
Searching for Configurations in Clone Evaluation
A Replication Study

Chaiyong Ragkhitwetsagul1, Matheus Paixao1, Manal Adham1

Saheed Busari1, Jens Krinke1 and John H. Drake2

1University College London, 2Queen Mary University of London

Abstract. Clone detection is the process of finding duplicated code
within a software code base in an automated manner. It is useful in
several areas of software development such as code quality analysis, bug
detection, and program understanding. We replicate a study of a genetic-
algorithm based framework that optimises parameters for clone agree-
ment (EvaClone). We apply the framework to 14 releases of Mockito,
a Java mocking framework. We observe that the optimised parameters
outperform the tools’ default parameters in term of clone agreement by
19.91% to 66.43%. However, the framework gives undesirable results in
term of clone quality. EvaClone either maximises or minimises a number
of clones in order to achieve the highest agreement resulting in more false
positives or false negatives introduced consequently.

1 Introduction
Code cloning is a common activity in software development. Clones can be cre-
ated by reuse of well-written code or adaptation of functionality from existing
code, and may lead to software maintenance issues. Numerous tools exist to de-
tect clones in a given software system [4, 8, 10]. Not only do these tools differ
in their detection approach, but they also come with a number of parameters
to choose from which greatly affect their sensitivity [7]. The oracle problem in
clone detection is the absence of the possibility to establish a ground truth,
i.e. knowing if code is actually cloned. Therefore, multiple clone detectors are
often used on the assumption that it is more likely that code is actually cloned
when multiple clone detectors agree.

We perform a replication study of EvaClone [11] which uses a Genetic Algo-
rithm to optimise clone detection tools parameters to maximise clone agreement,
but in a different settings. We select four tools for this study: CCFinder [6],
Deckard [5], NiCad [9], and Simian [2] and apply the framework to only a single
subject, Mockito [1] (a mocking framework for unit testing within Java), over
its 14 major releases. This experimental settings have not been explored yet in
the previous study.

2 Optimising Parameters of Clone Detectors

Previous work by Wang et al. [11] has shown that a Genetic Algorithm (GA) is
able to find a set of parameter values that maximise agreement between an en-
semble of clone detection tools. They show that the derived optimised parameters



2

Yes

Save

Fitness 
calculation

Cache

GCF 
Converter

Cache 
Checker

No

Configuration 

Mockito CCFinder

Tool execution

GA

CCFinder

Fitness Evaluation

Deckard
NiCad Simian

Deckard
NiCad
Simian

Fig. 1. A framework for optimising parameters of clone detectors using a GA

provide better agreement among tools compared to using the tools’ default set-
tings, which are often used in empirical investigations in the literature. In this
study, we adopt their EvaClone framework to search for configurations which
maximise the level of agreement between the four clone detection tools.

Fig. 1 presents a high-level overview of the system. Given predefined con-
figuration settings X, each tool generates a clone report containing either clone
pairs or clone clusters in its own specific format. These output files are then
converted into a General Clone Format (GCF) [11] so that they can be analysed
in the same way. This is followed by fitness calculation of a given configuration
X based on number of agreed clone lines. The fitness function computes the
level of agreement between n different tools applied to detect clones in a subject
system. AgreedLines[i] is the number of lines where exactly i tools agree that
they are part of a clone:

F (X) =

∑n
i (i×AgreedLines[i])

n×
∑n

i AgreedLines[i]

To search the space of configurations, we program the GA to initially generate
a population of 100 feasible solutions (99 random individuals and one individual
as the default configuration). Each individual solution encodes values for the
25 parameters of the four tools. These solutions are evolved using selection,
crossover and mutation to create better quality solutions guided by the fitness
value in each iteration. The crossover and mutation rate are the same as in [11],
set at 0.8 and 0.1 respectively. We choose an elitism rate at 0.25.

The clone detectors selected for this study are representatives of (1) com-
monly used clone detection tools in research, and (2) different clone detection
techniques, including string-based (Simian), parser-based (NiCad), token-based
(CCFinder) and tree-based (Deckard). We reuse the default configurations given
in [11] for CCFinder, NiCad, and Simian. Deckard has no default configuration
so we choose the default parameters used in a recent study [10].

