Skip to main content

Strain Calibration of Substrate-Free FBG Sensors at Cryogenic Temperature

  • Conference paper
  • First Online:

Abstract

Strain calibration measurements are performed for acrylate coated, substrate-free fiber Bragg grating (FBG) sensors at room temperature of 298 K and cryogenic temperature of 77 K. A 1550 nm Bragg wavelength (λB) FBG sensor, with its sensing part not being bonded to any surface, is subjected to axial strain using MTS25 tensile machine available at Cryogenic Material tests Karlsruhe (CryoMaK), KIT. The Bragg wavelength shift (ΔλB) versus induced strain (ε) is regressed with a linear polynomial function and the strain sensitivity obtained is found to be 0.9 pm/µε at both the temperatures, verifying that the FBG strain sensitivity is independent of temperature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rao, Y.J.: Recent progress in applications of in-fibre Bragg grating sensors. Opt. Lasers Eng. 31(4), 297–324 (1999)

    Article  Google Scholar 

  2. Othonos, A., Kalli, K.: Fiber Bragg Gratings – Fundamentals and Application in Telecommunications and Sensing. Artech House Optoelectronics Library, Boston (1999)

    Google Scholar 

  3. Iniewski, K.: Smart Sensors for Industrial Applications. Taylor & Francis Group, Boca Raton (2013)

    Google Scholar 

  4. Wu, M.-C.: Simultaneous temperature and strain sensing for cryogenic applications using dual-wavelength fiber Bragg gratings. In: Proceedings of SPIE 5191, pp. 208–213 (2003)

    Google Scholar 

  5. Ramalingam, R.: Fiber Bragg grating sensors for localized strain measurements at low temperature and in high magnetic field. In: Proceedings of AIP Conference, vol. 1218, no. 1, pp. 1197–1204 (2010)

    Google Scholar 

  6. Ramalingam, R., Neumann, H.: Fiber Bragg grating-based temperature distribution evaluation of multilayer insulations between 300 K–77 K. IEEE Sens. J. 11(4), 1095–1100 (2011)

    Article  Google Scholar 

  7. Ramalingam, R., Kläser, M., Schneider, T., Neumann, H.: Fiber Bragg grating sensors for strain measurement at multiple points in an NbTi superconducting sample coil. IEEE Sens. J. 14(3), 873–881 (2014)

    Article  Google Scholar 

  8. Bharathwaj, V., Markan, A., Atrey, M., Neumann, H., Ramalingam, R.: Fiber Bragg gratings for distributed cryogenic temperature measurement in a tube in tube helically coiled heat exchanger. In: IEEE sensors 2014, Valencia, Spain, pp. 1535–1538 (2014)

    Google Scholar 

  9. Ramalingam, R., Nast, R., Neumann, H.: Fiber Bragg grating sensors for distributed torsional strain measurements in a (RE) BCO tape. IEEE Sens. J. 15(4), 2023–2030 (2015)

    Article  Google Scholar 

  10. Li, J., Neumann, H., Ramalingam, R.: Design, fabrication, and testing of fiber Bragg grating sensors for cryogenic long-range displacement measurement. Cryogenics 68, 36–43 (2015). ISSN 0011-2275

    Article  Google Scholar 

  11. Kashyap, R.: Fiber Bragg Gratings. Academic Press, San Diego (1999)

    Google Scholar 

  12. Othonos, A.: Fiber Bragg gratings. Rev. Sci. Instrum. 68, 4309–4341 (1997)

    Article  Google Scholar 

  13. Roths, J., Andrejevic, G., Kuttler, R., Süsser, M.: Calibration of fiber Bragg cryogenic temperature sensors. In: 18th International Optical Fiber Sensors Conference. Optical Society of America (2006)

    Google Scholar 

  14. James, S.W., Tatam, R.P., Twin, A., Morgan, M., Noonan, P.: Strain response of fibre Bragg grating sensors at cryogenic temperatures. Measur. Sci. Technol. 13, 1535–1539 (2002)

    Article  Google Scholar 

  15. Roths, J., Jülich, F.: Determination of strain sensitivity of free fiber Bragg gratings. In: Proceedings of SPIE 7003, p. 700308 (2008)

    Google Scholar 

  16. Bagrets, N., Weiss, E., Westenfelder, S., Weiss, K.-P.: Cryogenic test facility CryoMaK. IEEE Trans. Appl. Supercond. 22(3), 9501204 (2012)

    Article  Google Scholar 

  17. Nyilas, A.: Strain sensing systems tailored for tensile measurement of fragile wires. Supercond. Sci. Technol. 18, S409–S415 (2005)

    Article  Google Scholar 

  18. Nyilas, A.: Transducers for sub-micron displacement measurements at cryogenic temperatures. In: Advances in Cryogenic Engineering: Transactions of the Cryogenic Materials Conference – ICMC, vol. 52 (2006)

    Google Scholar 

  19. FS22 – Industrial BraggMETER SI. http://www.fibersensing.com/download/0b49e3852b6452701f87b4a06fa4a90d439de5b1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajinikumar Ramalingam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Venkatesan, V.N., Weiss, KP., Bharti, R.P., Neumann, H., Ramalingam, R. (2016). Strain Calibration of Substrate-Free FBG Sensors at Cryogenic Temperature. In: Mandler, B., et al. Internet of Things. IoT Infrastructures. IoT360 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-319-47075-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47075-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47074-0

  • Online ISBN: 978-3-319-47075-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics