Skip to main content

Towards Precision Control in Constrained Wireless Cyber-Physical Systems

  • Conference paper
  • First Online:
Book cover Internet of Things. IoT Infrastructures (IoT360 2015)

Abstract

This paper introduces the problem of high precision control in constrained wireless cyber-physical systems. We argue that balancing conflicting performance objectives, namely energy efficiency, high reliability and low latency, whilst concurrently enabling data collection and targeted message dissemination, are critical to the success of future applications of constrained wireless cyber-physical systems. We describe the contemporary art in practical collection and dissemination techniques, and select the most appropriate for evaluation. A comprehensive simulation study is presented and experimentally validated, the results of which show that the current art falls significantly short of desirable performance when inter-packet intervals decrease to those required for precision control. It follows that there is a significant need for further study and new solutions to solve this emerging problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The terms are hereinafter used interchangeably, and may apply to sending an actuation command or a reconfiguration command.

  2. 2.

    Downward routing is a term also used to describe the traffic pattern for such messages, particularly in the standards community, e.g. [21].

  3. 3.

    http://www.fr.ch/poya/fr/pub/index.cfm.

  4. 4.

    http://www.solexperts.com.

  5. 5.

    http://www.ti.com/lit/ds/symlink/msp430f5419a.pdf.

  6. 6.

    http://www.ti.com/lit/ds/symlink/cc2520.pdf.

  7. 7.

    http://www.tinyos.net/tinyos-2.x/tos/lib/net/lqi/.

  8. 8.

    http://www.tinyos.net/tinyos-2.1.0/doc/html/tep118.html.

  9. 9.

    The amended IEEE802.15.4e (TSCH) is insufficiently mature for consideration.

  10. 10.

    We use the latest stable Contiki release, Contiki 2.7, available: http://www.contiki-os.org/download.html.

  11. 11.

    The literature suggests typical \(IPI_C\) values \(\simeq 15\) s. We include this interval, in addition to approaching saturation and selecting numerous divergent values. The same is done for \(IPI_D\), where typical values for this frequency are relatively unknown.

  12. 12.

    The average number of hops across all experiments is \(\simeq 4.3\).

  13. 13.

    We consider asynchronous MACs to be those without global or centrally coordinated time synchronisation.

  14. 14.

    We disregard the total ON time. For all \(IPI_D < 20\) s, ON is in the region 60–80%. We recalculate this as the sum of RX and TX active times, as they are reflective of the higher energy modes of the RFIC when listening and transmitting, respectively.

References

  1. Boyle, D., Magno, M., O’Flynn, B., Brunelli, D., Popovici, E., Benini, L.: Towards persistent structural health monitoring through sustainable wireless sensor networks. In: ISSNIP 2011, pp. 323–328 (2011)

    Google Scholar 

  2. Boyle, D., Srbinovski, B., Popovici, E., O’Flynn, B.: Energy analysis of industrial sensors in novel wireless SHM systems. In: 2012 IEEE Sensors, pp. 1–4, October 2012

    Google Scholar 

  3. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating system for tiny networked sensors. In: 29th Local Computer Networks, November 2004

    Google Scholar 

  4. Dunkels, A., Mottola, L., Tsiftes, N., Österlind, F., Eriksson, J., Finne, N.: The announcement layer: beacon coordination for the sensornet stack. In: Marrón, P.J., Whitehouse, K. (eds.) EWSN 2011. LNCS, vol. 6567, pp. 211–226. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19186-2_14

    Chapter  Google Scholar 

  5. Dunkels, A., Österlind, F., He, Z.: An adaptive communication architecture for wireless sensor networks. In: SenSys 2007, pp. 335–349 (2007)

    Google Scholar 

  6. Duquennoy, S., Landsiedel, O., Voigt, T.: Let the tree bloom: scalable opportunistic routing with ORPL. In: SenSys 2013

    Google Scholar 

  7. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection tree protocol. In: SenSys 2009

    Google Scholar 

  8. Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol for network programming at scale. In: SenSys 2004

    Google Scholar 

  9. Istomin, T., Kiraly, C., Picco, G.P.: Is RPL ready for actuation? A comparative evaluation in a smart city scenario. In: Abdelzaher, T., Pereira, N., Tovar, E. (eds.) EWSN 2015. LNCS, vol. 8965, pp. 291–299. Springer, Heidelberg (2015). doi:10.1007/978-3-319-15582-1_22

    Google Scholar 

  10. Ko, J., Jeong, J., Park, J., Jun, J.A., Gnawali, O., Paek, J.: DualMOP-RPL: supporting multiple modes of downward routing in a single rpl network. ACM Trans. Sen. Netw. 11(2), 39:1–39:20 (2015)

    Article  Google Scholar 

  11. Kolcun, R., McCann, J.: Dragon: data discovery and collection architecture for distributed IoT. In: Internet of Things (IOT) 2014, pp. 91–96, October 2014

    Google Scholar 

  12. Kulkarni, S., Wang, L.: MNP: multihop network reprogramming service for sensor networks. In: Proceedings of the Distributed Computing Systems, ICDCS 2005 (2005)

    Google Scholar 

  13. Landsiedel, O., Ferrari, F., Zimmerling, M.: Chaos: versatile and efficient all-to-all data sharing and in-network processing at scale. In: SenSys 2013, pp. 1:1–1:14. ACM

    Google Scholar 

  14. Levis, P., et al.: Tinyos: an operating system for sensor networks. In: Weber, W., Rabaey, J., Aarts, E. (eds.) Ambient Intelligence, pp. 115–148. Springer, Berlin (2005)

    Chapter  Google Scholar 

  15. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: a self-regulating algorithm for code propagation and maintenance in wireless sensor networks. In: NSDI 2004

    Google Scholar 

  16. Lin, K., Levis, P.: Data discovery and dissemination with DIP. In: IPSN 2008

    Google Scholar 

  17. Magno, M., Boyle, D., Brunelli, D., O’Flynn, B., Popovici, E., Benini, L.: Extended wireless monitoring through intelligent hybrid energy supply. IEEE Trans. Ind. Electron. 61(4), 1871–1881 (2014)

    Article  Google Scholar 

  18. Moss, D., Levis, P.: BoX-MACs: exploiting physical and link layer boundaries in low-power networking. Computer Systems Laboratory Stanford University (2008)

    Google Scholar 

  19. Stolikj, M., Meyfroyt, T.M.M., Cuijpers, P.J.L., Lukkien, J.J.: Improving the performance of trickle-based data dissemination in low-power networks. In: Abdelzaher, T., Pereira, N., Tovar, E. (eds.) EWSN 2015. LNCS, vol. 8965, pp. 186–201. Springer, Heidelberg (2015). doi:10.1007/978-3-319-15582-1_12

    Google Scholar 

  20. Tolle, G., Culler, D.: Design of an application-cooperative management system for wireless sensor networks. In: EWSN 2005

    Google Scholar 

  21. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, J., Alexander, R.: RPL: IPv6 routing protocol for low-power and lossy networks. RFC 6550 (Proposed Standard), March 2012

    Google Scholar 

  22. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multihop routing in sensor networks. In: SenSys 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Boyle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Boyle, D., Kolcun, R., Yeatman, E. (2016). Towards Precision Control in Constrained Wireless Cyber-Physical Systems. In: Mandler, B., et al. Internet of Things. IoT Infrastructures. IoT360 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-319-47075-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47075-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47074-0

  • Online ISBN: 978-3-319-47075-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics