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Abstract. With the rapid development of information technology, rec-
ommender systems have become critical components to solve information
overload. As an important branch, weighted hybrid recommender system-
s are widely used in electronic commerce sites, social networks and video
websites such as Amazon, Facebook and Netflix. In practice, developers
typically set a weight for each recommendation algorithm by repeating
experiments until obtaining better accuracy. Despite the method could
improve accuracy, it overly depends on experience of developers and the
improvements are poor. What worse, workload will be heavy if the num-
ber of algorithms rises. To further improve performance of recommender
systems, we design an optimal hybrid recommender system on Spark. Ex-
perimental results show that the system can improve accuracy, reduce
execution time and handle large-scale datasets. Accordingly, the hybrid
recommender system balances accuracy and execution time.
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1 Introduction

Along with the popularization of the Internet, a sharp increase in the amount
of data leads to information overload [1]. Thus, recommender systems [2] were
proposed to relieve the stress of massive data. To improve recommender systems
performance, researchers put forward the weighted hybrid method. Despite per-
formance boost has been brought by the method, there are still several problems
affecting performance, including weight setting and computation load. Hence,
we implement a weighted hybrid recommender system on Spark. In the system,
we design a new method to compute weights, using cluster analysis and user
similarity. Besides, the execution time can be reduced by deploying the system
on Spark.

1.1 Hybrid Recommender Systems

Hybrid recommender systems combine two or more recommendation algorithms
to overcome weaknesses of each algorithm. It is generally classified as Switching,
Mixed, Feature Combination, Meta-Level, and Weighted [3].
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The weighted hybrid technique combines different algorithms with different
weights [3]. The main idea is that the algorithm with better accuracy has a higher
weight. At present, developers always set a weight for an algorithm manually and
repeat experiments until achieving superior accuracy. Thus, the method depends
on developers’ experience to determine accuracy of an algorithm in different
datasets. Due to large-scale datasets, sparsity of rating data and the number
of algorithms, it’s generally hard to obtain appropriate weights. Eventually the
improvements of accuracy are poor.

In addition, to improve user experience, the system should return recom-
mendation results efficiently. In other words, it has to quickly locate information
which can appeal users in massive data. Thus, execution time is another evalua-
tion standard of performance. However, the weighted hybrid technique needs to
execute two or more algorithms and compute hybrid results, it’s tough to reduce
execution time.

Apart from accuracy and execution time of the system, scalability is also an
important consideration. With the increasing of data scale and the algorithm
complexity, the system requires more storage space and computing resources.
It’s difficult to meet the actual demand by only optimizing algorithms.

To address the above-mentioned issues, we design a hybrid recommender
system on Spark. In the system, we propose an optimized method to improve
accuracy. It computes weights and hybrid results based on cluster analysis and
user similarity. Meanwhile, we deploy the system on Spark which is a fast and
general engine for large-scale data processing [4] to accelerate the training process
and improve scalability.

1.2 Work of Paper

The rest of this paper is organized as five sections. Section 2 reviews recommen-
dation algorithms and introduces the Spark. Section 3 describes the design of
the optimized method. Section 4 shows how we implement the system on Spark.
Section 5 gives experimental results and our analysis. Section 6 presents our
conclusions and future work.

2 Related Work

In this section, we first review and compare recommendation algorithms and
recommender systems. Then, we briefly analyze predicting ratings of algorithms.
Finally, we introduce the distributed computing platform Spark and compare
Hadoop and Spark.

2.1 Recommender Systems

Recommendation algorithms are the basis of recommender systems. In this sec-
tion, we first introduce several representative algorithms.
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Collaborative recommendation is almost the most popular algorithm. Based
on overlapped ratings, it computes similarities among users. And then, it uses
similarities to predict the rating that the current user on an item [5]. Tapestry
[6], Ringo [7] and GroupLens [8] are typical systems with the algorithm.

Content-based recommendation pays attention to connections between items.
It analyses descriptions of items that have been rated by users [9] and calculates
similarities between items. The represention of an item’s feature and the way to
classify a new item are two important sub-problems [9].

Demographic-based recommendation [9] is a simple algorithm. It focuses on
types of users that like a certain item. The technique identifies features of users
such as age, gender, nationality, education, etc. It measures user similarity by
taking those features into consideration. Table 1. shows strengths and weaknesses
of each algorithm [5][9].

Table 1. Strengths and weaknesses of recommendation algorithms

Algorithm Strength Weakness

Collaborative

Field independence.
Not necessary to understand

descriptions of items.
Support users to discover potential interests.

New user problem.
New item problem.

Sparsity.

Content
Improve accuracy by increasing

dimensions of item features.

Cold start problem.
Similarity measurement

is one-sided.

Demographic
Historical data are not necessary.

Wide range of applications.
No cold start problem.

The algorithm is
rough and imprecise.

As the simple and effective technique, the weighted hybrid recommender
system has been widely used in numerous fields. P-Tango and Pazzani are two
typical systems. P-Tango is an online news system. It combines collaborative
and content-based recommendation algorithms. The system adjusts weights of
algorithms in the process of operation. Until the system obtains the expected ac-
curacy, it determines weights. Pazzani is the other weighted hybrid recommender
system. It combines collaborative, content-based and demographic-based recom-
mendation algorithms. The system uses voting to determine recommendation
results.

2.2 Weight Analysis

As previously described in section 1, we give the formalized representation of
the weighted hybrid technique as follows:

R̃ui =

n∑
j=1

αjr
j
ui (1)
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where j represents the j’th algorithm, it ranges from 1 to n. αj corresponds

to the weight of the j’th algorithm. rjui is the predicting rating of user u on

item i by the j’th algorithm. R̃ui indicates the final hybrid result. From the
formula (1), we can recognize that each algorithm just has a certain weight. That
means the technique presupposes that predicting ratings of an algorithm are all
greater or less than their ratings. However, this condition evaluates to false. Here
we give some empirical evidence. We implement the User-based Collaborative
Filtering (User-CF) and the Alternating Least Squares (ALS) in Python2.7, and
use MovieLens-100K as observed data.

Table 2. The results of statistic analysis on predicting ratings

Algorithm countH countL countE

User-CF 9181 10752 11

ALS 6992 12952 0

In the Table 2, countH is the number of predicting ratings which are greater
than real ratings. The countL is less than real ratings and countE is equivalent
amounts. From the empirical results, we know that:

(1) In these algorithms, there are little predicting ratings that equal to ratings.
(2) A part of predicting ratings are greater than ratings, and another are less

than ratings.
(3) Only a weight for an algorithm may affect accuracy.

Thus, it is essential to optimize weights.

2.3 Spark

Spark is a fast and general-purpose cluster computing platforms for large-scale
data processing [4] which is developed by UC Berkeley. In the environment of
Spark, it includes Spark SQL [10], Spark Streaming [11], Mllib [12], GraphX
[13], etc. Based on resilient distributed dataset (RDD) [14], it achieves memory-
based computing, fault tolerance and scalability. Currently, Spark is deployed in
Amazon, ebay and Yahoo! to process large-scale datasets.

For a hybrid recommender system, performance is affected by data scale, the
number of algorithms and the complexity of algorithms. Deploy the system on
Spark can mitigate above affects.

(1) In the system, large-scale datasets could be stored in distributed storage.
(2) Algorithms are independent with each other, they are supposed to be per-

formed in parallel.
(3) Intermediate values can be cached in memory to decrease execution time.

Therefore, in this paper, we design an optimized hybrid recommender system on
Spark.
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3 Design Overview

The empirical evidence from section 2 suggests that accuracy still has chance
to be improved. The predicting ratings are higher or lower than correspond-
ing ratings. Thus, we use cluster analysis to obtain more accurate weights. The
principle of cluster analysis is that according to the properties of samples, using
mathematical methods to determine relationship between samples, and accord-
ing to the relationship to cluster samples. Based on cluster analysis, we present
an optimized method for calculating personalized weights. Now let us discuss
the method in detail.

3.1 Objective Function.

In this section, we first give explanations of several concepts. In the following
statement:

1. Assume that there are n algorithms in the system and j is the j’th algorithm.
2. u for user, i for item and (u,i) represents the data item of u and i.
3. Rui is the rating of u on i, rjui is the predicting rating of u on i which is

computed by the j’th algorithm.
4. For the j’th algorithm, the error between the rating and the predicting rating

is: Dj
ui = Rui − rjui. In order to reduce

∑n
j=1

∑
u,iD

j
ui, similar errors are

expected to get same weights. Based on errors, we divide (u,i) into k clusters
and design Cui = (c1, c2, · · · , ck) to reflect the cluster of (u,i). For the j’th
algorithm, αj = (αj1, αj2, · · · , αjk) represents k weights of the algorithm.

αjC
T
ui finally determines the weight for rjui.

According to our analysis, we define the objective function as formula (2):

F (α) =
∑
u,i

(Rui −α1Cui
T rui

1 −α2Cui
T rui

2 − · · · −αnCuiT rnui)2 (2)

s.t.

n∑
j=1

αjC
T
ui = 1 (3)

3.2 Weight Calculation

According to Dj
ui, the optimized method classifies all (u,i) into k clusters . For

each (u,i), it has a vector Cui = (c1, c2, · · · , ck) and is initialized to Cui =
(0, 0, · · · , 0). The value which corresponds to (u,i)’s cluster is set to 1. For in-
stance, if (u,i) belongs to the cluster 2, Cui = (0, 1, 0, · · · , 0). The weight for
rjui is αj2 which is computed by αjCui

T . Therefore, C could map weights to
predicting ratings and achieve multiple weights for an algorithm. Fig.1 shows
the pipeline of the method.
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After calculating C, the optimized method requires to compute αj . For the
purpose of minimizing the objective function, we make use of the Lagrange the-
ory and minimum theory [15][16]. Based on formula (2), the method constructs
the Lagrange function L(α).

 L(α) = F (α) + λ
∑
u,i

φ(α) (4)

φ(α) =

n∑
j=1

αjCui
T − 1 (5)

For each j, let ∂L
∂(αjCui

T )
= 0. We can get an equation:

2∗
∑
u,i

(α1Cui
T r1uir

j
ui+α2Cui

T r2uir
j
ui+ · · ·+αnCuiT rnuir

j
ui)+λ = 2∗

∑
u,i

Ruir
j
ui

(6)
The equation (6) can be represented by matrix:

XY = 2 ∗
(
α1 α2 · · · αn λ

)

∗



∑
u,iCui

T r1uir
1
ui

∑
u,iCui

T r1uir
2
ui · · ·

∑
u,iCui

T r1uir
n
ui

∑
u,iCui

T∑
u,iCui

T r2uir
1
ui

∑
u,iCui

T r2uir
2
ui · · ·

∑
u,iCui

T r2uir
n
ui

∑
u,iCui

T

...
...

. . .
...

...∑
u,iCui

T rnuir
1
ui

∑
u,iCui

T rnuir
2
ui · · ·

∑
u,iCui

T rnuir
n
ui

∑
u,iCui

T

1 1 · · · 1 0



= 2 ∗



∑
u,iRuir

1
ui∑

u,iRuir
2
ui

...∑
u,iRuir

n
ui∑

u,i 1

 = R

(7)
Thus the weight matrix X can be calculated by

X = R ∗ Y −1 (8)

The optimized method uses ratings which have already stored in the system
to compute weights. However, these weights aren’t entirely appropriate for a
new (u,i). We further introduce user similarity to compute weights. The user
similarity is computed by cosine similarity:

simu,v =
|N(u) ∩N(v)|√
|N(u)||N(v)|

(9)

where simu,v is the similarity between u and v. N(u) means the number of items

that u have rated. N(v) is the same as N(u). For the (u
′
, I

′
), the optimized
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method calculates the hybrid result as:

ˆru′I′ =

∑
v simu′ ,v ∗ (α1CvI′

T r1
u′I′ +α2CvI′

T r2
u′I′ + · · ·+αnCvI′ T rnu′I′ )∑

v simu′v
(10)

The equation (10) is able to filter the interference of non similar weights and get
a personalized weight for the (u

′
, I

′
).

Fig. 1. The pipeline of the optimized method. The input file consists of ratings. Algo-
rithms read the input file and output predicting ratings. Then the system computes
errors and cluster data items. Finally the system gives the C.

4 Implementation

Data 
Storage

Partition

Partition

...

Partition

RDD

Prediction

Cluster

Weight

Predicting 
Ratings

Model 
Fusion

Recommend

Recommendati
on List

Evaluation
Index

Fig. 2. The architecture of the hybrid recommender system. The system reads ratings
and outptu recommendation lists. Besides, it also provides an evaluation index.

According to the design overview, we deploy the hybrid recommender system
on Spark. The system contains data storage, prediction, cluster, weight, model
fusion and recommendation, totally 6 modules. Fig.2 shows the architecture of
the system.



8

4.1 Modules

Data storage module is the basis of the system. It stores input data, including
historical data and ratings. We use HDFS which is a distributed file system
to store raw data [17]. The pre-processed data are put in the database such
as HBase, Redis, Hive, etc [18][19][20]. Topside modules read data from the
database. Prediction module is used to compute predicting ratings. It performs
recommendation algorithms in parallel. Outputs are predicting ratings.

The cluster module concentrates on errors of (u,i). It exploits k-means to
classify (u,i). Output of the module is C. The weight module accepts C to
compute weights. With C and α, the module can get a weight for each rjui.
Output of it is α.

The model fusion calculates hbrid results based on predicting ratings, C, α
and user similarity. According to these parameters, it determines hybrid results
by logistic regression [21]. Recommendation is used to recommend items for
users. Based on hybrid results, it generates recommendation lists. Besides, it
also outputs an evaluation for results.

4.2 Discussion

In the hybrid recommender system on Spark, data are translated into RDDs.
Because of the characteristics of memory-based computing and parallel opera-
tions, RDDs can be processed in parallel to reduce execution time. The read-only
and fault tolerance of RDD make the system more reliable. Besides, due to the
distributed storage of Spark, the system is able to handle large-scale datasets.
It improves scalability of the system. Therefore, deploy the hybrid recommender
system on Spark could decrease execution time and further improve scalability.

5 Performance

5.1 Evaluation Index

Accuracy. The system accuracy is measured by root mean square error (RMSE)
[22]. It is defined as:

RMSE =

√∑
u,i∈T (Rui − r̂ui)2

|T |
(11)

where Rui and r̂ui is the rating and the hytbrid result that u on i respectively.
|T | denotes the number of r̂ui.

Execution Time. The execution time includes time of algorithms, clustering,
calculating weights and hybrid results. It is measured in minutes.
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5.2 Experimental Setup

In this experiment, we choose Spark as our platform. All experiments were per-
formed using a local cluster with 7 nodes (1 master and 6 worker nodes): each
node has Xeon(R) dual-core 2.53GHz processor and 6GB memory.

Dataset. In Table 3, we list datasets that were used in the experiment. For
each dataset, we divide it into 2 training sets and a test set randomly.

Table 3. Datasets in the experiment

Dataset Users Items Ratings

MovieLens-100K 1000 1700 100000

MovieLens-200K 1371 10153 200000

MovieLens-300K 2004 10850 300000

MovieLens-400K 2661 11634 400000

MovieLens-500K 3462 13257 500000

MovieLens-600K 4073 13488 600000

MovieLens-700K 4753 14154 700000

MovieLens-800K 5543 14230 800000

MovieLens-900K 6207 14963 900000

MovieLens-1M 6000 4000 1 million

BookCrossing 71212 176272 400000

Algorithms. We implement 3 recommendation algorithms: User-CF, Item-
based Collaborative Filtering (Item-CF) and ALS. We perform them in training
sets and test sets to compute predicting ratings, weights and hybrid results.

Nodes. We compare execution time of the stand-alone system and the distribut-
ed system. For the former, we use the server with Xeon(R) dual-core 2.53GHz
processor and 6GB memory. For the latter, we use a local cluster with 7 n-
odes (1 master and 6 worker nodes): each node has Xeon(R) dual-core 2.53GHz
processor and 6GB memory.

5.3 Performance Comparision

In this section, we evaluate performance of the hybrid recommender system on
Spark, including accuracy and execution time.

Fig.3 shows impacts of data scales on accuracy. In the experiment, we per-
forme the combination of User-CF and ALS on four MovieLens datasets. In the
Fig.3, with the increasing of data scale, RMSE generally decreases. Due to the
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Fig. 4. The RMSE of different types of
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sparsity of MovieLens-700K, the hybrid recommender system obtains the best
result. Compare with User-CF and ALS, the system improves accuracy of 8.21

Fig.4 gives the RMSE of different types of datasets. In the experiment, we per-
forme the combination of User-CF and ALS on MovieLens-400K and BookCross-
ing. The Fig.4 shows that the hybrid recommender system can improve accu-
racy of different types of datasets. And there are significant improvements on
BookCrossing. The improvements demonstrate that the system is available for
sparse datasets.

0.70
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RM
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MovieLens
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Fig. 5. The RMSE of different combinations of algorithms. The x-axis indicates the
dataset, and the y-axis describes the RMSE.

Fig.5 shows correlations between accuracy and combinations of algorithms.
In the experiment, four combinations of algorithms are performed on MovieLens-
100K, MovieLens-400K and BookCrossing respectively. In Fig.5, the hybrid rec-
ommender system obtains better accuracy than single algorithm. When accura-
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Fig. 6. The execution time of 2 modes. The x-axis indicates datasets and the y-axis
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cy of single algorithm is favorable, the hybrid recommender system also obtains
better accuracy.

Fig.6 compares execution time of stand-alone mode and local cluster mode.
The experiment performs the combination of User-CF and ALS on MovieLens-
100K to MovieLens-1M. For the stand-alone system, execution time increases
sharply with the expansion of data scale. However, execution time of local cluster
mode remains relatively constant. When the data scale is larger than MovieLens-
900K, the stand-alone mode couldn’t handle it. The local cluster mode could
handle MovieLens-10M or larger datasets. From Fig.6, we can recognize that
memory-based computing, parallel operations and distributed storage of Spark
are helpful to decrease execution time and improve scalability.

6 Conclusion and Future Work

Improving performance of recommender systems is a crucial solution for informa-
tion overload. This paper designs a new weighted hybrid recommender system to
solve this problem. We are the first to compute weights by using cluster analysis,
user similarity and minimum theory. Besides, we deploy the hybrid recommender
system on Spark. The system improves accuracy by optimizing weights and re-
duces execution time by memory-based computing and parallel operations. And
distributed storage of the system is helpful to improve scalability. The experi-
ment results demonstrate the performance of our hybrid recommender system.

In future work, we will consider to improve and extend the system: expansion
of algorithm to process more complex scenes. Further research on factors influ-
encing weights to improve accuracy. Meanwhile, optimize the implementation of
the system on Spark.
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