subsets of states.

Given an infinite input sequence σ = σ0, . . . let r = r0, . . . , ri, . . . represent a run of automaton

over the σ, where r0 = q0 and ∀i ≥ 0, ri+1 = δ(ri, σi). An accepting run is such that for all the

pairs (C,D) ∈ F the existance of infinitely many i such that ri ∈ C implies the existance of

infinitely many j such that rj ∈ D. Acceptance of an input string by the automaton is defined

by the existance of an accepting run on that string, which starts from the initial state q0. L(A)

is defined to represent a set of input strings accepted by the automaton A. A deterministic

Streett automaton A is called a safety automaton if F = {({qerror}, ∅)}, i.e. contains a single

pair, where qerror is a sink state. All the transitions from state qerror go back to itself. The state

qerror is called the error state. It follows from the definition that the infinite input sequence is

accepted iff the run defined on these inputs does not contain the error state.

2.1.4 Markov Chains

A Markov chain is defined as a triple G = (S,R, φ). The set S represents a countable

set of states, while R ⊆ S × S establishes a total binary relation on the set S. The function

φ : R → (0, 1] represents a probability that a system switches from the state s to state t in a

single step. It is required that for any state s ∈ S, the sum
∑

(s,t)∈R φ
(
(s, t)

)
= 1. By considering

a sequence of states s0, s1, . . . , sn such that every pair of consequent states (si, si+1) ∈ R for

0 ≤ i < n we obtain a finite path p of the Markov chain. Provided that p is a non-zero length

10

path the probability of the path is calculated as φ(p) =
∏

0≤i<n φ
(
(si, si+1)

)
. The probability

of zero length path is assumed to be φ(p) = 1. The infinite paths of G are defined analogously.

Stochastic systems given as Markov Chains [11] can be monitored for the satisfaction of a

property given by an automaton or a temporal formula.

In order to specify properties over the sequences of states of a Markov chain G we use

automata with input symbols from the state space of G. It has been shown that, for any

automaton A, L(A) is measurable [12].

Monitors that we would like to define are supposed to react on the sequences of system states

modeled by G. A monitor ensures that operation of a system satisfies the property given by an

automaton A. However, we consider systems where a system state is not directly observable.

Instead, only the sequences of system outputs are available.

2.1.5 Hidden Markov Chains

A Hidden Markov Chain (HMC) [13] H = (G,Σ, O, r0) is a quadruple such that G =

(S,R, φ) is a Markov chain, Σ is a set of output symbols, O : S → Σ is an output function, and

r0 ∈ S is an initial state. Given the state s ∈ S function O(s) represents the output of the H

when system is in that state. In the context of HMC an actual state is not observable. The

only information that is available for the external observer is from a set of generated outputs.

In the definition of the HMC given above there is no mention of the probabilistic observation

model, that would define the probability of an observation from the set O for the given state.

Such observation function can be frequently seen in traditional definitions of HMC considered in

literature. Traditional HMC models can be converted to the representation with deterministic

11

observations by substituting the state space with the product S×Σ and adjusting the function

φ of the underlying Markov chain.

Monitoring of systems modeled as HMC reduces to using the observed output symbols

in order to infer the satisfiability of the system execution with respect to a given property.

Although HMC represents a convenient model to represent the class of partially observable

systems it does not extend to a more general scenario, where system state is hybrid and consists

of continuous and discrete variables.

2.1.6 Extended Hidden Markov Model

An Extended Hidden Markov Model [9] is an extension over the traditional HMCs for the

stochastic dynamic systems over discrete time with both discrete and continuous variables. Let

N and R represent the set of natural and real numbers respectively.

Consider a vector σ = (σ0, . . . , σn−1), such that every σi ∈ {0, 1}. We define a hybrid

domain Sσ = T0 × · · · × Tn−1, where Ti = N or Ti = R depending on whether σi = 0 or σi = 1

respectively.

A probability function over the hybrid domain Sσ is defined as follows. A function µ : Sσ →

[0,∞] is a probability function if it is a measurable function and
∑

x1∈Nn1

∫
Rn2 µ(x1, x2)dx2 = 1,

where x1 is a vector of n1 variables such that each is in N, and x2 is a vector of n2 variables such

that each is in R. The integration is assumed to be done using a Lebesgue integral [14]. In the

summation, at first, the function µ is integrated over the continuous variables, while discrete

variables are fixed, and then everything is summed up over all the assignments of the discrete

variables. Function µ represents a standard density function if Sσ = Rn, i.e. n1 = 0.

12

An Extended Hidden Markov Model is defined as follows. Let n1, n2,m1,m2 ≥ 0 be in-

tegers and σ1, σ2 be the vectors 0n11n2 and 0m11m2 , respectively. Intuitively, n1, n2 give the

number of discrete and continuous state variables, while m1,m2 gives the number of discrete

and continuous outputs of the system being described. An Extended Hidden Markov Model

(EHMM) H of dimensions (n1, n2,m1,m2), is a triple (f, g, µ) defined as follows. The function

f : (Sσ1 × Sσ1)→ [0,∞) is a next state function. For any fixed value x ∈ Sσ1 , function f(x, y)

represents a probability function on Sσ1 in y. A function g : (Sσ1 × Sσ2) → [0,∞) is an output

function. For any appropriate fixed value x ∈ Sσ1 , function g(x, z) represents a probability

function on Sσ2 in z. To simplify the notation, we will denote Sσ1 with S, and Sσ2 with Σ.

Both functions f(x, y) and g(x, z) are measurable in both arguments, i.e. for a fixed value of

first argument they these functions are measurable in the second argument, and vice versa.

Finally, µ describes the probability of the initial state, i.e., it is a probability function on Sσ1 .

In our work we are mostly focused on systems that produce observations based on sensor

readings. It’s a common approach to acquire readings from those sensors using analog-to-digital

converters. Therefore, we assume that the set of output symbols is discrete and finite. Thus,

in the definition of EHMMs we assume that m2 = 0, i.e. there are no observations that come

from the continuous space.

2.1.7 Probabilistic Hybrid Systems

A hybrid system (HS) is a dynamic system whose evolution is characterized by both symbolic

(discrete) and continuous variables. We are interested in a particular subclass of hybrid systems,

probabilistic hybrid systems(PHS) [9, 15].

13

Formally, a probabilistic hybrid system A is a tuple (Q,V,∆t, E , T , c0). The set Q represents

a countable set of discrete modes, i.e. discrete states of A. The set V represents all the state

variables, output variables and the variables representing noise processes. For every mode q ∈ Q

in A the function E defines a set of equations. The evolution of the continuous state is given

with discrete-time state equations. The value of output and noise variables is given through

corresponding equations at time step t + ∆t, where ∆t represents the sampling time. The

transitions are given as pairs (φ, p), such that φ is a measurable predicate that is computed

over a subset of continuous or discrete state variable, while p is a probability distribution over

Q. The function T associates a set of transition pairs to every mode q ∈ Q. Finally, a discrete

mode and an initial continuous probability distribution on state variables is given by c0. It is

expected that the equations defining continuous state variables also employ the noise variables,

while the set of transition pairs for every mode declare guard conditions that are mutually

exclusive and exhaustive.

For every PHS it is possible to define a corresponding EHMM. Indeed, for every mode q

the dynamic evolution of the PHS is given by the set of difference equations. A transition from

any mode q to a mode q′ is probabilistic and occurs with a probability distribution p when a

specific guard condition φ is satisfied, i.e. (φ, p) ∈ T (q).

The semantics of PHS A may be represented in terms of the corresponding EHMM HA.

This is easy to conclude due to the lack of deterministic resets to variables in the transitions.

14

2.1.8 Monitors

Let Σ be a set of output symbols generated by the monitored system modeled as an EHMM

H. Formally [8], a monitor M : Σ∗ → {0, 1} is a function such that for any α ∈ Σ∗, if M(α) = 0

then M(αβ) = 0 for every β ∈ Σ∗. A finite sequence α ∈ Σ∗ is called to be rejected by the

monitor M if M(α) = 0. Otherwise, if M(α) = 1 then we say that M accepts α. By definition,

every extension of rejected sequence α is also rejected by M . If α represents a prefix of infinite

sequence σ ∈ Σω and α is rejected by M then we say that M rejects σ. If σ has no prefix

rejected by M then it is accepted by the monitor.

2.1.9 Accuracy Measures

Let P be a safety automaton on the states of EHMM H. The acceptance accuracy [8] of

the monitor M for the property P with respect to the EHMM H, defined as AA(M,H,P),

is ”the conditional probability that an output sequence generated by the system is accepted

by M , given that it is in L(P)” [8]. The rejection accuracy of M for P with respect to H,

defined by RA(M,H,P) represents ”the probability that an output sequence generated by the

system is rejected by M , given that it is not in L(P)” [8]. Intuitively, the acceptance accuracy

represents the probability that good runs generated by H are accepted by the monitor M , while

the rejection accuracy is the probability that bad runs are rejected.

2.1.10 Monitoring Time

In addition to the accuracy measures of a monitor, it is important to consider the time it

takes to detect a failure in a system execution. Definition of the monitoring time can be given

15

only for the case when a safety property is considered, i.e. there is a valid definition of ”good”

and ”bad”. Monitoring time [10] is formally defined as follows.

Let σ be a bad execution of EHMM H. A monitor M rejects the execution σ according to

a safety property P. Any prefix of σ that is rejected by P is called a bad prefix of σ. In order

to represent the monitoring time of the monitor M it is necessary to consider the smallest bad

prefix of σ, i.e. such a prefix of σ that the failure has just occurred. Assume that σ[0 : t] is

the smallest bad prefix of σ, however, the time instance when the failure was detected by the

monitor is t′. The difference t′ − t represents the elapsed time before the monitor signaled a

failure. The monitoring time MTIME(M) denotes an expectation of this elapsed time under

the condition that an execution was rejected correctly, i.e. the execution was bad.

Note, that this definition does not assume or enforce that the monitor M rejects the exe-

cution σ immediately at or after time instance t, i.e. it is possible that t′ < t. In that case the

difference t′ − t may be negative, and also the expectation MTIME(M) might be negative.

2.1.11 Monitorability

As we are concerned about the values of accuracy measures that can be achieved by applying

a certain monitor, we are also interested whether those values may be arbitrary high. An answer

to this question is partially given by the definition of monitorability [8].

A system H is called to be strongly monitorable with respect to the property P if there exists

a monitor M such that AA(M,H,P) = RA(M,H,P) = 1. Strong monitorability essentially

declares that there exists a monitor that is able to reject all bad execution and accept all

good executions. Such property is in general difficult to satisfy. A system H is called to be

16

monitorable if for any x ∈ [0, 1) there exists a monitor M , such that AA(M,H,P) ≥ x and

RA(M,H,P) ≥ x. Intuitively, a system is monitorable if given enough observations the monitor

can distinguish a good execution from a bad execution with arbitrary high probability.

It has been shown that in [16], the problem of checking monitorability for finite state systems

is decidable in polynomial time.

2.1.12 Threshold-Based Monitors

A threshold-based approach for monitoring of a cyber-physical system with respect to a

safety or a liveness property was given and studied in [8–10]. The operation of the threshold-

based monitor is controlled by the selected value z of a probability threshold and is given as

follows.

We define a monitor for the system specified as EHMM H with respect to a property P. At

every step of a system execution a new output symbol is observed. Let α be a finite sequence

of outputs seen from the beginning of the execution until now. The acceptance probability [8]

AccProb(α) represents the conditional probability that the system execution that originally

generated the output sequence α is accepted by the property P. Similarly, a rejection probability

RejProb(α) represents a conditional probability that the system execution is rejected by the

property. According to these definitions for every finite output sequence α it is obvious to see

that AccProb(α) +RejProb(α) = 1.

The threshold-based monitors work by comparing a value of RejProb(α) with a threshold-

value z ∈ [0, 1]. The monitor rejects an execution that generated an output sequence α when

RejProb(α) ≥ z. In this case z represents a rejection threshold. Similarly, the threshold-based

17

monitors can be defined with respect to the AccProb(α). Then the monitor rejects an execution

if AccProb(α) ≤ 1− z, where 1− z represents an acceptance threshold.

Formally the threshold-based monitors are defined as follows:

M(α) =


0 RejProb(α) ≥ z

1 RejProb(α) < z

=


0 AccProb(α) ≤ 1− z

1 AccProb(α) > 1− z

(2.1)

From the definition it is clear that by selecting different values of the rejection threshold z

the monitor will have different acceptance and rejection accuracy (AA and RA). Specifically,

for the case of z = 0 the monitor will reject every execution of the system H, and, therefore,

RA = 1, however AA = 0, since all good executions will be rejected. On the other side, for

the case of z = 1 the monitor will accept any execution, and imply the accuracies RA = 0 and

AA = 1. It has been shown [8] that given the system that is monitorable with respect to the

property the accuraccies AA and RA approach 1 as z is approaching 1.

The value of theRejProb(α) can be calculated for certain systems. E.g., ifH and P are finite

systems, then their product can be constructed and RejProb(α) can be obtained using standard

techniques [17]. However, the above approach would not work for the case of infinite systems,

and also may not be efficient for the case of finite systems. Due to these reasons, implementation

of the threshold-based monitors presented in [8–10] is done by the approximation of RejProb(α)

with a lower bound. The lower bound is defined by the probability that the current state of

the system violates the property.

18

2.2 Assembling a Decision-Theoretic Approach

2.2.1 Intelligent Agents and Decision Theory

When referring to the term of intelligent agents we will assume the definition given in [18].

A notion of an intelligent agent is one of the basics of a modern approach to the Artificial

Intelligence. Every agent simply represents something that acts, but a rational agent is acting

to achieve the best possible outcome. When there is no way to evaluate an outcome exactly,

e.g. under uncertainty, the rational agent acts by maximizing the expected outcome given the

information about an environment. In a case when there is a limited amount of information

available to the agent, or time to make all the necessary computations is bounded the agent is

said to have a limited rationality.

Rational agents can be built by implementing a system that follows the rules defined by

the decision theory. While the probability theory describes how agent’s belief is related to a

perception of an environment, the utility theory specifies goals that the agent wants to achieve.

The decision theory combines probability theory and utility theory together to describe what

the rational agent should do [18].

A goal of the utility theory is to define a way to distinguish between the values of different

possible outcomes of various actions. This leads to the definition of a fundamental idea of

the decision theory: a principle of a maximum expected utility (MEU). Let a represent agent’s

action and EU(a) be the expected utility function, which quantifies numerically the desirability

of an action using a probabilistic model of the outcomes possible in the future. According to the

19

MEU principle, the rational agent should choose the action that results in the highest expected

utility.

action = arg max
a

EU(a) (2.2)

The simplest decision theoretic agent will choose an action based on the attractiveness of

the immediate outcomes only. In this case, expected utility function for a given action is simply

a weighted sum over the immediately obtained utilities. Alternatively, by considering known

information about the model it is possible to obtain the expectation of utility function over the

finite or infinite future horizon (assuming convergence for the expected utility value).

2.2.2 Sequential Decision Problems

When the decision of an agent on which action to select does not depend on the decisions

made in the past, the problem is called to be an episodic decision problem. In that case, the

operation of an agent is separated into atomic independent episodes with its own percepts and

a single selected action. However, in some cases, the current decision may affect all the future

decisions. In that case, a problem of action selecting is called a sequential decision problem.

For the fully observable environments with Markovian state transitions the sequential de-

cision problems are commonly defined with a formal model called Markov Decision Process

(MDP) [18]. Formally MDP is defined as a tuple {S,A, T,R, γ}, where S is a finite set of

states, A is a finite set of actions, T is a probabilistic transition function, R is a reward function

and γ is a discount factor. For any given pair of states s, s′ ∈ S and action a ∈ A the transition

function T (s, a, s′) defines the probability Pr(s′|s, a), i.e. probability that by executing action

a from the state s the agent will end up in the state s′. The reward function R : S×A→ R de-

20

fines an immediate cost of executing an action from the given state. A discount factor γ ∈ [0, 1]

defines the importance of future rewards in choosing which action to execute next.

During the sequential decision process, at each step, an agent has to decide which action to

perform. A function π : S → A is a policy of the MDP that defines the corresponding action

for every state from S. The policy is characterized by the value function V (π), that represents

the expected utility gained by the agent for every state when the policy π is followed.

V (π) = R
(
s, π(s)

)
+ γ

∑
s′∈S

T
(
s, π(s), s′

)
V π(s′) (2.3)

The goal of an agent, and the solution of the MDP, is an optimal policy π∗ that would

maximize the value function V for every state s ∈ S. The optimal value function is

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

]
(2.4)

Optimal value function is calculated by employing value-iteration [19] using the Bellman

equation:

Vt+1(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)Vt(s
′)

]
(2.5)

While quantifying the expected utility for every policy there is a question of consideration

of a finite or infinite horizon to make a decision. With a finite horizon, an agent is calculating

the expected reward only for the finite number of future steps. This makes an optimal policy

function for the finite horizon to be a nonstationary function, which can change over time. An

21

optimal policy for a case of the infinite horizon is, however, a stationary function, since agent’s

decision is the same independently from the time.

The value-iteration algorithm computes the optimal value function by calculating a se-

quence of optimal finite-horizon value functions V ∗0 , V
∗
1 , . . . , V

∗
t until the convergence condition

max
s∈S

∣∣Vt+1(s)− Vt(s)
∣∣ < ε is satisfied [20].

The value-iteration algorithm leads into the implicit MDP optimal policy defined with a

Q-function as follows:

Q(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)V ∗(s′)

π∗(s) = arg max
a

Q(s, a)

(2.6)

2.2.3 Sequential Decision Problems in Partially Observable Environments

In the case of partially observable systems, a sequential decision process requires an exten-

sion of the MDP model. A Partially Observable Markov Decision Process (POMDP) [18] is

aimed to take limited observability of the state into consideration. POMDP is defined as a tuple

(S,A, T,R,O,Z, γ). Set of states S, set of actions A, transition function T , reward function R

and discount factor γ are assumed to be same as in fully observable MDP. For every state s the

agent may perceive an observation from the finite set O, but since the environment is partially

observable this perception is nondeterministic. An observation function Z(o, s, a) defines the

probability Pr(o|s, a), i.e. the probability that observation o is perceived after executing action

a from the state s.

22

At any given time the agent is not able to observe and identify the exact state of the

underlying POMDP model. The only information that is observable and available for the use

of the agent at time t is a history or a trajectory, which may be represented as a sequence of

pairs < Ai, Oi >.

H =< A0, O0 >,< A1, O1 >,< A2, O2 >, ..., < At, Ot > (2.7)

However, as time goes forward this representation of the history grows. Therefore, it is

convenient to compress the information about the past history into the belief state - a probability

distribution over the states of the POMDP. It has been shown that such a representation of

the belief state is sufficient to summarize the observable history of a POMDP without the loss

of generality [21]. Simply saying, the belief state of a POMDP represents the set of states that

an agent might be in and their probability. Usually, it is assumed that an initial belief state b0,

that represents information about the states before the first action is executed, is given. For the

given belief state and any state s ∈ S, a value of the b(s) represents agent’s belief (probability)

of occupying the state s.

Propagation of the belief state forward, essentially, represents a filtering task. Calculation

of the new belief state given the current belief, chosen action and observation is usually called

the forward update. Let b(s) represent the agent’s belief of occupying the state s ∈ S, then if

23

an action a is executed and the observation o is perceived we may compute the next belief state

b′ for every choice of next state s′ ∈ S as

b′(s′) = βZ(o, s′, a)
∑
s∈S

T (s, a, s′)b(s) (2.8)

Normalizing coefficient β is chosen to make
∑
s′∈S

b′(s′) = 1.

Every POMDP can be converted into a belief-state MDP. The state space of the belief-state

MDP is continuous and consists of possible belief states of the underlying POMDP. However,

belief states are fully observable, and, therefore, satisfy requirements of the MDP. Belief-state

MDP is formally a tuple (Bs, A, T b, Rb, γ). The set of actions A and the discount factor γ are

the same as in the POMDP. Bs is the continuous space of beliefs over the state space S (the

set of all possible probability distributions over S). The transition function T b : Bs × A→ Bs

is defined as:

T b(s) = Pr(b′|b, a) =
∑
o∈O

Pr(b′|b, o)Pr(o|b, a) =

=
∑
o∈O

Pr(b′|b, a, o)
∑
s′∈S

Z(o, s′, a)
∑
s∈S

T (s, a, s′)b(s)

(2.9)

Here Pr(b′|b, a, o) is assumed to be 1 iff boa = b′, where boa is the belief state after the action a

has been executed from the belief state b and the observation o was perceived. Reward function

Rb : B ×A→ R is

Rb(b, a) =
∑
s∈S

b(s)R(s, a) (2.10)

24

From the constructed belief-state MDP it may be seen that choosing an action of the

POMDP depends only on the current observable belief. The optimal POMDP policy is then

π∗ : B → A. Similarly to the MDP, the implicit policy of the POMDP can be extracted from

the following equations:

Q(b, a) =
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗(bao)

π∗(b) = arg max
a∈A

Q(b, a)

(2.11)

A complete decision cycle of the POMDP can be described with the following steps:

1. For the given belief b execute the action a = π∗(b).

2. Perceive an observation o.

3. Forward update the current belief state b given the action a and the observation o.

POMDP value iteration is the MDP value iteration reduced to the continuous belief-state

MDP. The value of the belief state b for the horizon t+ 1 is recursively calculated based on the

value at the horizon t:

Vt+1(b) = max
a∈A

[∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)Vt(bao)
]

Pr(o|a, b) =
∑
s′∈S

Z(s′, a, o)
∑
s∈S

T (s, a, s′)b(s)

(2.12)

The main problems of the exact POMDP solvers are defined as a ”curse of dimensionality”,

and a ”curse of history” [22]. Both problems are directly related to the complexity of the

25

POMDP policy search which is influenced by a dimensionality of the belief state, i.e. a number

of states, and an exponential growth of the search space with the increase of a planning horizon.

2.3 Related Work

In our work we focus on the broad class of CPS, however, systems we are mostly interested in

are commonly modeled as hybrid systems. A lot of literature has been focused on the modeling

and control of hybrid systems [23–26]. Often, safety requirements are described by specifying

states which are permissible or are forbidden.

Safety and liveness verification for hybrid systems has been extensively studied [7, 27]. It

was shown that this verification problem is in general undecidable [7]. The problem of fault

detection and diagnosis of hybrid automata has been studied in [15,28–31]. In these works the

goal was to identify when the automaton enters a fail state, which is very different from the

monitoring a system with respect to a property given in an expressive formalism such as Linear

Temporal Logic (LTL) [32].

Control synthesis for stochastic discrete-event systems has been studied in [33,34] but only

finite-state systems with directly observable state have been considered. In like manner, only the

case of deterministic finite-state systems has been considered in the works on diagnosability of

partially-observable discrete-event systems. Runtime monitoring for software programs modeled

as (finite-state) HMMs has been studied in [36].

The question if the safety requirements can be intergrated into the design process was

studied in [37–39]. Such an approach would make the verification or monitoring unnecessary.

26

However, these methods are not yet able to reasonably address systems with complex continuous

dynamics, and are not suitable for stochastic systems.

An approach for monitoring and checking quantitative and probabilistic properties of real-

time systems has been given in [40, 41]. A game-theoretic framework was employed for the

monitoring interfaces for faults in [42], and in [43, 44] a conservative runtime monitors were

proposed. However, none of these works are meant to work for the case of hybrid systems.

Issues of safety have been studied using the POMDP formalism [45–47]. However, in all of

these works safety was considered to be a part of the system internally, i.e., actions need to

be chosen to avoid or reduce the risk of failures. This significantly differs from the decision-

theoretical analysis that we employ. Instead of controlling the system in a safe way, we design

a monitoring system that needs to decide timely and with a reasonable accuracy if the system

operation has failed. Thus monitoring POMDP identifies a policy that drives the action of the

monitor and not the monitored system. Further, we consider systems with continuous state

spaces.

CHAPTER 3

DECISION-THEORETIC MONITORING OF CPS

3.1 Decisions in Run-Time Monitoring Problems

The definition of the monitor was given in Section 2.1.8, however, no actions or decisions

have been mentioned yet. It is obvious that one action that is important for every monitor is

to raise an Alarm when a violation of the property is detected. Another action is the opposite

of the first one and is essentially defined as not raising the Alarm. We call it Continue, since a

monitor allows the system to continue execution.

In our work we see a decision-theoretic monitor as an intelligent monitoting agent that is

required to pick one of the actions from the set A = {Alarm,Continue}. Even though this

might not be the only way to define actions for a decision-theoretic monitor we find that every

monitor should have at least these two actions and will thus not discuss this question further.

Note that actions of the monitoring agent have a different effect on the system execution.

The action Continue allows the system execution to proceed, while the action Alarm is a

terminal action: the system state entered after the action Alarm has been executed is treated

as terminal.

27

28

A rational agent chooses an action that maximizes the expected utility for that action. Let

α be a sequence of outputs perceived from the EHMM H. Then, in general, the decision rule

of a rational monitoring agent may be formulated as:

action = arg max
a∈A

EUa(α) (3.1)

The value of EUa(α) is commonly defined by considering the uncertainties and non-determinism

of a monitored system, as well as the numerical values of rewards associated with certain actions

and system states.

3.2 Monitoring Safety Properties

Let A be a PHS (with the associated EHMM HA) and assume that the property that has

to be monitored is defined by the (deterministic) safety automaton P. Let B be the product,

B = A×P (see [9] for details).

Intuitively, the execution of B corresponds to the run of A with P being simultaneously

driven by the sequence of states of A. Finally, let HB be the EHMM associated with B.

Threshold-based monitors for safety properties, as defined in [9], compute the probability

that a sequence of observed outputs is generated by the execution that is rejected by the

property P; this probability is approximated by the probability (belief) that the current state

of B is bad (the second component of the combined state of B is a bad state of P). If this

probability is greater than the given threshold, the monitor raises an alarm.

29

We generalize the algorithm and extend it by substituting the threshold-based approach

with a generic decision procedure. Figure 1 demonstrates the basic flow and building blocks of

the monitoring process.

Monitor M
Belief Update

Cyber-Physical
System

A

Product
Automaton

B = A x P

Decision
Procedure

Runtime
Observation

Property P

Specification

 Action

Figure 1. Monitoring algorithm.

Run-time outputs that are generated by the system A are used to maintain the belief state

of the product automaton B. This belief state is used by the decision procedure to select an

action.

3.3 Monitoring Liveness Properties

Monitoring of properties specified as a liveness automata can be done by approximating

it with safety automata using methods given in [43, 44]. Consider a Büchi automaton A that

specifies a liveness property. We define a safety automaton A′ by introducing the parametric

30

value T ′, which defines a value of timeout. An original automaton A is modified by the addition

of the failure state, and transitions to that state happen if an accepting state is not reached

within an interval of time T ′ after it was last visited or from the start. It’s obvious that

automaton A′ might reject more executions than A. However, the automaton A′ will reject

every execution that would be rejected by A.

3.4 Monitoring Rewards

Rationality of the monitoring agent is driven by the costs associated with the execution of

a particular action. We define a reward function for all s ∈ S and a ∈ A as follows. Assume

that we can represent the set of states S (of HB) as a union Sgood ∪ Sbad, where Sbad is a set of

states that represent a failure, and Sgood is a complement of Sbad. The reward function is

R(s, a) =



Rcg ∈ R≥0 s ∈ Sgood, a = Continue

Rag ∈ R≤0 s ∈ Sgood, a = Alarm

Rcb ∈ R≤0 s ∈ Sbad, a = Continue

Rab ∈ R≥0 s ∈ Sbad, a = Alarm

(3.2)

where Rcg ≥ 0 ≥ Rcb, Rab ≥ 0 ≥ Rag .

The values of rewards (Rcg, R
c
b, R

a
g , R

a
b) define the monitor and will affect its performance

in terms of an acceptance and rejection accuracies, a monitoring time. Given a state s, the

optimal action is to Continue if the state is good, and Alarm if the state is bad. However,

when system states are not fully observable, choosing any action entails certain risks. Those

31

risks are quantified by the values of rewards so that choosing a wrong action will gain a smaller

reward. To emphasize undesirability of wrong actions we assign a negative value to Rcb and Rag .

Note that every time when a failure has not been detected a penalty in the form of Rcb will be

accumulated. Note also that a penalty for the false alarm will only be assigned once since the

action Alarm is terminal.

We suggest that for the analysis of function calculated with the rewards it is convenient to

substitute the rewards (Rcg, R
c
b, R

a
g , R

a
b) as follows:

Rcg = Gc Rcb = −Lc

Rab = Ga Rag = −La
(3.3)

In the Equation 3.3 Gc and Ga represent the gain of executing actions Continue and Alarm

respectively, while Lc and La represent a value of loss. Each of the Gc, Ga, Lc, La is a non-

negative real number, and this explains the appearance of a negative sign in the definition of

Rcb and Rag .

3.5 Approximation to Threshold-Based Monitors

A general definition of a threshold-based approach for the monitoring safety properties of

CPS was introduced in Section 2.1.12. Let atr ∈ [0, 1) be the acceptance threshold, then a

threshold-based monitor would reject an execution that initially generated an observed finite

output sequence α if the following condition holds:

AccProb(α) ≤ atr (3.4)

32

Alternative representation is through a rejection probability RejProb(α) compared with

a rejection threshold rtr = 1 − atr, such that output sequence is rejected once condition

RejProb(α) ≥ rtr is satisfied.

There are multiple ways to approximate the value of AccProb by the upper-bound, or

RejProb by the lower-bound. One such way was introduced and used in [8–10], and here we

extend it to obtain a better estimated value. For any state s ∈ S, let Pr(s|α) represent the

probability density function over the system states after the output sequence α is observed.

Also, let Pr(s′|s) define the probability that given a current system state s the next state

is s′, assuming that system continues its normal execution. Let functions AccProbh(α) and

RejProbh(α) represent the approximation to the acceptance and rejection probabilities calcu-

lated with the horizon h. The approximation of AccProb and RejProb that was implemented

in [8–10] considers value of horizon h = 1. Obviously,

lim
h→∞

AccProbh(α) = AccProb(α)

lim
h→∞

RejProbh(α) = RejProb(α)

(3.5)

33

Formally, the functions AccProbh(α) and RejProbh(α) are defined by limiting the length

of a potential future execution after the output sequence α has been observed to the value of

h. And, therefore, mathematically are expressed as follows:

AccProbh(α) =
∫

s1∈Sgood

∫
s2∈Sgood

· · ·
∫

sh∈Sgood
Pr(s1|α)Pr(s2, s1) . . . P r(sh, sh−1) ds1 . . . dsh

RejProbh(α) =
∫

s1∈Sbad
Pr(s1|α)ds1 +

∫
s1∈Sgood

∫
s2∈Sbad

Pr(s1|α)Pr(s2, s1) ds1 ds2 + · · ·+

+
∫

s1∈Sgood
· · ·

∫
sh−1∈Sgood

∫
sh∈Sbad

Pr(s1|α) . . . P r(sh, sh−1) ds1 . . . dsh

AccProbh(α) + RejProbh(α) = 1

(3.6)

Clearly for every finite value of horizon h,

AccProb(α) ≤ AccProbh(α)

RejProb(α) ≥ RejProbh(α)

(3.7)

Given the explicitly defined state transition probability distributions of the monitored sys-

tem, the values of AccProbh(α) and RejProbh(α) may be calculated numerically. However,

such probability functions may not be available for systems modeled as PHS. And, therefore,

calculations might be hard or even not feasible [9]. Alternatively, we may compute AccProbh(α)

and RejProbh(α) by employing Monte-Carlo simulations.

It is easier to see how to apply Monte-Carlo simulations for the approximation ofAccProbh(α).

Every simulation starts by sampling a state out of the probability distribution Pr(s|α). Fur-

ther, the system has to simulate state execution forward h−1 times, and a note should be made

34

whether the final state on the end of the horizon is in Sgood. Say, a total number of simulations

is N , while only Ngood end up in a good state at the horizon h. Then provided that the number

of simulations N is sufficiently large a value of AccProbh(α) is approximated as:

AccProbh(α) u
N

Ngood
(3.8)

Alternative view on the AccProbh(α) and RejProbh(α) may be derived from the relation

with a probability that system is in a bad state now or will be within h − 1 steps, given the

output sequence α. We introduce functions Belgood(α) and Belbad(α) = 1− Belgood(α), which

represent a belief (total probability) that system is in a bad state assuming that output sequence

α has been observed so far. Formally,

Belgood(α) =
∫

Sgood

Pr(s|α) ds

Belbad(α) =
∫

Sbad

Pr(s|α) ds

(3.9)

We may see immediately that AccProb1(α) = Belgood(α) and RejProb1(α) = Belbad(α).

From the definition of AccProbh(α) and RejProbh(α) it may be shown that these probability

measures are equivalent to the expected probability that a systems execution which generated

35

the output sequence α will end up to be in a good or bad state respectively. The expectation

is computed over all possible extentions of α with additional h outputs. I.e.

AccProbh(α) = Eo1,o2,...,oh−1∈O
[
Belgood(αo1o2 . . . oh−1)

]
RejProbh(α) = Eo1,o2,...,oh−1∈O

[
Belbad(αo1o2 . . . oh−1)

] (3.10)

Representation of AccProbh(α) and RejProbh(α) in Equation 3.10 shows formally the re-

lation between an approximation of AccProb(α) and RejProb(α) with the belief probability

function.

CHAPTER 4

POMDP-BASED MONITORING

(Previously published as Yavolovsky A., Žefran M., Sistla A.P. (2016) Decision-Theoretic

Monitoring of Cyber-Physical Systems. In: Falcone Y., Sánchez C. (eds) Runtime Verification.

RV 2016. Lecture Notes in Computer Science, vol 10012. Springer, Cham)

4.1 Monitor Design

We define the POMDP-based monitor on the top of the EHMM associated with the product

automaton B = A × P, where A is a system modeled as PHS and P is a monitored safety

property automaton. For the automaton B we construct the corresponding EHMM HB, such

that SHB is the set of states of HB, Σ is the set of outputs, f(x, y) and g(x, z) represent the

next state function and output function respectively. Let Sbad ⊂ SHB represent a set of states

of the product automaton such that the component representing the property P characterizes a

failure. Sets Sbad and Sgood = SB \Sbad represent the sets of good and bad states of the EHMM

HB with respect to the property.

We define the set of actions of the POMDP-monitor as A = {Alarm,Continue}. The set of

states S of the POMDP-monitor is a union SHB∪{sterminal}. A special state sterminal represents

a condition after the terminal action Alarm is executed.

36

37

When the action Continue is executed, the transition function T is completely defined by

the next state function f of the EHMM HB.

T (s,Continue, s′) =



f(s, s′) s, s′ ∈ S \ {sterminal}

0 s 6= s′ and s′ = sterminal

1 s = s′ = sterminal

(4.1)

Transition probabilities under the effect of action Alarm are defined for ∀s ∈ S as follows:

T (s,Alarm, s′) =


0 s′ ∈ S \ {sterminal}

1 s′ = sterminal

(4.2)

The reward function R of the POMDP is based on the rewards tuple (Gc, Ga, Lc, La) as

defined in Section 3.4, with additional consideration of the terminal state:

R(s, a) =



Gc s ∈ Sgood, a = Continue

−La s ∈ Sgood, a = Alarm

−Lc s ∈ Sbad, a = Continue

Ga s ∈ Sbad, a = Alarm

T a,c = 0 s = sterminal,∀a ∈ A

(4.3)

38

An additional parameter T a,c = 0 is defined to represent the value of the reward that is

given by execution of any action from the terminal state sterminal. By assigning a zero value to

it we make sure that no rewards are gained after action Alarm is executed.

The POMDP-monitor inherits the observation function in the form of the output function

from the underlying EHMM and, consequently, from the monitored PHS, and extends it to

consider the case of the state sterminal. To make the POMDP model consistent we may define

a new observation oterminal, which is deterministically observed while in the state sterminal.

4.2 Monitoring Decision Rule

Every history, i.e., a sequence of actions and observations, may be compactly represented in

the form of the belief state - a conditional probability function of the current state given a past

history that can be computed recursively using Bayes belief propagation [18]. We will represent

a belief state of a POMDP-monitor as bα, where α is a set of perceived output symbols. Note

that in POMDP-monitors a history is fully represented by a sequence of perceived observations,

while the actions are always Continue.

The policy of the POMDP-monitor defines an action that has to be taken for every belief

state bα. The optimal policy corresponds to an action that maximizes the expected utility

39

gained by the immediate execution and by following the optimal strategy over a future time

horizon: π∗(bα) = arg max
a∈A

Q(bα, a), where according to the Bellman equation [18]

Q(bα,Alarm) = Belbad(bα)Ga −Belgood(bα)La

Q(bα,Continue) = −Belbad(bα)Lc +Belgood(bα)Gc+

+ γ
∑
o∈O

Pr(o|Continue, bα)V ∗(bαo)

V ∗(bα) = max
a∈A

Q(bα, a)

(4.4)

In the equations above, Belbad(bα) represents the probability that the current state is bad

(represents a failure), i.e., Belbad(bα) =
∫

Sbad

bα(s) ds =
∫

Sbad

Pr(s|α) ds (the integral needs to be

understood abstractly in the sense of probability functions as given in Section 2.1.6). Similarly,

Belgood(bα) represents the probability that the current state is good, and Belbad(bα) = 1 −

Belgood(bα). Pr(o|a, bα) is the probability that given the current belief state bα and action a,

the next observation is o (it can be computed by “integrating” over the current belief state and

appropriately using the transition and observation functions), and bαo is the belief state in the

next time step given we have taken action Continue and that the next observed symbol is o

(it can be computed using Bayes belief propagation). Note that according to the definition of

the action Alarm, a value of the expected future reward is equal to 0 so Q(bα,Alarm) misses a

40

term compared to Q(bα,Continue). Therefore, for the given belief state bα, the optimal policy

π∗ will return the action Alarm iff the following condition holds:

Q(bα,Alarm) ≥ Q(bα,Continue) (4.5)

The value of the discount factor γ has to be selected to obtain the desired property of the

policy. Infinite horizon solutions require a value of γ < 1 to guarantee the convergence of the

infinite sum. However, if the value function is calculated for the finite horizon it is common to

assume that γ = 1.

Our focus is mostly concentrated on POMDP-based monitors with finite horizon. Mainly,

this is because of our interest in the online policy calculation during the system execution. Due

to the computational and space complexity that might be required in order to obtain reasonably

good convergence rate of the POMDPs with an infinite horizon we omit this class of decision

41

rules. Therefore, we present a POMDP-based decision rule for the case of finite horizon h ≥ 1

with discount factor γ = 1 as follows:

Qh(bα,Alarm) ≥ Qh(bα,Continue)

Qh(bα,Alarm) = Ga − (La +Ga)Belgood(bα)

Qh(bα,Continue) = −Lc + (Gc + Lc)Belgood(bα)+

+
∑
o∈O

Pr(o|Continue, bα)V h−1(bαo)

V h(bα) =


max
a∈A

Qh(bα, a) h > 0

0 h = 0

(4.6)

4.3 POMDP-Monitor Policy

While many POMDP solvers assume that POMDP models are fully defined, i.e., the tran-

sition and observation functions are given, it is not obvious how to define them for systems

modeled as PHS. Instead, defining a black-box simulator is straightforward. For a PHS it can

be constructed by implementing the difference equations for each mode and transitions for the

hybrid mode switching. Such black-box simulator is able to produce a sample of the next state

and the observation, given a current state.

POMDPs with continuous state space are even more complex. In order to handle continuous

spaces some algorithms have been developed that employ Monte-Carlo simulations [48, 49].

Considering the lack of completely defined POMDP model but the existence of the black-box

simulator, we focused on Partially Observable Monte-Carlo Planning (POMCP) to implement

42

the POMDP-monitor. The traditional POMCP is defined for discrete state spaces, however the

algorithm can be easily extended and applied to the continuous case, although the observation

space has to be kept discrete. Here we define a Monitoring-POMCP, which is an adaptation of

the POMCP for the POMDP-monitors.

Similarly to the traditional POMCP [49], the Monitoring-POMCP is an online POMDP

planner. Rather than requiring analytically defined probability distributions it is designed to

work with the black-box instantiation of the model. The generative model that is hidden within

the black-box is able to produce a sample of the future state st+1, observation ot+1 and reward

rt+1, given the pair (st, at) of the current state and an action.

POMCP overcomes both curses that make exact solutions so hard to apply for the large

problems. The value function is estimated by applying Monte-Carlo simulations with the black-

box model. Therefore, POMCP has a sample complexity that is determined by the complexity

of the underlying POMDP model, and not by the size of the state and observation spaces.

POMCP may be described similarly to any POMDP planner and consists of the following

basic steps: (1) update the belief state bt to obtain bt+1 considering the new observation ot+1

and the most recent action at, (2) for the new belief state bt+1 find an action at+1 ∈ A that

should be executed. In POMCP both steps share the same Monte-Carlo simulation to propagate

the belief state from bt to bt+1. This belief propagation step may be performed efficiently by

a particle filter and Monte-Carlo simulations even for continuous state space. Provided that

there are sufficiently many particles, the approximation of the belief state will be close to the

true distribution.

43

The decision step of the POMCP is based on the Monte-Carlo Tree Search adapted for the

belief state search space [49]. The root tree node corresponds to the current belief state of the

POMDP, and every other node represents a history h of actions and observations. Each tree

node has an associated pair
(
N(h), V (h)

)
, where N(h) is the number of times the node has

been visited during the search, and V (h) is the mean return of all simulations started from the

node.

In order to limit the size of the tree and compute a good approximation of the optimal policy,

it is necessary to require a finite number of actions and observations. The POMDP-monitor

only has two actions, and we have assumed that the continuous observation space is quantized

and represented with a finite set. Note, that in practice sensors typically use an analog-to-

digital converter to produce the output, which means that the observation measurements are

in fact already quantized.

The search tree of the Monitoring-POMCP is constructed sequentially with a number of

Monte-Carlo simulations starting from a state sampled from the belief state in the root node.

Every simulation represents a sequence of actions and observations. While the observations are

produced by a black-box simulation, the action at each simulation step is selected either by a

tree policy or by a rollout policy (see Figure 2).

For a history node that already has at least one action leaf node the tree policy is used. For

the Monitoring-POMCP, we use the UCB1 (Upper Confidence Bounds) [50] algorithm. UCB1

selects an action that maximizes the value of the node augmented by the exploration bonus:

V ⊕(ha) = V (ha) + c
√

logN(h)
N(ha) . The scalar value c determines the relative ratio between the

44

Belief State

N,V N,V

ContinueAlarm

N,V N,V

o1 o2

N,V N,V

o2o1

New node

Continue

N,V

Alarm

 Tre
e

 P
o

licy
 R

o
llo

u
t P

o
licy

Continue, Continue, Alarm

Figure 2. POMCP search tree.

exploration and exploitation. The value of unexplored actions is always set to ∞ so that each

action is selected for exploration at least once. The Monitoring-POMCP uses the exploration

constant c = Rhi − Rlo [49], where Rhi is the largest value achieved during sample runs of the

POMDP with the constant c = 0, and Rlo is the smallest value returned during sample rollouts.

In the context of the Monitoring-POMDP, Rhi = max(Gc, Ga), and Rlo = min(−Lc,−La).

For the case of the history node that has no action leaf nodes yet the rollout policy is used.

In rollout, the execution proceeds up to the end of the fixed horizon. The simplest form of the

rollout policy is a uniform random policy. However, it is not suitable for the POMDP-based

monitor. To see that, consider the following scenario. Assume that at some point during the

construction of the search tree, the simulation is at a node with the history h that does not

have any leaf nodes so that the rollout policy is used. Let’s also assume that when this node

was reached during the simulation, the system state corresponded to a failure. The random

rollout policy will generate a finite randomly sampled sequence of actions. The sequence will be

45

stopped either when the maximum horizon depth is reached, or a terminal action is executed.

Let’s assume that in the generated sequence of actions the first action is Continue, followed

again by some number of Continue actions and eventually executing an Alarm. Such an action

sequence would accumulate a significant penalty for a missed alarm, and this penalty would be

associated with the new leaf node added to the tree. Now, let’s assume that when this search

tree node is encountered again in the search, the system state is good, i.e. there is no failure.

According to the tree policy, at first the Alarm branch will be explored, but at further times

it will be unlikely that Continue branch will be explored again. This might have a significant

effect on the value of the expected reward for the action Continue at the root node of the tree.

Instead of selecting the action randomly during the rollout policy we propose to select the

action to maximize the reward at every step. This can be achieved by raising the Alarm only

at the failure state, and continuing the execution if the system state is good. In this way it is

guaranteed that the value assigned to the newly added node will promote further exploration

when the tree policy is used.

The outcome of the search is an action that produces the largest augmented reward from

the root node after the predefined number of simulations have been performed.

4.4 Monitoring Autonomous Systems

In the discussion of threshold-based monitors in Section 2.1.12, and POMDP-based monitors

in Section 4.1 we have never yet mentioned whether the monitored system is assumed to be

completely autonomous or its dynamics is affected by the external control input. In fact, this

46

is a very important question, since some monitors might be not applicable or rather complex

for the class of externally manipulated systems.

The approximation to threshold-based monitors, as implemented in [8], only considers cur-

rent belief state when decision is made. Therefore, all the inputs that were seen till now are

sufficient to make a decision. However, if there is a need to implement a better approximation

by considering the expected effect of future state evolutions then external control input either

needs to be given or modeled.

Similarly, in POMDPs decision is made based on the calculation of the expected value

function for each action. By observing the decision rule given in Equation 4.6 we may see

that both Pr(o|Continue, bα) and bαo require knowledge of control input to be appropriately

computed. In our work we assume that external control input is either deterministically known

or is estimated, and is represented as a function of time.

CHAPTER 5

PARAMETRIZATION AND PERFORMANCE OF POMDP-BASED

MONITORS

(Partially previously published as Yavolovsky A., Žefran M., Sistla A.P. (2016) Decision-

Theoretic Monitoring of Cyber-Physical Systems. In: Falcone Y., Sánchez C. (eds) Runtime

Verification. RV 2016. Lecture Notes in Computer Science, vol 10012. Springer, Cham)

5.1 Parametrization of POMDP-Based Monitor

We have identified in Section 4.1 the formal structure of the class of POMDP-based monitors.

Most of the components of the POMDP are defined by a monitored system and a property, and,

therefore, should not be considered as parameters of the monitor. Obviously, a set of states and

observations, transition and observation functions would be shared across different monitoring

techniques. Among all, we outline the POMDP-based monitor reward function R as a key

control, which may result in a different monitoring performance and needs to be tuned. Recall,

that reward function R is based on the assignments of non-negative values to every component

of the rewards tuple (Gc, Ga, Lc, La, T a,c), where T a,c = 0.

47

48

Dependence of the decision on the reward function may be easily seen by observing the

decision rule of the POMDP-based monitors initially given in Equation 4.6, which we present

again for convenience:

Qh(bα,Alarm) ≥ Qh(bα,Continue)

Qh(bα,Alarm) = Ga − (La +Ga)Belgood(bα)

Qh(bα,Continue) = −Lc + (Gc + Lc)Belgood(bα)+

+
∑
o∈O

Pr(o|Continue, bα)V h−1(bαo)

V h(bα) =


max
a∈A

Qh(bα, a) h > 0

0 h = 0

(5.1)

Another parameter that affects the decision rule and is not related to the system is a depth

of horizon h. Unlike the rewards, the value of horizon only affects the expected reward for

the action Continue. In our work, we have studied the effect of the reward function on the

monitoring performance only for fixed values of horizon h = 1 and h = 2. The case of horizon

h = 1 is special since POMDP value functions become fully defined by the immediate reward

values. We study the case of horizon h = 2 to investigate the effect of the non-linear operator

max involved in the value function computations. We expect that similar analysis may be

further used for any arbitrary finite horizon values.

Every possible assignment of values in rewards tuple identifies the monitoring decision rule.

Further, every decision rule results in different accuracy measures and monitoring time as de-

fined in Sections 2.1.9 and 2.1.10. Given that every reward value may be tuned independently

49

we may immediately claim that a class of POMDP-based monitors has four degrees of free-

dom. This statement, although correct, is not a strong statement as it does not consider those

combinations of rewards that define monitors with identical performance.

5.2 Equivalent POMDP-Based Monitors

Some classes of equivalent POMDP-based monitors may be identified by considering prop-

erties of the value function of a general POMDP. It may be shown that an optimal policy of

any POMDP is invariant with respect to the addition of a constant real-valued number to a

reward function (see Appendix A). It may be also shown that an optimal policy of any POMDP

is invariant with respect to the multiplication of a positive real-valued number with a reward

function (see Appendix B).

In POMDP-based monitors, the reward function is completely defined by the assignment

of values to the tuple (Gc, Ga, Lc, La, T a,c). According to Appendix A, if the rewards tuple

is modified to (Gc + k,Ga + k, Lc + k, La + k, T a,c + k), where k ∈ R, then the policy of the

POMDP-based monitor that implements a new reward function will be unchanged. However,

this operation does not reduce the complexity of the reward function. In the best case, only one

component of the tuple will be equal to 0. And, according to POMDP-based monitor design,

the value of T a,c is already fixed to be 0.

According to Appendix B, if we update the rewards tuple as (kGc, kGa, kLc, kLa, kT a,c),

where k ∈ R>0, then the policy of the POMDP-based monitor that implements a new re-

ward function will be also unchanged. Since T a,c = 0, the value of kT a,c is also zero. Let

50

π∗(Gc,Ga,Lc,La,Ta,c) be the optimal policy of a POMDP-based monitor implemented with rewards

tuple (Gc, Ga, Lc, La, T a,c). Then by appropriate selection of a constant k we obtain:

π∗(Gc,Ga,Lc,La,Ta,c=0) =



π∗
(1,G

a

Gc
,L
c

Gc
,L
a

Gc
,T
a,c

Gc
=0)

k = 1
Gc , Gc 6= 0

π∗
(G

c

Ga
,1, L

c

Ga
,L
a

Ga
,T
a,c

Ga
=0)

k = 1
Ga , Ga 6= 0

π∗
(G

c

Lc
,G
a

Lc
,1,L

a

Lc
,T
a,c

Lc
=0)

k = 1
Lc , Lc 6= 0

π∗
(G

c

La
,G
a

La
, L
c

La
,1,T

a,c

La
=0)

k = 1
La , La 6= 0

(5.2)

Therefore, under the assumption that one of the components of a rewards tuple is non-

zero we may safely assume without loss of generality that it is equal to 1 and other rewards

are adjusted accordingly. Given a POMDP-based monitor with a fixed rewards tuple we may

convert it to an equivalent POMDP-based monitor with at least one positive component equal to

1. Therefore, we may claim that in POMDP-based monitors there are exactly 3 free parameters,

i.e. such class of monitors has 3 degrees of freedom.

In our work, we mostly assume that if Gc 6= 0, then Gc = 1. This assumption does not

make our further study less general, while it simplifies the decision rule and aids in certain

conclusions.

5.3 Simplest Reward Functions and Monitor Performance

The complexity of POMDP value function computations and, hence, its effect on the moni-

toring performance measures is determined by parameters in the rewards tuple (Gc, Ga, Lc, La, T a,c =

0). We have shown in Section 5.2 that at least one reward value can be safely assumed to be

51

equal to 1. In this section, we assign some of the rewards to 0 and analyze the performance of

resulting monitors.

5.3.1 Reward Functions with Single Non-Zero Reward Parameter

5.3.1.1 Case 1: Gc is the Only Non-Zero Parameter

For this case, we consider Gc > 0, while Ga = Lc = La = 0. We rewrite POMDP value

function from Equation 4.6 as follows:

Qh(bα,Alarm) = 0

Qh(bα,Continue) = GcBelgood(bα)+

+
∑
o∈O

Pr(o|Continue, bα)V h−1(bαo)

V h(bα) =


max
a∈A

Qh(bα, a) h > 0

0 h = 0

(5.3)

Given that Gc > 0, the value of V h(bα) ≥ 0 at every horizon h > 1, and thus, the expected

utility of the action Continue is Qh(bα, Continue) ≥ 0. Note, that Qh(bα, Continue) = 0

only when Belgood(bα) = 0. Therefore, Qh(bα, Continue) ≥ Qh(bα, Alarm), which results in

no raised Alarms, and, therefore, AA = 1, RA = 0 and MTIME = ∞. This performance

outcomes are identical to the threshold-based monitor with rejection threshold equal to 1.

52

5.3.1.2 Case 2: Ga is the Only Non-Zero Parameter

For this case, we consider Ga > 0, while Gc = Lc = La = 0. Therefore, we may rewrite the

value function from Equation 4.6 for this case as follows:

Qh(bα,Alarm) = Ga −GaBelgood(bα) = GaBelbad(bα)

Qh(bα,Continue) =
∑
o∈O

Pr(o|Continue, bα)V h−1(bαo)

V h(bα) =


max
a∈A

Qh(bα, a) h > 0

0 h = 0

(5.4)

53

To analyze the relationship between Qh(bα,Alarm) and Qh(bα,Continue) we expand the

function V h(bα) for different values of horizon h. As a result, the following expressions are

obtained:

V 1(bα) = max



GaBelbad(bα)

∑
o∈O

Pr(o|Continue, bα)V 0(bαo)︸ ︷︷ ︸
=0

=

= GaBelbad(bα)

V 2(bα) = max


GaBelbad(bα)

∑
o∈O

Pr(o|Continue, bα)V 1(bαo)

=

= max


GaBelbad(bα)

Ga
∑
o∈O

Pr(o|Continue, bα)Belbad(bαo)

=

= Ga
∑
o∈O

Pr(o|Continue, bα)Belbad(bαo)

V h(bα) = max


GaBelbad(bα)

Ga
∑
o1∈O

Pr(o1|Continue, bα) · · ·
∑
oh∈O

Pr(oh|Continue, bαo1...oh)Belbad(bαo1...oh)

=

= Ga
∑
o1∈O

Pr(o1|Continue, bα) · · ·
∑
oh∈O

Pr(oh|Continue, bαo1...oh)Belbad(bαo1...oh)

(5.5)

Thus, we observe that for every belief state bα the POMDP-based monitor will make a choice

to Continue. Therefore, no Alarms will be raised, and performance measures are AA = 1,

54

RA = 0 and MTIME =∞. This makes that POMDP-based monitor to be equivalent to the

threshold-based monitor with a threshold 1.

5.3.1.3 Case 3: Lc is the Only Non-Zero Parameter

For this case, we consider Lc > 0, while Gc = Ga = La = 0. Therefore, we may rewrite the

value function from Equation 4.6 for this case as follows:

Qh(bα,Alarm) = 0

Qh(bα,Continue) = −LcBelbad(bα)+

+
∑
o∈O

Pr(o|Continue, bα)V h−1(bαo)

V h(bα) =


max
a∈A

Qh(bα, a) h > 0

0 h = 0

(5.6)

Given that Lc > 0, the optimal value function Vh(bα) = 0, since the utility of the action

Continue is Qh(bα, Continue) ≤ 0 for every belief state bα. Note, that Qh(bα, Continue) = 0

only when Belbad(bα) = 0. This makes the POMDP-based monitor equivalent to the threshold-

based monitor with rejection threshold 0, and thus, performance measures are AA = 0, RA = 1

and MTIME = −∞.

55

5.3.1.4 Case 4: La is the Only Non-Zero Parameter

For this case, we consider La > 0, while Gc = Ga = Lc = 0. Therefore, we may rewrite the

value function from Equation 4.6 for this case as follows:

Qh(bα,Alarm) = −LaBelgood(bα)

Qh(bα,Continue) =
∑
o∈O

Pr(o|Continue, bα)V h−1(bαo)

V h(bα) =


max
a∈A

Qh(bα, a) h > 0

0 h = 0

(5.7)

Given that La > 0, the optimal value function V h(bα) = 0, since the utility of the action

Continue is Qh(bα, Continue) = 0 and Qh(bα, Alarm) ≤ 0 for every belief state bα. Note,

that Qh(bα, Alarm) = 0 only when Belgood(bα) = 0. This makes the POMDP-based monitor

equivalent to the threshold-based monitor with rejection threshold 0, i.e. every execution is

immediately rejected. Thus, performance measures are AA = 0, RA = 1 and MTIME = −∞.

5.3.2 Reward Functions with Multiple Non-Zero Reward Parameters

In this section, we consider those assignments of rewards which have two non-zero param-

eters. Among all of these assignments we have identified that only one produces a trivial

POMDP-based monitor. In that assignment we consider the case of Gc > 0 and La > 0, while

56

Ga = Lc = 0. By rewriting the value function from Equation 4.6 for the actions Alarm and

Continue we obtain:

Qh(bα,Alarm) = −LaBelgood(bα)

Qh(bα,Continue) = GcBelgood(bα) +
∑
o∈O

Pr(o|Continue, bα)V h−1(bαo)

V h(bα) =


max
a∈A

Qh(bα, a) h > 0

0 h = 0

(5.8)

Observe, that both V h(bα) and Qh(bα, Continue) have non-negative values. This is true,

since the value of Qh(bα, Alarm) ≤ 0, and Qh(bα, Continue) is represented as a summation

of non-negative terms. Thefore, decision to raise an Alarm may be only made when both

Qh(bα, Continue) and Qh(bα, Alarm) are equal to 0. This happens only when the value of

Belgood(bα) = 0. This makes considered POMDP-based monitor equivalent to the threshold

based monitor with rejection threshold 1. Thus, performance measures of such monitor is

AA = 1, RA = 0 and MTIME =∞.

Every other assignment of values to rewards tuple, such that exactly two parameters are

non-zero does not make a POMDP-based monitor trivial. We make this conclusion based on the

observation that the sign of value function for either action depends on the value of Belgood(bα)

for all considered depths of the horizon. We have also observed the similar issue for those

assignments of rewards that have only one parameter equal to 0.

57

5.4 Performance of POMDP-Based Monitors

In our work we are interested in studying performance measures of various POMDP-based

monitors, i.e. show how AA, RA, and MTIME are affected by the assignment of values to

rewards tuple the depth of horizon.

The class of conservative monitors is defined in a way to guarantee that every bad execution

is eventually rejected. In other words, every bad execution is rejected with probability 1 by

a conservative monitor. Threshold-based monitors with a rejection threshold may be easily

shown to be conservative monitors. Similarly, every non-trivial configuration of rewards tuple

makes the corresponding POMDP-based monitor a conservative monitor, which we prove in

the following lemma.

Lemma 1. Every non-trivial POMDP-based monitor is a conservative monitor and, therefore,

has RA = 1.

Proof. In order to provide the proof, we start, by considering the fact that threshold-based

monitors are conservative monitors. Let α be the infinite output sequence that is perceived from

the system, and assume that α is generated by a bad execution. The value of RejProb(α) = 1

and AccProb(α) = 0. Let bα represent the belief state that corresponds to the perceived output

sequence α. Then it is easy to see that Belgood(bα) = 0.

58

Let’s proceed by rewriting the expressions for the value functions of the POMDP-based

monitor for the belief state bα:

Qh(bα,Alarm) = Ga

Qh(bα,Continue) = −Lc +
∑
o∈O

Pr
(
o|Continue, bα

)
V h−1(bαo)

(5.9)

The optimal value function is calculated recursively as follows:

V 0(bα) = 0

V 1(bα) = max


Ga

−Lc +
∑
o∈O

Pr(o|Continue, bα)V 0(bαo)︸ ︷︷ ︸
=0

= Ga

V 2(bα) = max


Ga

−Lc +
∑
o∈O

Pr(o|Continue, bα)V 1(bαo)︸ ︷︷ ︸
=Ga

= Ga

. . .

V h(bα) = Ga

(5.10)

From this we directly see thatQh(bα, Continue) = −Lc+Ga for ∀h > 1, and isQh(bα, Continue) =

−Lc when h = 1. Therefore, π∗(bα) = arg max
a∈A

Qh
(
bα, a

)
= Alarm for ∀h ≥ 1. This confirms

that the POMDP-based monitor is guaranteed to eventually reject the output sequence gener-

ated by the bad execution with probability 1, i.e. is a conservative monitor.

59

In all of our future discussion, we will only be interested in obtaining AA and MTIME,

while we always consider RA = 1 for the POMDP-based monitors. However, before we proceed

we formalize the criteria that we use to compare a pair of monitors.

Definition 1. A monitor M+ with acceptance accuracy AAM+, rejection accuracy RAM+ and

monitoring time MTIMEM+ is considered to be better than a monitor M−, with performance

measures AAM−, RAM− and MTIMEM− iff the following condition holds:

(
AAM+ > AAM− ∧ RAM+ ≥ RAM− ∧ MTIMEM+ ≤MTIMEM−

)
∨(

AAM+ ≥ AAM− ∧ RAM+ > RAM− ∧ MTIMEM+ ≤MTIMEM−

)
∨(

AAM+ ≥ AAM− ∧ RAM+ ≥ RAM− ∧ MTIMEM+ <MTIMEM−

) (5.11)

Essentially, the monitor M+ is better than the monitor M− if at least one of the perfor-

mance measures is improved, while others are at least not changed. Note, that improvement in

AA and RA means increased value, while improvement in MTIME means decreased value.

In our study we take a class of threshold-based monitors as a baseline, and we are looking

for the configuration of a POMDP-based monitor that may perform better than a baseline.

For simplicity, we consider an approximation of the threshold-based monitors introduced in

Section 2.1.12, which only considers the probability that current state of the system violates

the property. Similarly, we only consider small horizon values for a POMDP-based monitor,

and only limit our study to the case of horizon 1 and 2.

60

5.4.1 POMDP-Based Monitor with Horizon 1

Let POMDP 1 represent a POMDP-based monitor as defined in Section 4.1 with horizon

h = 1. Then the value functions for each action and an optimal value function is defined as

follows:

Q1(bα,Alarm) = Ga − (La +Ga)Belgood(bα)

Q1(bα,Continue) = −Lc + (Gc + Lc)Belgood(bα)

V 1(bα) = max


Ga − (La +Ga)Belgood(bα)

−Lc + (Gc + Lc)Belgood(bα)

(5.12)

According to Equation 5.12 the optimal policy of the POMDP 1 is choosing the action

Alarm, i.e. defines a rejection condition, if the following condition holds:

Q1(bα,Alarm) ≥ Q1(bα,Continue)

Ga − (La +Ga)Belgood(bα) ≥ −Lc + (Gc + Lc)Belgood(bα)

Belgood(bα) ≤
Ga + Lc

Ga + La +Gc + Lc

(5.13)

Remember, that Belgood(bα) = AccProb1(α), and hence, we may claim that for a fixed

assignment of rewards tuple, there exists a corresponding value of acceptance threshold atr,

such that monitor POMDP 1 is equivalent to the threshold-based monitor with horizon 1

61

configured to reject based on that acceptance threshold. I.e. the equivalent threshold-based

monitor rejects output sequences α according to the condition

AccProb1(α) ≤ atr =
Ga + Lc

Ga + La +Gc + Lc
(5.14)

In a similar way it is possible to derive an equation to compute the value of rejection

threshold rtr for an equivalent threshold-based monitor that operates based on the value of

RejProb1(α).

Proposition 1. Every POMDP-based monitor with horizon h = 1 is equivalent to a single

threshold-based monitor with horizon 1.

Proof. For every rewards tuple we may compute a value of corresponding threshold as shown

in Equation 5.14.

Note, that the opposite statement is not true, as for a single threshold-based monitor we

may identify infinite number of reward tuples that will define an equivalent POMDP-based

monitor.

62

5.4.2 POMDP-Based Monitor with Horizon 2

Let POMDP 2 represent a POMDP-based monitor as defined in Section 4.1 with horizon

h = 2. Then value functions for each action are as follows:

Q2(bα,Alarm) = Ga − (La +Ga)Belgood(bα)

Q2(bα,Continue) = −Lc + (Gc + Lc)Belgood(bα)+

+
∑
o∈O

Pr(o|Continue, bα)V 1(bαo)

V 1(bα) = max


Ga − (La +Ga)Belgood(bα)

−Lc + (Gc + Lc)Belgood(bα)

(5.15)

According to Equation 5.15 the optimal policy of the POMDP 2 is choosing the action

Alarm, if the following condition holds:

Q2(bα,Alarm) ≥ Q2(bα,Continue)

Ga − (La +Ga)Belgood(bα) ≥ −Lc + (Gc + Lc)Belgood(bα)+

+
∑
o∈O

Pr(o|Continue, bα)V 1(bαo)

(5.16)

As before, we are interested to compare the performance of the POMDP-based monitor with

a threshold-based monitor, specifically a threshold-based monitor with horizon 1. In Section

5.4.1 we found a mapping from the POMDP-based monitor with horizon 1 to the equivalent

threshold-based monitor with horizon 1 . Therefore, rather then comparing POMDP 2 with a

threshold-based monitor, we may compare it with POMDP 1, assuming that rewards tuple has

been fixed.

63

Let Eo∈O V 1(bαo) represent the expected cost of an optimal action after some output o

follows α. Essentially,

Eo∈O V 1(bαo) =
∑
o∈O

Pr(o|Continue, bα)V 1(bαo) (5.17)

Obviously, the main difference in the decision rule of POMDP 2 and POMDP 1 is in the

value function for the action Continue, which includes the value of Eo∈O V 1(bαo). Thus, we

need to look thoroughly on the value of Eo∈O V 1(bαo), and the effect it might have on the AA

and MTIME.

5.4.2.1 Lower and Upper bound for the Expected Reward

In this section we define the bounds for the value of Eo∈O V 1(bαo) as defined in the Equa-

tion 5.17. First, let’s expand all the parts of expression.

Eo∈O V 1(bαo) =
∑
o∈O

Pr(o|Continue, bα) max


Ga − (La +Ga)Belgood(bαo)

−Lc + (Gc + Lc)Belgood(bαo)

(5.18)

One way to define the lower bound for the Eo∈O V 1(bαo) is to push the operator max out

of the sum over all the observations. Clearly,

64

max
∑
o∈O

Pr(o|Continue, bα)


Ga − (La +Ga)Belgood(bαo)

−Lc + (Gc + Lc)Belgood(bαo)

≤ Eo∈O V 1(bαo) (5.19)

By further manipulations with the expression we obtain:

max
∑
o∈O

Pr(o|Continue, bα)


Ga − (La +Ga)Belgood(bαo)

−Lc + (Gc + Lc)Belgood(bαo)

=

max


Ga − (La +Ga)

∑
o∈O

Pr(o|Continue, bα)Belgood(bαo)

−Lc + (Gc + Lc)
∑
o∈O

Pr(o|Continue, bα)Belgood(bαo)

=

max


Ga − (La +Ga)AccProb2(bα)

−Lc + (Gc + Lc)AccProb2(bα)

≤ Eo∈O V 1(bαo)

(5.20)

In order to obtain the upper bound we may need to start from the general expression for

the expected reward function Eo∈O V 1(bαo). First, remember that the belief update state is

performed according to the following equation:

Pr(s′|αo) =

Z(s′, Continue, o)

[∑
s∈S

Pr(s|s′, Continue)Pr(s|α)

]
Pr(o|Continue, bα)

(5.21)

65

Considering this, we rewrite the equation for the expected reward function Eo∈O V 1(bαo) in

terms of functions given directly by the POMDP framework:

Eo∈O V 1(bαo) =
∑
o∈O

Pr(o|Continue, bα) max
a∈A

[∑
s∈S

Pr(s|αo)R(s, a)

]
=

∑
o∈O

max
a∈A

[∑
s′∈S

Z(s′, Continue, o)
∑
s∈S

Pr(s|s′, Continue)Pr(s|α)R(s′, a)

]
(5.22)

Considering the equation Equation 5.22 a lower bound may be defined by pushing operator

max out of the
∑
o∈O

. In fact, we will obtain exactly the same lower bound as we have already

66

defined in Equation 5.20. For the upper bound we may push the operator max in the
∑
s′∈S

.

Thus,

Eo∈O V 1(bαo) ≤
∑
o∈O

∑
s′∈S

max
a∈A

[
Z(s′, Continue, o)

∑
s∈S

Pr(s|s′, Continue)Pr(s|alpha)R(s′, a)

]
=

=
∑
s′∈S

max
a∈A

[∑
s∈S

Pr(s|s′, Continue)Pr(s|α)R(s′, a)

]∑
o∈O

Z(s′, Continue, o)︸ ︷︷ ︸
=1

=

=
∑

s′∈Sgood
max


−
∑
s∈S

Pr(s|s′, Continue)Pr(s|α)La

∑
s∈S

Pr(s|s′, Continue)Pr(s|α)Gc

+

+
∑

s′∈Sbad
max


∑
s∈S

Pr(s|s′, Continue)Pr(s|α)Ga

−
∑
s∈S

Pr(s|s′, Continue)Pr(s|α)Lc

=

= Gc
∑
s∈S

Pr(s|α)
∑

s′∈Sgood
Pr(s|s′, Continue)+

+ Ga
∑
s∈S

Pr(s|α)
∑

s′∈Sbad

Pr(s|s′, Continue)︸ ︷︷ ︸
1−

∑
s∈S

Pr(s|α)
∑

s′∈Sgood

Pr(s|s′,Continue)

=

= Ga + (Gc −Ga)
∑
s∈S

Pr(s|α)
∑

s′∈Sgood
Pr(s|s′, Continue) =

= Ga + (Gc −Ga)AccProb2(α)

(5.23)

67

Therefore, the following bounds for the expected reward value hold:

max


Ga − (La +Ga)AccProb2(α)

−Lc + (Gc + Lc)AccProb2(α)

≤ Eo∈O V 1(bαo) ≤ Ga + (Gc −Ga)AccProb2(α)

(5.24)

5.4.2.2 Reward Configurations Deteriorating Monitoring Performance.

Given the bounds for the expected reward Eo∈O V 1(bαo) we may identify certain cases when

the monitor POMDP 2 is provably not better than POMDP 1.

First, let’s start to analyze the AA of POMDP 2 compared with POMDP 1. In order for

the monitor POMDP 2 to increase the value of AA there should be fewer false alarm. This

means that at least for some of good executions that generated output sequence α the value of

Eo∈O V 1(bαo) has to be positive although AccProb1(α) ≤ atr as given in Equation 5.14. Clearly,

if the value of Eo∈O V 1(bαo) is never positive, then AA of the monitor POMDP 2 is never better

than of monitor POMDP 1. In fact, there will be more false alarms, since negative value of

additional term in the value function of action Continue makes it easier for the monitor to

satisfy a rejection condition.

By applying Equation 5.24 we may state that Eo∈O V 1(bαo) ≤ 0 when the upper bound for

it is ≤ 0. Hence,

Ga + (Gc −Ga)AccProb2(α) ≤ 0 (5.25)

We are interested in those cases when the condition in Equation 5.25 holds for any value

of AccProb2(α) ∈ [0, 1]. It can be shown that this condition holds only if both Ga and Gc

68

are equal to 0. In fact, by observing the exact expression for Eo∈O V 1(bαo) in Equation 5.17

we may see that equality to 0 may occur only in case if Belgood(α) = 1. Considering, that

Belgood(α) = 1 is not reachable in practice we may conclude that assigning both Ga and Gc to

0 deteriorates AA of POMDP-based monitor when we increase the horizon.

In order to reason about the improvement ofMTIME we should treat the value of Eo∈O V 1(bαo)

differently. The monitoring time MTIME is only affected by bad executions, but in order to

obtain an improvement in the case of POMDP 2 it should be the case that AccProb1(α) > atr

as given in Equation 5.14, however the value of Eo∈O V 1(bαo) is such that Alarm is raised by the

POMDP 2. This means that the value of Eo∈O V 1(bαo) should be negative for some α, while

AccProb1(α) > atr. Clearly, if the value of Eo∈O V 1(bαo) is never negative then MTIME of

POMDP 2 is never less than of POMDP 1.

Given the lower bound from Equation 5.24 we require that Eo∈O V 1(bαo) ≥ 0. Then the

following condition holds:

max


Ga − (La +Ga)AccProb2(α)

−Lc + (Gc + Lc)AccProb2(α)

≥ 0 (5.26)

The solution for the inequality Equation 5.26 may be given by the intersection point of lines

represented with equations inside of operator max. The value of each linear function in the

intersection point has to be ≥ 0, i.e.

GaGc − LaLc

Ga + La +Gc + Lc
≥ 0 (5.27)

69

Since, the values in rewards tuple are nonnegative, we may further reduce the condition in

Equation 5.27 to:

GaGc − LaLc ≥ 0 (5.28)

Condition in the Equation 5.28 defines a relation between reward parameters that guaranties

Eo∈O V 1(bαo) ≥ 0, and, therefore, MTIMEPOMDP 2 ≥MTIMEPOMDP 1 .

Although we have performed the analysis for the case of horizon h = 2 the same statements

hold for any arbitrary horizon. This is true due to the recursive nature of the value function

and consistent application of maximization at every horizon depth.

CHAPTER 6

MONITORING SYSTEMS WITH TERMINAL STRONGLY

CONNECTED COMPONENTS

As it was shown in Section 4.2 POMDP-based monitors implement a complex decision

rule. In general, a rejection condition of such monitors accounts for the probability of future

observations. Additionally, it involves a computation of updated belief state for every considered

horizon and every possible evolution of the current belief state.

In this chapter, we consider systems with terminal strongly connected components. The

great simplification that is provided by this class of systems is in the fact that once a system is

in certain states, the set of further reachable states becomes deterministically limited. We use

this benefit to simplify the POMDP-based monitor’s decision rule to better understand how

the space of POMDP monitors is related to the rest of the world.

6.1 Systems with Terminal Strongly Connected Components

To give intuitive understanding of systems with terminal strongly connected components

let’s imagine that certain states of the system have a special property: every execution involving

that state is guaranteed to eventually loop back. Obviously, every state that may be reached

on that path has the same property, and thus defines a subset of states that we are going to

call a terminal strongly connected component (TSCC).

70

71

A formal definition is given as in [11]. Let fns,t represent a probability of reaching a state

s ∈ S from a state t ∈ S in n ≥ 0 steps for the first time. Further, we define a probability value

fs,t =
∑
n≥0

fns,t, which determines the total probability that the state t is eventually reached

from a state s. All the states are classified as persistent and transient. In order for a state s to

be called persistent every execution that includes that state is guarantied to loop, i.e. simply

saying fs,s = 1. This condition is not satisfied in the transient states.

A TSCC is defined as a largest subset X of S, such that for every pair of states s, t ∈ X the

value of fs,t > 0, and for every state s′ ∈ S \X the value of fs′,t = 0. Intuitively, this means

that for every state in the TSCC there is a path to another state in the same TSCC, but no

paths to states not included in the TSCC.

In every TSCC all states are either persistent or transient, and hence every TSCC is called to

be persistent or transient. It has been shown in [11] that the set of states S can be decomposed

in disjoint collection of subsets T,C1, C2, . . . , where T is a set of transient states, and C =

{C1, C2, . . . } is the set of persistent TSCCs (PTSCCs) .

In the perspective of monitoring problem and the fact that states of the product automaton

B are classified as good or bad we are able to make some observations with respect to the

PTSCCs. We call Cgood a good PTSCC if Cgood ⊂ Sgood, i.e. every state of the PTSCC is good.

Also, we call Cbad a bad PTSCC if Cbad \ Sbad 6= ∅, i.e. there exists a state in Cbad, which is a

bad state. We may observe that every infinite execution that includes a state in Cgood is good,

while if it includes a state in Cbad is bad. Provided that it is known whether the finite prefix of

72

an infinite execution includes a state in Cgood or Cbad it is possible to deterministically claim

that the execution is good or bad.

To take the full advantage for monitoring of the systems with PTSCCs we define and use

further the following assumption:

Assumption 1. Let α be the sequence of perceived outputs from the system with PTSCCs

generated by the execution that includes at least one non-transient state.

Although Assumption 1 makes the monitoring problem simpler it still remains a hard prob-

lem due to the stochastic nature of transitions and partial observability of outputs.

The main implication of Assumption 1 is in computation of the probability that any ex-

tension of the finite output sequence α is generated by the bad execution, which is equal to

0. This is so due to the fact that if the current state is in Sgood, then all the further states

in the current executions are also guaranteed to be in Sgood. As a result, we may rewrite the

73

expressions for the computation of AccProb(α) and RejProb(α) initially given in Equation 3.5

and Equation 3.6 as follows:

RejProbh(α) =
∫

s1∈Sbad
Pr(s1|α)ds1 +

∫
s1∈Sgood

∫
s2∈Sbad

Pr(s1|α)Pr(s2, s1) ds1 ds2

︸ ︷︷ ︸
=0

+ · · ·+

+

∫
s1∈Sgood

· · ·
∫

sh−1∈Sgood

∫
sh∈Sbad

Pr(s1|α) . . . P r(sh, sh−1) ds1 . . . dsh

︸ ︷︷ ︸
=0

=

=
∫

s1∈Sbad
Pr(s1|α)ds1 =

= RejProb1(α)

AccProbh(α) = 1−RejProbh(α) = 1−RejProb1(α) =

= AccProb1(α)

RejProb(α) = lim
h→∞

RejProbh(α) =

= RejProb1(α)

AccProb(α) = lim
h→∞

AccProbh(α) =

= AccProb1(α)

(6.1)

Expressions in Equation 6.1 mean that in systems with PTSCCs under the Assumption 1

the threshold-based monitor (with infinite horizon) is equivalent to the threshold-based monitor

with horizon 1.

6.2 Monitoring-POMDP in Systems with TSCCs

Let B be the product automaton, such that the total set of its states can be decomposed

as S = {T,C1, C2, . . . Cn}, where T is a set of transient states, and {C1, C2, . . . , Cn} is a finite

74

set of PTSCCs. Some of TSCCs Ci i ∈ [1, n] are good and some are bad according to the

definition in Section 6.1. Let I represent the vector containing indexes of those TSCCs, which

are good. And J represent the vector of those indexes of TSCCs, which are bad. Then we

define the sets Cgood =
⋃
i∈I

Ci and Cbad =
⋃
j∈J

Cj . Obviously Cgood ⊂ Sgood and Cbad ⊂ Sbad.

According to the definition of PTSCC, no states in Cgood transition to any state in Cbad and

vice versa.

Let’s assume that states in Cgood and Cbad and the set of outputs have been decomposed

in such a way that every state in Cgood ∪ Cbad deterministically emits an output. Note, that

we can do that in a similar way as it is described in Section 2.1.5. Formally, this means that

for every output o ∈ O, there exists a subset Cgoodo ⊂ Cgood, and a subset Cbado ⊂ Cbad, such

that
∑

s∈Cgoodo ∪Cbado

Pr(s|αo) = 1, where αo is a sequence of perceived outputs such that the last

output is o.

In all of our further discussions related to the application of POMDP-based monitor for the

systems with TSCCs we consider the Assumption 1. As we will also see, it might be useful to

think of a specific observation o that has been perceived most recently. Hence, we will mostly

use a notation αo and bαo to represent the sequence of observed outputs and the belief state

that corresponds to it. Additionally, for convenience, we will expand the value of Belgood(bαo)

and Belbad(bαo) as follows:

Belgood(bαo) =
∫

s∈Sgood
bαo(s) ds =

∫
s∈Sgood

Pr(s|αo) ds =
∫

s∈Cgoodo

Pr(s|αo) ds

Belbad(bαo) =
∫

s∈Sbad
bαo(s) ds =

∫
s∈Sbad

Pr(s|αo) ds =
∫

s∈Cbado

Pr(s|αo) ds

(6.2)

75

Then we may rewrite equations for the monitoring POMDP value function initially defined

in Equation 4.6 as follows:

Qh(bαo,Alarm) = Ga
∫

s∈Cbado

Pr(s|αo) ds− La
∫

s∈Cgoodo

Pr(s|αo) ds

Qh(bαo,Continue) = −Lc
∫

s∈Cbado

Pr(s|αo) ds+Gc
∫

s∈Cgoodo

Pr(s|αo) ds+

+
∑
o′∈O

Pr(o′|Continue, bαo)V
h−1(bαoo′)

V h(bα) =


max
a∈A

Qh(bα, a) h > 0

0 h = 0

(6.3)

By considering Assumption 1 and applying the standard techniques [11], we may obtain

a set of equations equivalent to Equation 6.3, but fully represented through the belief state

probabilities, the transition probabilities and the monitoring POMDP rewards. Equation 6.4

lists the representation of rejection decision rule of the monitoring POMDP for the case of

76

systems with TSCCs. For compactness and convenience of reading the derivation is skipped

here and may be found in Appendix C.

Qh(bαo,Alarm) = Ga
∫

s∈Cbado

Pr(s|αo) ds− La
∫

s∈Cgoodo

Pr(s|αo) ds

Qh(bαo,Continue) = −Lc
∫

s∈Cbado

Pr(s|αo) ds+Gc
∫

s∈Cgoodo

Pr(s|αo) ds+

+
∑
o′∈O

V̄ h−1(bαoo′)

V̄ h(bα) =


max
a∈A

Q̄h(bα, a) h > 0

0 h = 0

(6.4)

Q̄h(bαoo1...ok ,Alarm) =

= Ga
∫

s∈Cbado

∫
s1∈Cbado1

· · ·
∫

sk∈Cbadok

Pr(s|αo)Pr(s, s1) . . . P r(sk−1, sk) ds ds1 . . . dsk−

−La
∫

s∈Cgoodo

∫
s1∈Cgoodo1

· · ·
∫

sk∈Cgoodok

Pr(s|αo)Pr(s, s1) . . . P r(sk−1, sk) dsds1 . . . dsk

Q̄h(bαoo1...ok ,Continue) =

= −Lc
∫

s∈Cbado

∫
s1∈Cbado1

· · ·
∫

sk∈Cbadok

Pr(s|αo)Pr(s, s1) . . . P r(sk−1, sk) ds ds1 . . . dsk+

+Gc
∫

s∈Cgoodo

∫
s1∈Cgoodo1

· · ·
∫

sk∈Cgoodok

Pr(s|αo)Pr(s, s1) . . . P r(sk−1, sk) ds ds1 . . . dsk+

+
∑

ok+1∈O
V̄ h−1(bαoo1...okok+1

)

6.3 Monitoring-POMDP in Simplified Case of Systems with TSCCs

In Equation 6.4 we were able to show that in systems with PTSCCs POMDP value func-

tions may be computed without explicitly represented output probabilities. However, the overall

77

complexity of computations remains high due to the per-state representation of belief proba-

bilities Pr(s|αo) that have to be used while integrating over all the states in Cbado and Cgoodo .

In order to simplify the computations even further let’s consider the following assumption.

Assumption 2. For every output o ∈ O there exists a single state sgoodo ∈ Cgood and sbado ∈ Cbad

where output o may be perceived.

Although Assumption 2 is strong, it still keeps the problem partially observable. Then the

following formal statements may be done:

∫
s∈Cbado

Pr(s|αo) ds = Pr(sbado |αo)

∫
s∈Cgoodo

Pr(s|αo) ds = Pr(sgoodo |αo)

∫
s∈Cbado

∫
s′∈Cbad

o′

Pr(s|αo)Pr(s, s′) ds ds′ = Pr(sbado |αo)
∫

s′∈Cbad
o′

Pr(sbado , s′) ds′

∫
s∈Cgoodo

∫
s′∈Cgood

o′

Pr(s|αo)Pr(s, s′) dsds′ = Pr(sgoodo |αo)
∫

s′∈Cgood
o′

Pr(sgoodo , s′) ds′

(6.5)

By substituting outcomes of equations in Equation 6.5 with Equation 6.4 we may obtain

the following value functions of POMDP-based monitor:

78

Qh(bαo,Alarm) = GaPr(sbado |αo)− LaPr(s
good
o |αo)

Qh(bαo,Continue) = −LcPr(sbado |αo) +GcPr(sgoodo |αo)+

+
∑
o′∈O

V̄ h−1(αoo′)

V̄ h(bα) =


max
a∈A

Q̄h(bα, a) h > 0

0 h = 0

Q̄h(bαoo1...ok ,Alarm) = GaPr(sbado |αo)Pr(sbado , sbado1) . . . P r(sbadok−1
, sbadok)−

− LaPr(sgoodo |αo)Pr(sgoodo , sgoodo1) . . . P r(sgoodok−1 , s
good
ok)

Q̄h(bαoo1...ok ,Continue) = −LcPr(sbado |αo)Pr(sbado , sbado1) . . . P r(sbadok−1
, sbadok)+

+ GcPr(sgoodo |αo)Pr(sgoodo , sgoodo1) . . . P r(sgoodok−1 , s
good
ok)+

+
∑

ok+1∈O
V̄ h−1(bαoo1...okok+1

)

(6.6)

Note, that due to the simplification, the state emitting an most recent output o is either in

Cbado or Cgoodo , and, therefore,

Pr(sbado |αo) = 1− Pr(sgoodo |αo) (6.7)

Hence, it is safe to state that decision condition of that POMDP-based monitor has only 1

parameter which is not defined by the monitored system or the monitor itself. Without loss of

generality we may represent the value function in Equation 6.6 as a function of p = Pr(sbado |αo),

which represents the probability that execution has reached a bad state after perceiving sequence

79

of outputs αo. For simplicity of further analysis we will assume that the value of horizon h = 2,

however as we will see the same conclusion may be extended to any arbitrary finite horizon.

We restate the rejection decision rule that is obtained by comparing the value functions for

the action Alarm and Continue:

Ap ≥ B +
∑
oi∈O

max


A′(o, oi)p−B′(o, oi)

−A′′(o, oi)p+B′′(o, oi)

(6.8)

The parameters A and B in Equation 6.8 are fully determined by the values of rewards,

while functional parameters A′(o, oi), A
′′(o, oi), B

′(o, oi) and B′′(o, oi) depend on the rewards

and the transition probabilities. Formally, these parameters are defined as follows:

A = Ga + La +Gc + Lc

B = Gc + La

A′(o, oi) = GaPr(sbado , sbadoi) + LaPr(sgoodo , sgoodoi)

B′(o, oi) = LaPr(sgoodo , sgoodoi)

A′′(o, oi) = LcPr(sbado , sbadoi) +GcPr(sgoodo , sgoodoi)

B′′(o, oi) = GcPr(sgoodo , sgoodoi)

(6.9)

80

Every maximization operator appearing in the right-hand side of Equation 6.8 represents

a piece-wise linear function containing a pair of pieces. For every output oi we may define a

breaking point for the corresponding piece-wise linear function as

p∗i =
B′(o, oi) +B′′(o, oi)

A′(o, oi) +A′′(o, oi)

(6.10)

Without loss of generality we may assume that outputs oi have been ordered in such a way

that sequence of corresponding breaking points is in an ascending order, i.e. p∗i ≥ p∗i−1 ∀i > 1.

Also let’s define p∗0 = 0 and p∗n+1 = 1, where n = ||O||. Clearly, p∗0 < p∗1 and p∗n < p∗n+1.

To solve Equation 6.8 with respect to p we need to consider every interval p ∈ [p∗i−1, p
∗
i] ∀i ∈

[1, n+ 1] and union all n+ 1 resulting conditions on p.

For every chosen interval p ∈ [p∗i−1, p
∗
i] ∀i ∈ [1, n+ 1] the solution of the inequality would

be always of the form p ≥ Xi, where Xi ∈ R. This can be shown by considering the largest

possible coefficient of variable p in the right-hand side of Equation 6.8. Indeed, given that

p ∈ [p∗i−1, p
∗
i] the Equation 6.8 will transform into a simple linear inequality of the form:

Ap ≥ B + Cp+D (6.11)

81

Due to the fact that functions A′(o, oi) and A′′(o, oi) are nonnegative, the largest possible

value of C is:

Cmax =
∑
oi∈O

A′(o, oi) =

= Ga
∑
oi∈O

Pr(sbado , sbadoi) + La
∑
oi∈O

Pr(sgoodo , sgoodoi) =

= Ga + La ≤ Ga + La +Gc + Lc = A

(6.12)

Therefore, the solution of Equation 6.11 would be always of the form p ≥ Xi, where Xi ∈ R.

At this point, we need to remember that we would obtain the condition p ≥ Xi as a

result of assumption that p ∈ [p∗i−1, p
∗
i]. Thus, there might be no solution in case if Xi > p∗i .

However, let’s assume that imin is the smallest value of observation index i such that solution

of Equation 6.8 exists and is of the form p ∈ [Ximin , p
∗
i], where Ximin ∈ [p∗i−1, p

∗
i]. It is in our

interest to see if ∀i > imin the corresponding solution of inequality in Equation 6.8 would be

p ∈ [p∗i−1, p
∗
i], i.e. the final solution of Equation 6.8 would be p ≥ Ximin .

In order to show this, we would need to consider the representation of Equation 6.8 for two

consecutive intervals p ∈ [p∗k−1, p
∗
k] and p ∈ [p∗k, p

∗
k+1]. Let’s also assume that k = imin, and,

hence, there exists a solution for the resulting representation of Equation 6.8.

82

Assuming that p ∈ [p∗k−1, p
∗
k], we rewrite the Equation 6.8 as follows:

Ap ≥ B +
k−1∑
i=1

(
A′(o, oi)p−B′(o, oi)

)
+

+ A′(o, ok)p−B′(o, ok)+

+
n∑

i=k+1

(
−A′′(o, oi)p+B′′(o, oi)

)
Ap−B −

−
k−1∑
i=1

(
A′(o, oi)p−B′(o, oi)

)
−

−
n∑

i=k+1

(
−A′′(o, oi)p+B′′(o, oi)

)
≥ A′(o, ok)p−B′(o, ok)

(6.13)

Similarly, for the interval p ∈ [p∗k, p
∗
k+1] we obtain identical inequality:

Ap−B −

−
k−1∑
i=1

(
A′(o, oi)p−B′(o, oi)

)
−

−
n∑

i=k+1

(
−A′′(o, oi)p+B′′(o, oi)

)
≥ −A′′(o, ok)p+B′′(o, ok)

(6.14)

Left hand side of both inequalities in Equation 6.13 and Equation 6.14 is identical, and

represents some linear function of p. It may be shown that this linear function is increasing

with the value of p. Figure 3 represents visually the problem defined by Equation 6.13 and

Equation 6.14. Blue and red lines represent linear functions from the right-hand side of Equa-

tion 6.13 and Equation 6.14. The dashed black lines represent possible linear function matching

to the left-hand side of Equation 6.13 and Equation 6.14. Note, that intersection of the black

dashed lines with blue line has to be before or at p∗k−1.

83

0 0.2 0.4 0.6 0.8 1

p

-0.5

0

0.5

1

1.5

2

V
al

ue

p*
k-1

p*
k

p*
k+1

Figure 3. Linear functions in decision rule.

84

From the Figure 3 we may see that in order for Equation 6.14 to hold for the whole interval

p ∈ [p∗k, p
∗
k+1] it is necessary and sufficient that linear functions defined on the both sides of

Equation 6.14 don’t intersect. We may be able to make this even more strict if we require that

those linear functions never intersect in the whole interval of [p∗k, 1]. This may be enforced by

comparing the value of each function at p = 1. I.e.

A−
k−1∑
i=1

(
A′(o, oi)−B′(o, oi)

)
−

n∑
i=k+1

(
−A′′(o, oi) +B′′(o, oi)

)
−B ≥ A′(o, ok)−B′(o, ok)

(6.15)

Substituting values in Equation 6.15 in accordance with Equation 6.9 implies a condition

Lc +Gc −Ga ≥ 0 (6.16)

Condition in Equation 6.16 is sufficient, but not necessary for a solution of Equation 6.8

to be in the form of p ≥ X, X ∈ R. The beauty of Equation 6.16 is in independence from

the parameters of the monitored system. On the other hand, finding a necessary and sufficient

condition is also not hard and only requires a substitution of p with p∗k+1 in Equation 6.14, but

will depend on the inherent properties of the monitored system.

The condition on the probability parameter p that we have obtained represents the sim-

plified rejection decision rule for the monitoring-POMDP of the class of systems with TSCCs

satisfying Assumption 2. We were able to derive that under certain conditions the interval of

p is continuous starting from some X ∈ [0, 1] all the way until 1. However, similarly it may be

also shown that there exist cases such that the probability the POMDP-based monitor rejects

85

when p is in the union of discontinued set of probability intervals. According to the definition

of p it is easy to see that RejProb1(αo) = p. Therefore, we may claim that rejection decision

rule of monitoring POMDP is either equivalent to

RejProb1(αo) ≥ rth(o), rth(o) ∈ [0, 1] (6.17)

or

RejProb1(αo) ∈
[
rth1(o), rth2(o)

]
∪
[
rth3(o), rth4(o)

]
∪ · · · ∪

[
rthn(o), 1

]
rth1(o) 6= rth2(o) 6= . . . rthn(o) ∈ [0, 1]

(6.18)

It is easy to see that the above mentioned conclusion holds for arbitrary horizon of monitoring-

POMDP. Both decision rules that we obtained in Equation 6.17 and Equation 6.18 are more

advanced than the decision rule of traditional threshold-based monitors and may result in

improvement of monitoring characteristics. Note, that due to Assumption 1 the value of

RejProb(αo) = RejProb1(αo), and, therefore, we don’t need to consider the approximation

for threshold-based monitors. In the case of Equation 6.17 the advantage is in more precise

definition of the threshold value, which is dependent on the observation. While threshold-based

monitors always use the same threshold value, it might not capture difference in good and bad

executions. By defining the threshold value as a function of the observation we may utilize

the certain properties of the monitored system, that may imply some observations to be in-

dicative of bad or good executions. Rejection criteria in Equation 6.18 is extended further by

excluding intervals of potential RejProb1(α), which may not happen in good, but happen in

bad executions.

86

With the considered example of systems with TSCCs we were able to fully solve the

monitoring-POMDP, and observe the difference in the decision criteria with respect to the

class of threshold-based monitors.

CHAPTER 7

DECISION-THEORETIC MONITORING TOOL

7.1 Purpose and Applications

At every step of study of various monitoring techniques, it is often necessary to implement

the monitor itself, the system that needs to be monitored and the property that the monitor

should verify. We have solved this problem by designing and implementing a Decision-Theoretic

Monitoring Tool (DTMT), which is a generic modular software that is suitable for simulation

of the system, analysis of various monitoring decision rules by estimating the performance

measures and comparison between different monitors.

The key features of DTMT software package are:

• Platform independent implementation: Microsoft Windows and Linux OS are supported.

• Simulation-based measurement of monitoring performance.

• Online monitoring of system execution.

• Fully modular design for an easy extension of monitoring techniques and implementation

of arbitrary system and property.

• Fully customized model (system and property) definition.

• Parallelization support for the fastest monitor performance evaluation (only in simulation

mode).

87

88

• Parallel evaluation of multiple monitoring techniques for comparable results.

• Delivered as a standalone application or library for the integration with other software

packages.

At this time, the state estimation implementation is fixed with particle filtering, which may

be extended to a broader range of state estimators in the future.

The DTMT is implemented in C++ with use of Boost [51] libraries. The tool may be

distributed in the form of a standalone executable or a library for external use. Additional

monitoring techniques and systems have to be supplied in the form of library module with a

fixed set of external API. For easy extendability, we provide ready to use templates, which

define placeholders that should be filled with implementation for both - a monitor decision rule,

and a monitored system with a property.

7.2 Architecture Design

Before we proceed to a detailed explanation of decision rules and model representation we

introduce the architecture design of the DTMT in a very abstract form. We will use some of

the language that might be more clear if the reader is familiar with the basics of object oriented

design and software engineering principles. At the same time, we will, in most cases, avoid

discussion of the implementation details, for which we suggest to look directly into the code.

The deliverables of the DTMT are visualized in Figure 4 and are split into following parts:

• monitoring_experiment application - a main executable performing experiments and

evaluation of various decision rules and models.

89

• monitoring_interface library - a shared library defining interfaces for external use of

the monitoring techniques and models.

• monitoring_common library - a shared library implementing and defining primary data

structures shared across all the other components.

• set of monitor_[decision] libraries - implementation of specific decision rules, i.e. mon-

itoring algorithms.

• set of state_[model] libraries - implementation of specific monitoring problems.

The listing presented above shows that we support extensions in the form of libraries that

define new decision rules and arbitrary monitoring problems. Details about that will follow in

the Sections 7.3 and 7.4.

Static library monitoring_common carries most of the implementation that is needed to

connect all the parts together. Here we present the most important set of classes and data

structures defined in monitoring_common:

• BeliefState - class manages representation of the belief state using a set of particles

• DecisionCommon - class defines a set of static functions required for belief propagation

and calculation of rejection probability.

• DecisionMaker - abstract class defines main set of functions that need to be available in

any actual decision maker implementation.

• DecisionSystem - class managers several decision makers at a time, maintains simulations

by keeping simulation model and belief state.

90

monitoring_common

monitoring_interface

monitoring_experiment

static library

dynamic library

executable

pomcp

threshold

<monitoring_decision>

pomcp

threshold

<monitoring_decision>

state_train_breaking

state_transmission

<state_model>

state_train_breaking

state_transmission

<state_model>

dynamic libraries

dynamic libraries

Figure 4. DTMT architecture.

91

• State - abstract class defines all the functions that need to be available for every experi-

mental or actual model state that needs to be monitored.

• Model - internal interface between State and DecisionSystem

• ModelInput - abstract class defining interfaces of a single input

• ModelInputFunction - abstract class defining interfaces of an input function by time

• ModelObservation - abstract class defining interfaces of a single observation (output)

• ModelRewardsSystem - data class maintaining values of rewards

• ModelSimulationOptions - data class maintaining a set of options specifically related to

simulations

• SolverOptions - data class maintaining a set of options of the solver performing experi-

ment

The dynamic library monitoring_interface and executable monitoring_experiment are

build upon the monitoring_common static library. The main difference is that executable is

able to perform experiments and produce monitoring performance results, while the dynamic

library is expected to be used for monitoring of a single run of the system.

7.3 Monitoring Decision Rule Representation

The main data type that is used to represent a monitoring decision rule is DecisionMaker

and is defined in monitoring_common library. This is an abstract data type, which means that

it only defines a list of required interfaces and may not have all the implementation.

In order to define a new monitoring rule the following steps are required:

92

1. Prepare for the definition of a new shared library using a favorite development environ-

ment, e.g. Eclipse CDT.

2. Define a new C++ class derived from the abstract class DecisionMaker and implement

all the abstract methods. The most important of these methods are:

• GetAction - identifies the action (Alarm or Continue) that has to be executed from

the current BeliefState.

• LoadOptions - reads from the given file and initializes all the options of the decision

rule, that might be important for the experiment or run-time use.

3. Define an interface global function CreateDecisionMaker that will be executed every

time when the client application needs to create an object to represent the decision rule.

Using a class defined in the monitoring_common library - DecisionSystem, it is possible

to run multiple decision rules on the same belief state simultaneously. This provides consistent

and comparable outcomes, which are very useful for the comparison of various methods.

The DTMT comes with several decision rules already implemented and ready for use. Here

is a list of supported monitoring techniques:

• Threshold-based monitor (monitor_threshold library) - implementation of the threshold-

based monitor on any arbitrary horizon with the following parameters:

– threshold - real valued rejection probability threshold from the range [0, 1].

93

– accuracy - real valued precision to be used when a pair of numbers is compared. I.e.

a pair of real valued numbers is considered to be equal if their difference is smaller

than this value.

– horizon - the depth of horizon to be considered when rejection probability of the

belief state is approximated.

– simulations - a number of Monte-Carlo simulations to be used for the approxima-

tion of rejection probability for the value of horizon greater than 1.

• POMDP-based monitor (monitor_pomdp library) - implementation of the POMDP-based

monitor using POMCP technique and the following parameters:

– simulations - number of Monte-Carlo simulations in POMCP computation.

– discount - a value of POMDP discount factor, often assumed to be 1.

– explorationconstant - a value of the POMCP exploration constant.

– maxtreedepth - a maximum depth of the search tree in POMCP, similar to the

length of horizon.

– good_alarm, good_continue, bad_alarm, bad_continue - rewards system of the

POMDP.

Options for each decision rule are expected in the form of text file, where every line is of

the form:

[parameterName] = [value]

94

7.4 Model Representation

Support for user defined models is implemented in the DTMT in the similar way as we have

already shown for the monitoring decision rules in the Section 7.3.

In DTMT every model is represented by the definition of the state variables, transition

system, observation system, format of the supplied inputs and the input function, which is pro-

ducing an input for every time instance. From the perspective of the implementation this is done

by overriding the abstract data types Model, State, ModelInput, ModelInputFunction and

ModelOutput. We provide more details about every data type and list all the basic steps that

need to be performed to define a new experimental model.

In order to define a new model the following steps are required:

1. Prepare for the definition of a new shared library using a favorite development environ-

ment, e.g. Eclipse CDT.

2. Define a set of new C++ classes derived from the abstract classes as listed below and

implement all the abstract methods:

• Model - identifies data types that are used for the state, observation and input.

• ModelObservation - defines a set of variables that are observed from the state, and

the way to convert it to textual representation for logging purposes.

• ModelInput - defines a set of variables that are required by the state to execute a

transition towards the next time instance.

95

• State - defines all the state variables and how the transitions affect the state. We

only list some of the most important methods that need to be overriden to complete

the data type implementation:

– Continue - propagate current state to the next time instance

– ResetState - reset current state to the initial state

– IsFailureState - check if current state represents a failure

– GetObservation - generate an observation according to the observation model

– WeightObservation - calculate the probability weight of the given observation

at the current state

– ToString - convert state to the textual representation for logging

3. Define an interface global function CreateModel that will be executed every time when

the client application needs to create an object to represent the model.

The DTMT currently comes with few models that are implemented and ready for use:

• Simplified example of train braking system [8] with only one train car (state_single_car_train_braking

library).

• Multi car train braking system [8] (state_multiple_car_train_braking library).

• Simplified automatic transmission system [1] (state_rpm library).

96

7.5 Using the Tool

The DTMT may be used as a standalone application (monitoring_experiment) executable)

and externally in the form of shared library (monitoring_interface) with any other applica-

tion.

First we cover the basics of standalone use of the DTMT. Parameters of the application

may be either supplied directly in the command line of in the file. Here we show some sample

command lines, which are more appropriate for Linux OS, however, it is straightforward to make

them compatible with Microsoft Windows OS. In order to execute the monitoring_experiment

by specifying all the parameters in a file, the following command line should be used:

monitoring_experiment --config config.ini

Configuration file is a textual file where every line is of the format:

[parameter] = [value]

Here is a list of all the parameters that may be specified in the configuration file:

• mode = {experiment, generate_trials, report}

– experiment - execute the experiment using the set of decision rules defined in

the directory given by parameter experiment setup on the model given in experi-

ment model.

– generate_trials - generate a number of experiment trials given by parameter simu-

lation trials for the model given in experiment model, and save trials in the directory

specified in experiment trials.

97

– report - generates a report file according to the data stored in experiment directory

given in experiment output.

• experiment_setup - directory with a list of files, each specifying options for the decision

rule. Additional file setup.ini specifies a list of decision rules libraries with a corresponding

name of the input file, in the order these decision rules are applied for a single belief state.

• experiment_model - dynamic library path for the model specifying the model to be

monitored.

• simulation_trials - number of simulated trials of the model given in experiment model.

• simulation_trial_maxlength - maximum number of time steps for each simulation trial.

• simulation_trial_maxerrortime - maximum time instance when the failure may hap-

pen during the simulation of the experiment model.

• experiment_trials - directory path to save simulated model trials

• experiment_output - directory path to save experiment output data

• experiment_threads - number of CPU threads to be used during the simulation in order

to boost the performance.

• experiment_trial_repeats - number of times to repeat experiment on a single trial in

order to average the effect of the state estimation

• experiment_belief_size - number of particles to be used to approximate the belief state

using particle filtering

98

• experiment_input_function - path to the file defining the input function to be supplied

to the experiment model during simulation and experiment.

• report - path to the generated report file.

7.6 Availability

The source code for the DTMT is available at the online repository accessible at the following

address:

https://bitbucket.org/ayavolovsky/dtmt

We advise to follow the instructions from the readme file, and check out suggested examples

for the implementation of new decision rules and custom system models.

Source code may be opened, edited and built using Eclipse CDT IDE. In addition to that

all the builds may be done through the command line by executing appropriate make files.

https://bitbucket.org/ayavolovsky/dtmt

CHAPTER 8

EXPERIMENTAL EVALUATION

(Previously published as Yavolovsky A., Žefran M., Sistla A.P. (2016) Decision-Theoretic

Monitoring of Cyber-Physical Systems. In: Falcone Y., Sánchez C. (eds) Runtime Verification.

RV 2016. Lecture Notes in Computer Science, vol 10012. Springer, Cham)

8.1 Monitoring of Transmission System

In order to evaluate the efficiency of the decision-theoretic monitor, we use a mobile robot

with a software implementation of a 2-gear transmission system [1]. By switching gears, the

engine revolutions per minute (RPM) are maintained in a safe range. However, due to failures,

RPM might increase and stay beyond the limit over a period of time. This may lead to the

engine damage and should be promptly detected. In real vehicles, shutdown procedure for such

a monitoring system could be implemented in the form of fuel supply cut off.

We emphasize that while this system is rather simple, it demonstrates that decision-theoretic

monitoring techniques can be used in real time and that the POMDP-based monitor works well

in practice.

The automatons for the system and monitored property are shown in the Figure 5. The

discrete modes of the hybrid system are described by the variable d, c is a timer, a1 and

a2 correspond to the linear acceleration of the vehicle when in the corresponding gear, and

n1, . . . , n4 are disturbances. The function u(t) ∈ [−1, 1] represents the control input from the

99

100

d = 1
RPM(t+1) = RPM(t) + ΔRPM(R a1,n1,t)

c(k+1) = n4

d = 2
RPM(t+1) = RPM(t) + ΔRPM(R a1,n1,t)

c(k+1) = c(k) + 1

d = 3
RPM(t+1) = RPM(t) + ΔRPM(R a2,n2,t)

c(k+1) = n4

d = 4
RPM(t+1) = RPM(t)

c(k+1) = n4

Gear 1

Gear 2

Gear 2 Limit

d = 6
RPM(t+1) = RPM(t) + ΔRPM(R a2,n2,t)

c(k+1) = c(k) + 1

d = 7
RPM(t+1)= RPM(t)+ ΔRPM(R a2,n2,t)

c(k+1) = n4

System Automaton

RPM = RPM*R R RPM = RPM*R R

RPM RPM1->2

c = -|c|

RPM < RPM1->2 & c > 0

RPM < RPM2->1

c = -|c|

RPM RPM2->1 & c > 0

c == 0 c == 0

p = 0.9
RPM RPM2,max

RPM < RPM2->1

c = -|c|

u < 0

p = 0.1
RPM RPM2,max

d = 5

RPM(t+1) = RPM(t) + ΔRPM(R a2,n2,t)
c(k+1) = n4

RPM < RPM2,max

&
u < 0

WheelVelocity = RPM / GearRatio + n3

Gear = NoisySystemGear

Observation Model

q = 1
counter(t+1) = counter(t)

q = 2
counter(t+1) = counter(t) - 1

q = 3
counter(t+1) = counter(t)

Property Automaton

counter == 0

RPM RPMmax, high

counter = T

counter > 0 & RPM < RPMmax, low

u

Notes:
n1 ~ N(0, 1.0) n2 ~ N(0, 0.8)

n3 ~ N(0, 3.5) n4 ~ N(0, 2)
n5 ~ N(0, 1.5)

ΔRPM(Rgear, agear, noise, t) = agear u(t) Rgear / (2π Rwheel) + noise

Figure 5. Experimental model.

101

combined accelerator/brake pedal. The positive values of u(t) correspond to acceleration, while

the negative values correspond to braking.

The system starts from the mode d = 1 with acceleration dynamics of the first gear. Once

the RPM is above the predefined constant R1→2 a transition to the intermediate mode d = 2

occurs and the timer c is set by the random variable n4. The mode d = 2 models the delay due

to the shifting between gears. As long as RPM is kept above R1→2 at least for the time defined

by the counter c, the transmission system physically switches to the second gear and the mode

d = 3 becomes active. In a similar way, the gear may be switched back to the first gear. If the

RPM continues to increase and is eventually greater or equal to R2,max the system transitions

into mode d = 4 that limits the RPM by ignoring any positive, i.e. accelerating, control input

u(t). Once the RPM is back to the acceptable range, the system returns to the mode d = 3.

A nondeterministic transition from the mode d = 3 to the mode d = 7 is to model a possible

failure when the RPM limiting system fails to engage.

The observation model consists of two noisy variablesWheelV elocity andGear. WheelV elocity

is a vehicle’s wheel velocity as a function of RPM distorted by a noise. Gear is a distorted

observation of the transmission gear, which matches the actual gear with probability 0.9.

The property automaton is a safety automaton : the engine RPM may not exceed a safe

limit for more than time T .

The property automaton is a safety automaton : the engine RPM may not exceed a safe

limit for more than time T . The initial state of the property automaton is q = 1. Transition to

the state q = 2 happens once the RPM ≥ RPMmax,high, and the transition back to state q = 1

102

Figure 6. Experimental robot.

occurs when the value of RPM drops below the RPMmax,low. Value of the RPMmax,low and

RPMmax,high are not necessarily equal to the value of RPM2,max from the system automaton,

but we require that RPMmax,low < RPMmax,high in order to avoid immediate switching that

may occur due to the noise in RPM difference equations of the system.

8.2 Experiment Setup

In order to obtain valid results from the experiment, we have designed it in order to average

the stochastic effect of state propagation algorithm, which is represented in our implementation

in the form of the particle filter.

103

Stochastic nature of the decision maker, i.e. POMDP implemented with POMCP, that

we are using for the experiment requires us to run through the same trajectory of states many

times to average the outcome. We conduct the experiment by applying different monitors many

times on a set of trajectories that were collected from the physical system. Note that while we

operate on recorded data we are able to apply the same monitors online, but we opt out not

to do so since experiment will be significantly delayed by the hardware performance and other

communication bottlenecks.

For the experimental analysis, we record a set of good and bad executions with correspond-

ing outputs, which will be used in the experiment as corresponding observations. Every bad

execution, obviously, includes the episode of transitioning into the bad state but also includes a

sequence of states that follow after that. This is an important step to allow enough time for the

simulated monitor runs to capture the failure. In the case, if the monitor is unable to detect the

failure of the system until the end of recorded bad execution we consider this a missed alarm.

For the purpose of this experiment, we have designed the mobile robot that served as a

test platform for running the model of transmission system given in Section 8.1. Although the

robot does not physically have a transmission system, we simulate the value of engine RPM

from the rotational velocity of the wheel acquired from the rotary motor encoder. This reading

adds noise to the observations, which make the whole experiment interesting and relevant to

the challenges addressed in our study.

For the purpose of input function u(t), which represents the potential interaction between

the user and the engine in the form of acceleration and braking level, we have fixed a sequence of

104

values, which are aimed to increase, decrease and keep velocity constant within certain intervals

of time. This sequence of output is replayed in the loop to make transitions of the system model

drive execution through every state.

As we are required to record both good and bad executions we have decided to implement

an option to manually control the probability of transition into the mode d = 7. Once the

system got to run for long enough we manually increase the probability of transition from the

mode d = 3 to d = 7 to the value of p = 1, and the execution fails immediately after it returns

back to the mode d = 3 and transition condition is satisfied.

Experimental data was collected from the robot using Robot Operating System (ROS)

API [52]. The main building module in ROS is called a node, and for our experiment, we

have implemented two ROS nodes. One node is running directly on the Arduino Mega board

controlling and communicating with motors and motor encoders. The data acquired from the

motor encoders is transferred to the workstation PC running the second node in the form of

ROS packets. This node is using the DTMT package, described in Chapter 7 to simulate

the transmission system model and record the sequence of outputs from the robot sensors in

conjunction with actual system state for the further experimental analysis.

8.3 Results

To perform analysis of performance for different monitors we have recorded 14 different

state trajectories from the robot. In half of those executions, the mode limiting increase of

RPM did not get activated correctly, which led the failure. For every recorded execution we

ran a number of POMDP-based monitors configured with different values of rewards, and a

105

threshold-based monitor with horizon 1. Given the probabilistic nature of each monitor we ran

them repeatedly 100 times and averaged the resulting accuracy and monitoring time.

Every POMCP-based monitor was configured to use the discount factor γ = 1, with a

maximum depth of the search tree (search horizon) equal to 20. The total number of simulations

executed to construct the search tree and determine the optimal action was 1000. We have

used 1000 particles to sample the belief state both in the threshold-based and POMDP-based

monitors.

For every monitor run and every system trajectory, we count how many times the alarm was

raised or missed. Then, the acceptance and rejection accuracies, and monitoring time, denoted

by AA, RA, and MTIME respectively, were computed according to:

AA =
ga

ga + gr
RA =

br

ba + br
MTIME =

br∑
i=1

T ibr

br
, (8.1)

where ga (resp., gr) is the number of good runs that were accepted (resp., rejected), br (resp.,

ba) is the number of bad runs that were rejected (resp., accepted), and T ibr is the from when the

failure occurs to when the monitor raises an alarm. Note that gr corresponds to the number

of false alarms, and ba to the number of missed alarms; the accuracies approach 1 as these

numbers approach 0. An execution was considered good if the state of the property automaton

at the end of the run was not representing a failure, and bad otherwise.

The number of raised false alarms as well as the convergence time depends on the monitor

configuration. For the case of the threshold-based monitor, it depends on the value of the

106

threshold. The lower the threshold, the larger will be the number of false alarms and the

smaller will be the monitoring time. Threshold monitors do not allow these two quantities to

be independently adjusted.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

MTIME

A
A

POMCP
Threshold

Figure 7. Acceptance accuracy vs. monitoring time.

On the other hand, POMDP-based monitors are configured by the assignment of reward

values. For the purpose of the experiment we have used large variety of reward values. Ev-

107

ery combination of rewards was chosen to match a particular value of rejection threshold in

threshold-based monitor with horizon 1 as described in Section 5.4.1. While one of rewards was

fixed to the value of 1, we varied other rewards to consider cases with different ratio between

them. The goal of this experiment was not to show a specific pattern in the assignment of

rewards to improve monitoring performance with respect to threshold-based monitors. Instead,

we aimed to show that monitoring POMDP may represent policies that consider special prop-

erties of the monitored system and use those properties to gain the advantage. Results shown

in Figure 7 show the relation between the MTIME and AA for the set of explored moni-

tors. Every red star represents a single POMDP-based monitor implemented via POMCP. The

green curve represents the performance measures for the threshold-based monitor with horizon

1. Our results show that many of configurations that have been chosen for the experiments,

indeed, result in a better accuracy for the same monitoring time. While the threshold-based

monitor may achieve an arbitrary value of AA, we were able to find those configurations of

POMDP-based monitor that are able to achieve the same AA with lower values of MTIME.

This experimental evaluation confirms that POMDP-based approach is a promising direction

in designing efficient monitoring algorithms.

CHAPTER 9

FUTURE WORK

In this paper, we were primarily focused on studying one particular approach, namely

POMDP, when it is applied towards solving the monitoring problem of CPS. At every step

of our research, we were either comparing the performance measures of one POMDP-based

monitor with the other or with a class of threshold-based monitors. However, obviously, the

total space of possible decision theoretic monitors is not limited only by POMDP and threshold-

based monitors. In fact, this space of monitors is unbounded. We may ask a lot of research

questions that have not yet been addressed in this paper, but for now, we will only describe a

few of those, which we think are interesting and promising for the relevant research community.

In further sections, we suggest considering alternative monitoring rules than those studied

in this paper. We present a few ideas that we think may work well in practice, and we discuss

potential challenging questions that need to be studied further. Additionally, we bring attention

to the topic known as Inverse Reinforcement Learning (IRL) and explain how it may be applied

towards the problem of monitoring.

9.1 Alternative Monitoring Decision Rules

9.1.1 Adding More Non-Determinism into the Monitoring Decision Rule

Say, we are given a finite set of monitors SM = {M1,M2, . . . Mn}, such that the correspond-

ing performance measures are known. The acceptance accuracy of the monitor Mi is AA(Mi),

108

109

the rejection accuracy is RA(Mi) and the monitoring time is MTIME(Mi). For each monitor

Mi we assign a probability value Pr(Mi), such that
n∑
i=1

Pr(Mi) = 1. Every time, right before

the execution is about to start, the value of Pr(Mi) determines whether the monitor Mi will

be used exclusively to monitor the upcoming run.

Let M represent the monitor that combines decision rules of monitors from the set SM in

a non-deterministic fashion. According to the definition of performance measures it is easy to

see that

AA(M) =
n∑
i=1

Pr(Mi)AA(Mi)

RA(M) =
n∑
i=1

Pr(Mi)RA(Mi)

MTIME(M) =
n∑
i=1

Pr(Mi)MTIME(Mi)

(9.1)

Note, that if it is known that every monitor in set SM is a conservative monitor, then

resulting non-deterministic monitor M would also be a conservative monitor, and, therefore,

RA(M) = 1.

Different assignments of the probability values Pr(Mi) may result in different values of

accuracy and monitoring time. However, it is more important to question whether there exists

an assignment of Pr(Mi) such that the monitor M is better than some of monitors in SM , or if

it is better than some other monitor, which is not presented in SM . This answer may be given

by solving a set of linear inequalities, but it obviously depends on the monitored system itself

and the way every monitor Mi is chosen.

To clarify it further, let’s assume that SM = {Mrtr1 ,Mrtr2}, where monitors Mrtr1 and

Mrtr2 are threshold-based monitors with rejection thresholds rtr1 and rtr2 respectively. Let’s

110

further assume that rtr1 < rtr2, and, therefore, according to the definition and properties of

threshold-based monitors AA(Mrtr1) ≤ AA(Mrtr2), while MTIME(Mrtr1) ≥MTIME(Mrtr2).

An interesting question is whether we may be able to chose the value of p = PrMrtr1
in such a

way that resulting performance of the monitor M is better than in a reference threshold-based

monitor Mref with the value of threshold rtrref ∈ [rtr1, rtr2]. Remember, that we improve

performance of monitors by increasing the acceptance accuracy and reducing the monitoring

time. It is easy to show that AAM ≥ AAMref
and MTIMEM ≤MTIMEMref

if the following

conditions are satisfied:

AArtr2 −AAref
AAref −AArtr1

≥
p

1− p

MTIMErtr2 −MTIMEref

MTIMEref −MTIMErtr1
≤

p

1− p

(9.2)

From Equation 9.2 it may be concluded that in order for the non-deterministic monitor M

to perform better than the reference monitor Mref it is important for the AA and MTIME

change accordingly with respect to the threshold value. The bigger question is whether this

condition might be satisfied for some systems.

9.1.2 Combining Multiple Decision Rules

For the implementation of a threshold-based monitor an important role plays the type of

approximation that is used to compute the acceptance probability AccProb(α) for each every

possible sequence of perceived outputs α. The value of AccProb(α) may be approximated by the

finite horizon computations given in Section 3.5. By definition AccProbh+1(α) ≤ AccProbh(α),

111

i.e. by increasing horizon the value of acceptance probability become smaller. However, the

velocity at which the value of AccProbh(α) will converge depends on the actual value of α and

inherent properties of the system model.

Here we propose a pair of monitor classes, which are similar to the finite horizon threshold-

based monitors, but instead of working with one condition we combine multiple to boost the

monitoring performance.

Consider the monitor M , which is a horizon 1 threshold-based monitor with rejection de-

cision rule defined as AccProb1(α) ≤ atr. Our goal is to define the new class of monitors that

improve either both AA and MTIME, or keep one constant, while improving the other one.

Let the monitor M1 declare the following rejection decision rule:

AccProb1(α) ≤ atr1 ∨AccProb2(α) ≤ atr2

, where 0 ≤ atr2 < atr1 ≤ 1

(9.3)

Monitor M1 attempts to keep the value of acceptance accuracy AAM1 equal or as close as

possible to the reference acceptance accuracy AAM . Total portion of good executions that are

rejected by M1, but are not rejected by M is limited by the condition AccProb2(α) ≤ atr2 ,

where atr2 has to be as small as possible. Note that we are talking about good executions here,

and it might be reasonable to have an expectation that the model is well defined in a sense that

acceptance probability does not drop to a significantly small value.

112

At the same time we are guarantied that every bad execution that is rejected by M , will be

rejected by M1, and it will either happen simultaneously, or earlier in the case if AccProb2(α) ≤

atr2 is satisfied before AccProb1(α) ≤ atr1 .

Now, let’s consider the other monitor M2, which declares the following rejection decision

rule: (
AccProb1(α) ≤ atr1 ∧AccProb2(α) ≤ atr1 − δ

)
∨AccProb2(α) ≤ atr2

, where 0 ≤ δ ≤ atr1 and 0 ≤ atr2 < atr1 ≤ 1

(9.4)

In order to reduce number of false alarms raised by the monitor M2 we have added a condi-

tion AccProb2(α) ≤ atr1 − δ. Our hypothesis is that good executions generally should not lead

to a significant drop in acceptance probability when deeper horizon is used in the computations.

On the other hand the same condition affects timing for rejection of bad executions. Although

AccProb2(α) ≤ atr2 should help in rejecting earlier than M , a subset of executions might have

a delayed rejection depending on the value of δ. Our initial experiments have confirmed that

for the right selection of δ we are able to achieve improvement in monitoring performance as it

is shown in Figure 8. Value of δ have been obtained by studying the change in AccProb2(α) in

good and bad executions.

Discussion around the monitors M1, M2 and their performance compared to M was given

in order to illustrate that by combining multiple decision rules in one we are able to maintain

performance measures around reference point, while using benefits of multiple decision rules

to improve in certain aspects of monitoring. Outcome in both cases highly depends on what

113

0 0.5 1 1.5 2

MTIME

0.2

0.4

0.6

0.8

1

A
A

Threshold-based: h=1
Threshold-based: h=1 combined with h=2

Figure 8. Monitoring performance when combining multiple rejection conditions.

maybe expected from the system executions and the way state probabilities evolve while system

is running.

9.2 Inverse Reinforcement Learning for Monitoring-POMDP

The Inverse Reinforcement Learning (IRL) is aimed to recover the reward function based

on the behavior of the intelligent agent. It was first introduced in [53] and has been further

studied when applied to the MDP [54–56] and POMDP [57,58] rewards.

114

Details of the IRL algorithms will be omitted in this paper and reader may find the answers

in literature. As the name suggests the IRL is focused on solving an inverse problem for the

reinforcement learning. While in the reinforcement learning the goal is to identify an optimal

policy, the IRL receives the policy as an input and works to recover the reward function that

has to be used to obtain that policy.

In this paper we have studied the effect of reward function of the monitoring POMDP on

the policy, and while we have seen POMDP work well in few scenarios, we still have not fully

solved the challenging problem of how to set up the rewards to obtain the best performance of

the POMDP-based monitor. On the other hand defining the POMDP policy is a relatively easy

problem. For the monitoring problem, this is simply the rejection or acceptance decision rule

parameterized by the belief state or a sequence of outputs. The hard problem is to define the

decision rule that would be able to consider all the aspects of the monitored system to produce

the best possible performance.

CHAPTER 10

CONCLUSIONS

In this thesis, we have studied the subject of monitoring of CPS with decision-theoretic

perspective. Our work was motivated by the results and ideas of traditional threshold-based

monitors studied before in [8, 9, 44]. When a safety property of any particular system is mon-

itored the main goal is to guarantee the expected performance measures, such as acceptance

accuracy, rejection accuracy and the monitoring time. Our work was focused on improving

these parameters over the traditional approaches.

We used the decision-theoretic formalism in the form of POMDPs to declare and formulate

monitors of safety properties in CPS. Although the decision rule in monitoring-POMDPs is well

defined, it is a challenging problem to find the optimal POMDP policy for cases when the system

is driven by continuous dynamics. We have tailored the POMCP approach for computing the

policy of monitoring-POMDPs online. The monitoring-POMCP algorithm given in Section 4.3

does not require explicitly defined transition and observation probability functions and only

depends on the black-box of the system model, which is easy to implement using the PHS

model of the monitored CPS.

Although we were able to compute an approximation to the optimal policy in monitoring-

POMDPs, that policy does not always produce the same set of monitoring performance mea-

sures. We have shown that outcome of the decision rule in monitoring-POMDPs depends on

the selection of rewards, that define the POMDP reward function. Every assignment of re-

115

116

wards tuple produces a different monitoring-POMDP. We have shown that certain assignments

of rewards always produce identical monitoring performance, and concluded that monitoring-

POMDPs have 3 degrees of freedom. Further, we were able to prove that the rejection accuracy

in monitoring-POMDPs is always equal to 1, which is equivalent to saying that every failing

execution is always eventually rejection. Thus, POMDP-based monitors represent a class of

conservative monitors.

By studying assignments of rewards we identified POMDP-based monitors that are trivial,

i.e. either accept or reject all executions. We have shown that for the case when POMDP-based

monitor policy is computed with horizon 1 it is always equivalent to the threshold-based monitor

also computed with horizon 1. Further, we identified classes of POMDP-based monitors that

don’t improve the monitoring performance compared to the class of threshold-based monitors

computed with horizon 1.

We have seen in Chapter 5 that analyzing the performance of POMDP-based monitors

for the general class of systems is a challenging task. To simplify the problem we study the

application of POMDP-based monitors for the class of systems containing TSCCs. For these

systems, under certain assumptions, we were able to solve the POMDP explicitly and present

the decision rule in the form directly comparable to threshold-based monitors. This result

has shown that POMDP-based monitors may take into consideration certain properties of the

monitored system to better distinguish bad and good executions, and, therefore, improve the

set of monitoring performance measures.

117

We conducted an experimental evaluation using the relatively complex example of a trans-

mission system. With the experiment, we were able to confirm that monitoring-POMCP al-

gorithm that we proposed in Section 4.3 is efficient to be applied for online monitoring. Our

results have confirmed that POMDP-based monitors may be configured so that resulting per-

formance measures are improved simultaneously, rather than independently as in traditional

threshold-based monitors.

We have developed the DTMT, a software tool for the analysis of various monitoring ap-

proaches and for the online monitoring of safety properties in CPS. The tool architecture is

fully extendable to support arbitrary monitoring decision rule and system model. The tool has

been published in an online source code repository for the public use.

APPENDICES

118

119

Appendix A

INVARIANCE OF POMDP POLICY WITH RESPECT TO A

CONSTANT APPENDED TO THE REWARD FUNCTION

Consider a general POMDP defined as a tuple (S,A, T,R,O,Z, γ) as defined in Section

2.2.3. For simplicity, we will assume that both S and O are finite. The optimal policy π∗ of

the POMDP is defined as follows:

π∗(b) = arg max
a∈A

Q(b, a)

Q(b, a) =
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗(bao)

V ∗(b) = max
a∈A

Q(b, a)

(A.1)

Now, consider another POMDP, which is fully identical to the original POMDP with the

only difference in the reward function. Let the newly defined reward function R+ be defined

by addition of a constant value c ∈ R, i.e.

R+(s, a) = R(s, a) + c (A.2)

Lemma 2. The optimal policy of any POMDP is invariant to the operation of addition of a

constant c ∈ R to the reward function.

120

Appendix A (Continued)

Proof. Let Q+(b, a) represent the value function of the POMDP with the modified reward

function R+.

Q+(b, a) =
∑
s∈S

b(s)R+(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗+(bao)

V ∗+(b) = max
a∈A

Q+(b, a)

(A.3)

According to the definition of R+(s, a), we may obtain:

Q+(b, a) =
∑
s∈S

b(s)
(
R(s, a) + c

)
+ γ

∑
o∈O

Pr(o|a, b)V ∗+(bao) =

= c
∑
s∈S

b(s) +
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗+(bao) =

= c+
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗+(bao)

V ∗+(b) = max
a∈A

(
c+

∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗+(bao)
)

=

= c+ max
a∈A

(∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗+(bao)
)

(A.4)

It is easy to see that every iteration of V ∗+(b, a) produces additional constant c that factors

out, and is multiplied with the discount factor γ on the previous step of recursion. Given

the definition of initial V ∗(b, a) it is easy to see how value functions are related in compared

POMDPs:

V ∗+(b) = c+ γc+ γ2c+ · · ·+ γ∞c+

+ max
a∈A

(∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗(bao)
)

=

= c+ γc+ γ2c+ · · ·+ γ∞c+ V ∗(b)

(A.5)

121

Appendix A (Continued)

In the case if we assume infinite horizon for the policy calculation, then it is safe to assume

that γ < 1, and therefore

V ∗+(b) =
c

1− γ
+ V ∗(b) (A.6)

Otherwise, if the horizon is finite and is equal to h, then we may assume that γ = 1. Thus

we obtain,

V h
+(b) = hc+ V h(b) (A.7)

Since in both cases, when the horizon is infinite and finite, the added value in the expression

for V ∗+(b, a) is independent of an action, we may directly claim that policies π∗ and π∗+ are

equivalent.

122

Appendix B

INVARIANCE OF POMDP POLICY WITH RESPECT TO A

CONSTANT MULTIPLIED WITH THE REWARD FUNCTION

Consider a general POMDP defined as a tuple (S,A, T,R,O,Z, γ) as defined in Section

2.2.3. For simplicity, we will assume that both S and O are finite. The optimal policy π∗ of

the POMDP is defined as follows:

π∗(b) = arg max
a∈A

Q(b, a)

Q(b, a) =
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗(bao)

V ∗(b) = max
a∈A

Q(b, a)

(B.1)

Now, consider another POMDP, which is fully identical to the original POMDP with the

only difference in the reward function. Let the newly defined reward function R× be defined

by multiplying the reward function R with a positive constant c ∈ R>0, i.e.

R×(s, a) = cR(s, a) (B.2)

Lemma 3. The optimal policy of any POMDP is invariant to the operation of multiplication

of a constant value c ∈ R>0 with the reward function.

123

Appendix B (Continued)

Proof. Let Q×(b, a) represent the value function of the POMDP with the modified reward

function R×.

Q×(b, a) =
∑
s∈S

b(s)R×(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗×(bao)

V ∗×(b) = max
a∈A

Q×(b, a)

(B.3)

According to the definition of R×(s, a), we may obtain:

Q×(b, a) = c
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗×(bao) =

V ∗×(b) = max
a∈A

(
c
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗×(bao)
)

=

= cmax
a∈A

(∑
s∈S

b(s)R(s, a) + 1
cγ
∑
o∈O

Pr(o|a, b)V ∗×(bao)
) (B.4)

The expression for the V ∗×(b) is defined as recursion, and it is easy to see that 1
c will cancel

out by multiplication with c that will be caused by the further execution of V ∗×(b). Thus we

may represent the updated value function with the original value function as follows:

V ∗×(b) = cmax
a∈A

(∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗(bao)
)

= cV ∗(b)

(B.5)

Since the change in the value function is independent of the POMDP action we directly

may claim that policies π∗ and π∗× are equivalent.

124

Appendix C

POMDP VALUE FUNCTIONS FOR SYSTEMS WITH TERMINAL

STRONGLY CONNECTED COMPONENTS

To derive the POMDP value function for systems with TSCCs we use the notations and

definitions introduced in Section 6.2.

The general equations defining value function are:

Qh(bαo,Alarm) = Ga
∫

s∈Cbado

Pr(s|αo) ds− La
∫

s∈Cgoodo

Pr(s|αo) ds

Qh(bαo,Continue) = −Lc
∫

s∈Cbado

Pr(s|αo) ds+Gc
∫

s∈Cgoodo

Pr(s|αo) ds+

+
∑
oi∈O

Pr(oi|Continue, bαo)V
h−1(bαooi)

V h(bα) =


max
a∈A

Qh(bα, a) h > 0

0 h = 0

(C.1)

Our first step is to define the value of Pr(oi|Continue, bαo) that is a part of right-hand side of

the equation for the value function of action Continue. In order to do so we will work on more

general representation of probability value Pr(on|Continue, bαoo1...on−1), were we will assume

that after an already perceived observation sequence αo we expect a sequence of observations

of o1 . . . on−1. We are interested in the observation on that will potentially follow. We will

125

Appendix C (Continued)

label probability as good or bad to identify that it relates to observation being perceived in good

or bad PTSCC respectively. For simplicity we will represent Pr(on|Continue, bαoo1...on−1) =

Pr(on|bαoo1...on−1).

Pr(on|bαoo1...on−1) = β(αoo1 . . . on−1)×

×
(
Prgood(on|bαoo1...on−1) + Prbad(on|bαoo1...on−1)

)
Prgood(on|bαoo1...on−1) =

∫
s∈Cgoodo

∫
s1∈Cgoodo1

· · ·
∫

sn∈Cgoodon

Pr(s|αo)×

× Pr(s, s1) . . . P r(sn−1, sn) ds ds1 . . . dsn

Prbad(on|bαoo1...on−1) =
∫

s∈Cbado

∫
s1∈Cbado1

· · ·
∫

sn∈Cbadon

Pr(s|αo)×

× Pr(s, s1) . . . P r(sn−1, sn) ds ds1 . . . dsn

(C.2)

β(αoo1 . . . on−1) is a normalizing coefficient defined as:

β(αoo1 . . . on−1) =
1∑

on∈O

(
Prgood(on|bαoo1...on−1) + Prbad(on|bαoo1...on−1)

) =

=
1∑

on∈O
Prgood(on|bαoo1...on−1) +

∑
on∈O

Prbad(on|bαoo1...on−1)

(C.3)

126

Appendix C (Continued)

Note, that

∑
on∈O

Prgood(on|bαoo1...on−1) =

=
∑
on∈O

∫
s∈Cgoodo

∫
s1∈Cgoodo1

· · ·
∫

sn∈Cgoodon

Pr(s|αo)Pr(s, s1) . . . P r(sn−1, sn) ds ds1 . . . dsn =

=
∫

s∈Cgoodo

∫
s1∈Cgoodo1

· · ·
∫

sn−1∈Cgoodon−1

Pr(s|αo)Pr(s, s1) . . .
∑
on∈O

∫
sn∈Cgoodon

Pr(sn−1, sn)

︸ ︷︷ ︸
=

∫
sn∈C

good
on

Pr(sn−1,sn)=1 dsn

dsds1 . . . dsn =

=
∫

s∈Cgoodo

∫
s1∈Cgoodo1

· · ·
∫

sn−1∈Cgoodon−1

Pr(s|αo)Pr(s, s1) . . . P r(sn−2, sn−1) ds ds1 . . . dsn−1 =

= Prgood(on−1|bαoo1...on−2)

(C.4)

Similarly, ∑
on∈O

Prbad(on|bαoo1...on−1) = Prbad(on−1|bαoo1...on−2) (C.5)

Therefore based on Equation C.3, Equation C.4, and Equation C.5,

Prgood(on|bαoo1...on−1) + Prbad(on|bαoo1...on−1) =
1

β(αoo1 . . . on)

(C.6)

β(αoo1 . . . on) =
1

Prgood(on|bαoo1...on−1) + Prbad(on|bαoo1...on−1)

(C.7)

Pr(on|bαoo1...on−1) =
β(αoo1 . . . on−1)

β(αoo1 . . . on)

(C.8)

127

Appendix C (Continued)

It’s worth noting here that β(αo) = 1 and Pr(o1|αo) = 1
β(bαoo1)

. Indeed, by rewriting

Equation C.3 we get,

β(αoo1) =
1∫

s∈Cgoodo

Pr(s|bαo) ds+
∫

s∈Cbado

Pr(s|bαo) ds
=

=
1∫

s∈Cgood
Pr(s|bαo) ds+

∫
s∈Cbad

Pr(s|bαo) ds
=

= 1

(C.9)

Now, let’s focus on the representation of
∫

s∈Cgood
Pr(s|αoo1 . . . on) ds and

∫
s∈Cbad

Pr(s|αoo1 . . . on) ds.

∫
s∈Cgood

Pr(s|αoo1 . . . on) ds = γ(αoo1 . . . on)Prgood(on|bαoo1...on−1)

∫
s∈Cbad

Pr(s|αoo1 . . . on) ds = γ(αoo1 . . . on)Prbad(on|bαoo1...on−1)

(C.10)

γ(αoo1 . . . on) is a normalizing coefficient defined as follows:

γ(αoo1 . . . on) =
1

Prgood(on|bαoo1...on−1) + Prbad(on|bαoo1...on−1)

(C.11)

However, as we can see

γ(αoo1 . . . on) = β(αoo1 . . . on) (C.12)

128

Appendix C (Continued)

Thus we may rewrite Equation C.10 as follows:

∫
s∈Cgood

Pr(s|αoo1 . . . on) ds = β(αoo1 . . . on)Prgood(on|bαoo1...on−1)

∫
s∈Cbad

Pr(s|αoo1 . . . on) ds = β(αoo1 . . . on)Prbad(on|bαoo1...on−1)

(C.13)

Given the representation in Equation C.8, Equation C.13 and Equation C.12 we may rewrite

POMDP value functions. To simplify the notations we will assume symbol βn where we use a

function β(αoo1 . . . on). First we start from the value function of the action Alarm:

Qh(bαoo1...on ,Alarm) =

= Ga
∫

s∈Sbad
Pr(s|αoo1 . . . on) ds− La

∫
s∈Sbad

Pr(s|αoo1 . . . on) ds =

= GaβnPrbad(on|bαoo1...on−1)− LaβnPrgood(on|bαoo1...on−1) =

= βn
(
GaPrbad(on|bαoo1...on−1)− LaPrgood(on|bαoo1...on−1)

)
(C.14)

Similar substitution in the value function of the action Continue leads to the following equation:

Qh(bαoo1...on ,Continue) =

= βn
(
GaPrbad(on|bαoo1...on−1)− LaPrgood(on|bαoo1...on−1)

)
+

+
∑

on+1∈O

βn
βn+1

V h−1(bαoo1...on+1) =

= βn
(
GaPrbad(on|bαoo1...on−1)− LaPrgood(on|bαoo1...on−1)+

+
∑

on+1∈O

1
βn+1

V h−1(bαoo1...on+1)
)

(C.15)

129

Appendix C (Continued)

By definition of function V h(α) given in Equation C.1 its value is equal to 0 only when

h = 0. For all other values of h it depends on the value of action Alarm and Continue. It is

obvious from Equation C.14 and Equation C.15 that the value of actions Alarm and Continue is

proportional to βn. Therefore, by using a simple induction it may be shown that value functions

of monitoring POMDP defined for class of systems with TSCCs are:

Qh(bαo,Alarm) = Ga
∫

s∈Cbado

Pr(s|αo) ds− La
∫

s∈Cgoodo

Pr(s|αo) ds

Qh(bαo,Continue) = −Lc
∫

s∈Cbado

Pr(s|αo) ds+Gc
∫

s∈Cgoodo

Pr(s|αo) ds+

+
∑
o′∈O

V̄ h−1(bαoo′)

V̄ h(bα) =


max
a∈A

Q̄h(bα, a) h > 0

0 h = 0

(C.16)

130

Appendix C (Continued)

Q̄h(bαoo1...ok ,Alarm) =

= Ga
∫

s∈Cbado

∫
s1∈Cbado1

· · ·
∫

sk∈Cbadok

Pr(s|αo)Pr(s, s1) . . . P r(sk−1, sk) ds ds1 . . . dsk −

− La
∫

s∈Cgoodo

∫
s1∈Cgoodo1

· · ·
∫

sk∈Cgoodok

Pr(s|αo)Pr(s, s1) . . . P r(sk−1, sk) ds ds1 . . . dsk

Q̄h(bαoo1...ok ,Continue) =

= −Lc
∫

s∈Cbado

∫
s1∈Cbado1

· · ·
∫

sk∈Cbadok

Pr(s|αo)Pr(s, s1) . . . P r(sk−1, sk) ds ds1 . . . dsk +

+ Gc
∫

s∈Cgoodo

∫
s1∈Cgoodo1

· · ·
∫

sk∈Cgoodok

Pr(s|αo)Pr(s, s1) . . . P r(sk−1, sk) dsds1 . . . dsk +

+
∑

ok+1∈O
V̄ h−1(bαoo1...okok+1

)

131

Appendix D

COPYRIGHT PERMISSIONS

This appendix includes copyright permissions for the RV’16 article [1], whose contents were

reused in this thesis.

SPRINGER NATURE LICENSE
TERMS AND CONDITIONS

Mar 15, 2018

This Agreement between Andrey Yavolovsky ("You") and Springer Nature ("Springer
Nature") consists of your license details and the terms and conditions provided by Springer
Nature and Copyright Clearance Center.

License Number 4310070429626

License date Mar 15, 2018

Licensed Content Publisher Springer Nature

Licensed Content Publication Springer eBook

Licensed Content Title Decision-Theoretic Monitoring of Cyber-Physical Systems

Licensed Content Author Andrey Yavolovsky, Miloš Žefran, A. Prasad Sistla

Licensed Content Date Jan 1, 2016

Type of Use Thesis/Dissertation

Requestor type academic/university or research institute

Format electronic

Portion full article/chapter

Will you be translating? no

Circulation/distribution 501 to 1000

Author of this Springer Nature content yes

Title Decision-Theoretic Monitoring of Cyber-Physical Systems

Instructor name Andrey Yavolovsky

Institution name University of Illinois at Chicago

Expected presentation date Mar 2018

Requestor Location Andrey Yavolovsky
16608 NE 37th St
Apt U2063

REDMOND, WA 98052
United States
Attn: Andrey Yavolovsky

Billing Type Invoice

Billing Address Andrey Yavolovsky
16608 NE 37th St
Apt U2063

REDMOND, WA 98052
United States
Attn: Andrey Yavolovsky

Total 0.00 USD

Terms and Conditions

Springer Nature Terms and Conditions for RightsLink Permissions

Springer Customer Service Centre GmbH (the Licensor) hereby grants you a non-
exclusive, world-wide licence to reproduce the material and for the purpose and
requirements specified in the attached copy of your order form, and for no other use, subject
to the conditions below:

1. The Licensor warrants that it has, to the best of its knowledge, the rights to license reuse
of this material. However, you should ensure that the material you are requesting is
original to the Licensor and does not carry the copyright of another entity (as credited in
the published version).

If the credit line on any part of the material you have requested indicates that it was
reprinted or adapted with permission from another source, then you should also seek
permission from that source to reuse the material.

2. Where print only permission has been granted for a fee, separate permission must be
obtained for any additional electronic re-use.

3. Permission granted free of charge for material in print is also usually granted for any
electronic version of that work, provided that the material is incidental to your work as a
whole and that the electronic version is essentially equivalent to, or substitutes for, the
print version.

4. A licence for 'post on a website' is valid for 12 months from the licence date. This licence
does not cover use of full text articles on websites.

5. Where 'reuse in a dissertation/thesis' has been selected the following terms apply:
Print rights for up to 100 copies, electronic rights for use only on a personal website or
institutional repository as defined by the Sherpa guideline (www.sherpa.ac.uk/romeo/).

6. Permission granted for books and journals is granted for the lifetime of the first edition and
does not apply to second and subsequent editions (except where the first edition
permission was granted free of charge or for signatories to the STM Permissions Guidelines
http://www.stm-assoc.org/copyright-legal-affairs/permissions/permissions-guidelines/),
and does not apply for editions in other languages unless additional translation rights have
been granted separately in the licence.

7. Rights for additional components such as custom editions and derivatives require additional
permission and may be subject to an additional fee. Please apply to
Journalpermissions@springernature.com/bookpermissions@springernature.com for these
rights.

8. The Licensor's permission must be acknowledged next to the licensed material in print. In
electronic form, this acknowledgement must be visible at the same time as the
figures/tables/illustrations or abstract, and must be hyperlinked to the journal/book's
homepage. Our required acknowledgement format is in the Appendix below.

9. Use of the material for incidental promotional use, minor editing privileges (this does not
include cropping, adapting, omitting material or any other changes that affect the meaning,
intention or moral rights of the author) and copies for the disabled are permitted under this
licence.

10. Minor adaptations of single figures (changes of format, colour and style) do not require the
Licensor's approval. However, the adaptation should be credited as shown in Appendix
below.

Appendix — Acknowledgements:

For Journal Content:
Reprinted by permission from [the Licensor]: [Journal Publisher (e.g.
Nature/Springer/Palgrave)] [JOURNAL NAME] [REFERENCE CITATION
(Article name, Author(s) Name), [COPYRIGHT] (year of publication)

For Advance Online Publication papers:
Reprinted by permission from [the Licensor]: [Journal Publisher (e.g.
Nature/Springer/Palgrave)] [JOURNAL NAME] [REFERENCE CITATION
(Article name, Author(s) Name), [COPYRIGHT] (year of publication), advance
online publication, day month year (doi: 10.1038/sj.[JOURNAL ACRONYM].)

For Adaptations/Translations:
Adapted/Translated by permission from [the Licensor]: [Journal Publisher (e.g.
Nature/Springer/Palgrave)] [JOURNAL NAME] [REFERENCE CITATION
(Article name, Author(s) Name), [COPYRIGHT] (year of publication)

Note: For any republication from the British Journal of Cancer, the following
credit line style applies:

Reprinted/adapted/translated by permission from [the Licensor]: on behalf of Cancer
Research UK: : [Journal Publisher (e.g. Nature/Springer/Palgrave)] [JOURNAL
NAME] [REFERENCE CITATION (Article name, Author(s) Name),
[COPYRIGHT] (year of publication)

For Advance Online Publication papers:
Reprinted by permission from The [the Licensor]: on behalf of Cancer Research UK:
[Journal Publisher (e.g. Nature/Springer/Palgrave)] [JOURNAL NAME]
[REFERENCE CITATION (Article name, Author(s) Name), [COPYRIGHT] (year
of publication), advance online publication, day month year (doi: 10.1038/sj.
[JOURNAL ACRONYM])

For Book content:
Reprinted/adapted by permission from [the Licensor]: [Book Publisher (e.g.
Palgrave Macmillan, Springer etc) [Book Title] by [Book author(s)]
[COPYRIGHT] (year of publication)

Other Conditions:

Version 1.0

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.

CITED LITERATURE

1. Yavolovsky, A., Žefran, M., and Sistla, A. P.: Decision-theoretic monitoring of cyber-
physical systems. In International Conference on Runtime Verification, pages 404–
419. Springer, 2016.

2. NSF: Cyber-physical systems. https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=

503286, 2015. [Online; accessed 10/23/2015].

3. Rajhans, A., Cheng, S.-W., Schmerl, B., Garlan, D., Krogh, B. H., Agbi, C., and Bhave,
A.: An architectural approach to the design and analysis of cyber-physical systems.
Electronic Communications of the EASST, 21, 2009.

4. ZHANG, Y., XIE, F., DONG, Y., YANG, G., and ZHOU, X.: High fidelity virtualiza-
tion of cyber-physical systems. International Journal of Modeling, Simulation, and
Scientific Computing, 4(02):1340005, 2013.

5. Baheti, R. and Gill, H.: Cyber-physical systems. The impact of control technology, pages
161–166, 2011.

6. Knight, J. C.: Safety critical systems: challenges and directions. In Software Engineering,
2002. ICSE 2002. Proceedings of the 24rd International Conference on, pages 547–
550. IEEE, 2002.

7. Henzinger, T. A., Kopke, P. W., Puri, A., and Varaiya, P.: What’s decidable about hybrid
automata? Journal of computer and system sciences, 57(1):94–124, 1998.

8. Sistla, A. P., Žefran, M., and Feng, Y.: Monitorability of stochastic dynamical systems. In
Computer Aided Verification, eds. G. Gopalakrishnan and S. Qadeer, volume 6806
of Lecture Notes in Computer Science, pages 720–736. Springer Berlin / Heidelberg,
2011.

9. Sistla, A. P., Žefran, Miloš, and Feng, Y.: Runtime monitoring of stochastic cyber-
physical systems with hybrid state. In 2nd International Conference on Runtime
Verification (RV2011), 2011.

135

https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286

136

10. Sistla, A. P., Žefran, M., Feng, Y., and Ben, Y.: Timely monitoring of partially observable
stochastic systems. In Proceedings of the 17th international conference on Hybrid
systems: computation and control, pages 61–70. ACM, 2014.

11. Papoulis, A. and Pillai, S. U.: Probability, random variables, and stochastic processes.
Tata McGraw-Hill Education, 2002.

12. Vardi, M. Y.: Automatic verification of probabilistic concurrent finite state programs. In
Foundations of Computer Science, 1985., 26th Annual Symposium on, pages 327–
338. IEEE, 1985.

13. Cappé, O. and Moulines, E.: T., rydén (2005): Inference in hidden markov models.

14. Rudin, W.: Real and complex analysis. Tata McGraw-Hill Education, 1987.

15. Hofbaur, M. and Williams, B.: Mode estimation of probabilistic hybrid systems. In Hybrid
Systems: Computation and Control, volume 2289 of Lecture Notes in Computer

Science, pages 81–91. Springer, 2002.

16. Kiefer, S. and Sistla, A. P.: Distinguishing hidden markov chains. In Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science, pages 66–75.

ACM, 2016.

17. Papoulis, A.: Random variables, and stochastic processes, 1990.

18. Russell, S. and Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, 2009.

19. Howard, R. A.: Dynamic programming and Markov processes. Wiley for The Mas-
sachusetts Institute of Technology, 1964.

20. Puterman, M. L.: Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

21. Astrom, K. J.: Optimal control of markov processes with incomplete state information.
Journal of Mathematical Analysis and Applications, 10(1):174, 1965.

22. Pineau, J., Gordon, G., and Thrun, S.: Anytime point-based approximations for large
pomdps. Journal of Artificial Intelligence Research, pages 335–380, 2006.

137

23. DeCarlo, R. A., Branicky, M. S., Pettersson, S., and Lennartson, B.: Perspectives and
results on the stability and stabilizability of hybrid systems. Proceedings of the
IEEE, 88(7):1069–1082, 2000.

24. Alur, R., Henzinger, T. A., Lafferriere, G., and Pappas, G. J.: Discrete abstractions of
hybrid systems. Proceedings of the IEEE, 88(7):971–984, 2000.

25. van der Schaft, A. J. and Schumacher, J. M.: An introduction to hybrid dynamical
systems, volume 251. Springer London, 2000.

26. Liberzon, D.: Switching in systems and control. Springer, 2003.

27. Pnueli, A.: Verifying liveness properties of reactive systems. In Hybrid and Real-Time
Systems, volume 1201. New York, NY, Springer, 1997.

28. Koutsoukos, X., Kurien, J., and Zhao, F.: Estimation of distributed hybrid systems using
particle filtering methods. In Hybrid Systems: Computation and Control, volume
2623 of Lecture Notes in Computer Science, pages 298–313. Springer, 2003.

29. Verma, V., Gordon, G., Simmons, R., and Thrun, S.: Real-time fault diagnosis. IEEE
Robotics & Automation Magazine, 11(2):56–66, 2004.

30. Blom, H. and Bloem, E.: Particle filtering for stochastic hybrid systems. In 43rd IEEE
Conference on Decision and Control, 2004. CDC, volume 3, 2004.

31. Lerner, U., Moses, B., Scott, M., McIlraith, S., and Koller, D.: Monitoring a complex
physical system using a hybrid dynamic bayes net. In Proceedings of the 18th
Annual Conference on Uncertainty in AI (UAI), pages 301–310, 2002.

32. Clarke, E. M., Grumberg, O., and Peled, D.: Model checking. MIT press, 1999.

33. Kumar, R. and Garg, V.: Control of stochastic discrete event systems modeled by proba-
bilistic languages. IEEE Transactions on Automatic Control, 46(4):593–606, 2001.

34. Pantelic, V., Postma, S., and Lawford, M.: Probabilistic supervisory control of probabilistic
discrete event systems. IEEE Transactions on Automatic Control, 54(8):2013–2018,
2009.

138

35. Yoo, T. and Lafortune, S.: Polynomial-time verification of diagnosability of par-
tially observed discrete-event systems. IEEE Transactions on Automatic Control,
47(9):1491–1495, 2002.

36. Stoller, S. D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S. A., and Zadok,
E.: Runtime verification with state estimation. In Runtime Verification, eds. S.
Khurshid and K. Sen, number 7186 in Lecture Notes in Computer Science, pages
193–207. Springer Berlin Heidelberg, September 2011.

37. Isard, M. and Blake, A.: Condensation—conditional density propagation for visual tracking.
International journal of computer vision, 29(1):5–28, 1998.

38. Kress-Gazit, H., Fainekos, G. E., and Pappas, G. J.: Where’s waldo? sensor-based tempo-
ral logic motion planning. In Proceedings 2007 IEEE International Conference on
Robotics and Automation, pages 3116–3121. IEEE, 2007.

39. Lygeros, J., Godbole, D. N., and Sastry, S.: A game-theoretic approach to hybrid system
design. In Hybrid systems III, pages 1–12. Springer, 1996.

40. Grunske, L. and Zhang, P.: Monitoring probabilistic properties. In Proceedings of the the
7th joint meeting of the European software engineering conference and the ACM

SIGSOFT symposium on The foundations of software engineering, pages 183–192.
ACM, 2009.

41. Sammapun, U., Lee, I., and Sokolsky, O.: Rt-mac: runtime monitoring and checking of
quantitative and probabilistic properties. In 11th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA’05),
pages 147–153. IEEE, 2005.

42. Pnueli, A., Zaks, A., and Zuck, L.: Monitoring interfaces for faults. Electronic Notes in
Theoretical Computer Science, 144(4):73–89, 2006.

43. Margaria, T., Sistla, A. P., Steffen, B., and Zuck, L. D.: Taming interface specifications. In
International Conference on Concurrency Theory, pages 548–561. Springer, 2005.

44. Sistla, A. P., Zhou, M., and Zuck, L. D.: Monitoring off-the-shelf compo-
nents. In International Workshop on Verification, Model Checking, and Abstract
Interpretation, pages 222–236. Springer, 2006.

139

45. Agate, R. and Seward, D.: Autonomous safety decision-making in intelligent robotic sys-
tems in the uncertain environments. In Fuzzy Information Processing Society, 2008.
NAFIPS 2008. Annual Meeting of the North American, pages 1–6. IEEE, 2008.

46. Hsu, S.-P. and Arapostathis, A.: Safety control of partially observed MDPs with applica-
tions to machine maintenance problems. In Systems, Man and Cybernetics, 2004
IEEE International Conference on, volume 1, pages 261–265. IEEE, 2004.

47. Seward, D., Pace, C., and Agate, R.: Safe and effective navigation of autonomous robots
in hazardous environments. Autonomous Robots, 22(3):223–242, 2007.

48. Bai, H., Hsu, D., Lee, W. S., and Ngo, V. A.: Monte carlo value iteration for continuous-
state pomdps. In Algorithmic foundations of robotics IX, pages 175–191. Springer,
2010.

49. Silver, D. and Veness, J.: Monte-carlo planning in large pomdps. In Advances in neural
information processing systems, pages 2164–2172, 2010.

50. Auer, P., Cesa-Bianchi, N., and Fischer, P.: Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256, 2002.

51. Boost: Boost. http://www.boost.org/, 2015. [Online; accessed 07/15/2017].

52. ROS: Ros. http://www.ros.org/, 2018. [Online; accessed 02/12/2018].

53. Russell, S.: Learning agents for uncertain environments. In Proceedings of the eleventh
annual conference on Computational learning theory, pages 101–103. ACM, 1998.

54. Abbeel, P. and Ng, A. Y.: Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the twenty-first international conference on Machine
learning, page 1. ACM, 2004.

55. Ng, A. Y., Russell, S. J., et al.: Algorithms for inverse reinforcement learning. In Icml,
pages 663–670, 2000.

56. Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.: Maximum entropy inverse
reinforcement learning. In AAAI, volume 8, pages 1433–1438. Chicago, IL, USA,
2008.

http://www.boost.org/
http://www.ros.org/

140

57. Choi, J. and Kim, K.-E.: Inverse reinforcement learning in partially observable environ-
ments. Journal of Machine Learning Research, 12(Mar):691–730, 2011.

58. Zhifei, S. and Meng Joo, E.: A survey of inverse reinforcement learning tech-
niques. International Journal of Intelligent Computing and Cybernetics, 5(3):293–
311, 2012.

59. Alur, R., Courcoubetis, C., Henzinger, T. A., and Ho, P.-H.: Hybrid automata:
An algorithmic approach to the specification and verification of hybrid systems.
Springer, 1993.

60. Billingsley, P.: Probability and measure. John Wiley & Sons, 2008.

61. Blom, H. A.: Stochastic hybrid processes with hybrid jumps. Analysis and Design of
Hybrid System, pages 319–324, 2003.

62. Cassandra, A. R., Kaelbling, L. P., and Littman, M. L.: Acting optimally in partially
observable stochastic domains. In AAAI, volume 94, pages 1023–1028, 1994.

63. Hespanha, J. P.: Stochastic hybrid systems: Application to communication networks. In
Hybrid systems: computation and control, pages 387–401. Springer, 2004.

64. Hofbaur, M. and Williams, B.: Mode estimation of probabilistic hybrid systems. In Hybrid
Systems: Computation and Control, volume 2289 of Lecture Notes in Computer

Science, pages 81–91. Springer, 2002.

65. Lynch, N., Segala, R., Vaandrager, F., and Weinberg, H. B.: Hybrid i/o automata.
Springer, 1996.

66. Pola, G., Bujorianu, M., Lygeros, J., and Benedetto, M.: Stochastic hybrid models: An
overview. In Proc. IFAC conf. anal. design hybrid syst, pages 45–50, 2003.

141

VITA

Andrey Yavolovsky

Email: andrey.yavolovsky@gmail.com

Education

• Ph.D. Candidate, Computer Science 2010-2018

University of Illinois at Chicago (UIC)

GPA: 3.84/4.0

• M.S., Electrical and Electronics Engineering 2007-2009

Ivane Javakhishvili Tbilisi State University (TSU)

Thesis:
Automation of measurement system for investigation of ESD influence to
cables and devices.

GPA: 4.0/4.0

• B.S., Computer Science 2002-2006

Ivane Javakhishvili Tbilisi State University (TSU)

Publications

3. A. Yavolovsky, M. Žefran, and A. P. Sistla. ”Decision-theoretic monitoring of cyber-
physical systems.” In International Conference on Runtime Verification, pp. 404-419.
Springer, Cham, 2016.

2. M. Javaid, M. Žefran, and A. Yavolovsky. ”Using pressure sensors to identify ma-
nipulation actions during human physical interaction.” In Robot and Human Interactive
Communication (RO-MAN), 2015 24th IEEE International Symposium on, pp. 670-675.
IEEE, 2015.

1. A. Demurov, I. Oganezova, A. Yavolovsky, Z. Kuchadze, F. Bogdanov, and R. Jobava.
”Analysis of EMC/EMI problems in printed circuit boards using Green’s function ap-
proach.” In Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory
(DIPED), 2010 Xvth International Seminar/Workshop on, pp. 91-95. IEEE, 2010.

142

Awards

• The Graduate Student Presenter Award, UIC 2016

• The Graduate Student Council Travel Award, UIC 2015

• Computer Science Department Conference, 1st Place Award, TSU 2008

• Computer Science Department Conference, 3rd Place Award, TSU 2004

Presentations

• International Conference on Runtime Verification (RV’16) Oct 2016

• The Midwest Verification Day (MVD 2015) Oct 2015

• NSF 5th Annual Cyber-Physical Systems Principal Investigators’ Meeting Nov 2014

Work Experience

• Software Engineer 2017 - Present

Microsoft Corporation, Redmond, WA, United States

• Research Assistant 2010-2017

Robotics Lab, UIC

• Teaching Assistant 2011-2015

Computer Architecture I: Logic and Computer Structures (CS 266), UIC

Computer Architecture II: Hardware-Software Interface (CS 366), UIC

Advanced Computer Architecture (CS 466), UIC

Computer Organization (CS 261), UIC

Computer Design (CS 362), UIC

• Software Engineer Intern Summer 2014

The MathWorks, Inc., Natick, MA, United States

• Software Enginner Intern Summer 2015

Microsoft Corporation, Redmond, WA, United States

• Software Engineer 2003 - 2010

EMCoS (EM Consulting and Software), Tbilisi, Georgia

	to1 Introduction
	 Cyber-Physical Systems
	 Motivation
	 Real-Time Monitoring
	 Hypothesis
	 Thesis Organization

	to2 Background and Related Work
	 Assembling Monitoring of CPS
	 Sequences
	 Safety Properties
	 Automata
	 Markov Chains
	 Hidden Markov Chains
	 Extended Hidden Markov Model
	 Probabilistic Hybrid Systems
	 Monitors
	 Accuracy Measures
	 Monitoring Time
	 Monitorability
	 Threshold-Based Monitors

	 Assembling a Decision-Theoretic Approach
	 Intelligent Agents and Decision Theory
	 Sequential Decision Problems
	 Sequential Decision Problems in Partially Observable Environments

	 Related Work

	to3 Decision-Theoretic Monitoring of CPS
	 Decisions in Run-Time Monitoring Problems
	 Monitoring Safety Properties
	 Monitoring Liveness Properties
	 Monitoring Rewards
	 Approximation to Threshold-Based Monitors

	to4 POMDP-Based Monitoring
	 Monitor Design
	 Monitoring Decision Rule
	 POMDP-Monitor Policy
	 Monitoring Autonomous Systems

	to5 Parametrization and Performance of POMDP-Based Monitors
	 Parametrization of POMDP-Based Monitor
	 Equivalent POMDP-Based Monitors
	 Simplest Reward Functions and Monitor Performance
	 Reward Functions with Single Non-Zero Reward Parameter
	 Case 1: Gc is the Only Non-Zero Parameter
	 Case 2: Ga is the Only Non-Zero Parameter
	 Case 3: Lc is the Only Non-Zero Parameter
	 Case 4: La is the Only Non-Zero Parameter

	 Reward Functions with Multiple Non-Zero Reward Parameters

	 Performance of POMDP-Based Monitors
	 POMDP-Based Monitor with Horizon 1
	 POMDP-Based Monitor with Horizon 2
	 Lower and Upper bound for the Expected Reward
	 Reward Configurations Deteriorating Monitoring Performance.

	to6 Monitoring Systems with Terminal Strongly Connected Components
	 Systems with Terminal Strongly Connected Components
	 Monitoring-POMDP in Systems with TSCCs
	 Monitoring-POMDP in Simplified Case of Systems with TSCCs

	to7 Decision-Theoretic Monitoring Tool
	 Purpose and Applications
	 Architecture Design
	 Monitoring Decision Rule Representation
	 Model Representation
	 Using the Tool
	 Availability

	to8 Experimental Evaluation
	 Monitoring of Transmission System
	 Experiment Setup
	 Results

	to9 Future Work
	 Alternative Monitoring Decision Rules
	 Adding More Non-Determinism into the Monitoring Decision Rule
	 Combining Multiple Decision Rules

	 Inverse Reinforcement Learning for Monitoring-POMDP

	to10 Conclusions
	to APPENDICES
	to Appendix A
	to Appendix B
	to Appendix C
	to Appendix D
	to CITED LITERATURE
	to VITA