3 Experimental Study

We collected 14 major releases of Mockito from Google Code and GitHub repos-
itories as subjects for this study. A manual investigation of the source code and
release notes shows that 2 Java class files from Apache Commons have been
included in the system since release 1.0 (EqualsBuilder and ReflectionEquals).
The files are constantly modified over releases so we treat them as a part of
Mockito. However, there are 2 complete libraries (cglib and asm) embedded in



3

Table 1. Mockito releases, their size (SLOC), size increment (%Inc) and churn rates

Release 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 2.0.0 2.0.44
SLOC 5500 6669 6784 6824 7239 7566 8364 8944 10143 12426 17876 22796 23555 25321
%Inc N/A 21% 2% 1% 6% 5% 11% 7% 13% 23% 44% 28% 3% 8%
Insertions N/A 1786 318 199 632 661 1494 1536 1445 5446 7151 7667 1452 13969
Deletions N/A 618 204 157 218 335 656 989 245 3170 1765 2789 1577 11370

Mockito from release 1.5 to 1.9 which are used without modification. They make
Mockito releases 1.5 to 1.9 grow three times bigger than release 1.4 and would
introduce a strong bias to our results. Hence, we removed these two libraries out
of the five releases. The size of the 14 releases (SLOC) after removal of the two
libraries, and churn rates (inserted and deleted lines) are presented in Table 1.

We are interested in three research questions, which will be individually pre-
sented and discussed.

RQ1 (optimised agreement): how do the default parameters perform in
terms of clone agreement on each Mockito release compared to the optimised
ones? This is to measure how good the default configuration is for each release
compared to its optimised counterpart. If we can find a better configuration than
the default, it should be used for finding clones in each particular release.

0.30

0.35

0.40

0.45

0.50

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 2.0.0 2.0.44
Mockito

Fi
tn

es
s 

Va
lu

e

Default
EvaClone Highest
EvaClone Lowest

Fig. 2. Comparison of optimised tools agreement (the highest and the lowest in 20
runs) to the default agreement over 14 Mockito releases

The experimental findings show that one can use EvaClone to find parameters
that outperform the default parameters for all 14 releases. As depicted in Fig. 2,
the optimised parameters always provide a higher level of tools agreement than
the default ones. The lowest clone agreement obtained from EvaClone among 20
runs (represented using × symbol) is still higher than using the default configu-
ration. We calculated percentage of agreement improvement and found that the
optimised one always outperform the default configuration ranging from 19.91%
up to 64.43%. These findings support the results of Wang et al. [11] that the
default parameters offer a poor level of clone agreement and one should optimise
the tools’ configurations for every subject system or for every release of a system
to maximise agreement.

RQ2 (stability of optimised parameters): are there noticeable differences
in the values of optimised parameters over releases? Since each release of Mockito
contains several changes made to its code base, we are interested to see what the
impact of these modifications is to the optimised parameters. If the optimised
parameters are stable over releases, it means that we can use the same optimised



4

Table 2. Clone detection tools with their default configurations (DF) and optimised
configurations per release. Bold parameters are dominant in each release (i.e. no vari-
ation found among 20 runs)

Tool Parameter DF
Optimised

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 2.0.0 2.0.44

CCFinder
MinToken 50 10 70 70 70 80 80 80 80 10 10 10 10 10 10
TKS 12 10 16 18 19 18 18 19 20 14 17 10 10 10 10

Deckard
MinToken 30 30 50 50 50 50 50 50 50 50 50 50 50 50 50
Stride 5 inf 8 8 8 5 8 8 8 16 5 inf inf inf inf
Similarity 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.95 1.0 0.9 0.9 0.9 0.9

NiCad

MinLine 6 5 7 7 7 6 6 6 7 6 5 5 5 5 5
MaxLine 1000 200 100 100 400 400 200 200 200 200 100 100 100 200 200
UPI 0.3 0.3 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.3 0.1 0.3 0.3 0.3 0.3
Blind 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1
Abstract 0 4 6 6 6 6 5 5 6 6 2 4 4 4 4

Simian

ignoreCurlyBraces 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
ignoreIdentifiers 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1
ignoreIdentifierCase 0 * * * * * * * * * * * * * *
ignoreStrings 0 1 0 0 0 0 0 0 0 1 0 * * * *
ignoreStringCase 1 * 1 1 0 0 0 0 0 * 0 * * * *
ignoreNumbers 0 1 0 1 0 1 1 0 1 1 0 * * * *
ignoreCharacters 0 0 0 1 0 0 0 1 0 0 1 * * * *
ignoreCharacterCase 1 0 0 * 1 1 0 * 1 1 * * * * *
ignoreLiterals 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
ignoreSubtypeNames 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1
ignoreModifiers 1 1 1 0 1 0 0 0 0 0 0 1 1 1 1
ignoreVariableNames 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1
balanceParentheses 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0
balanceSquareBrackets 0 1 0 0 0 1 1 0 1 1 1 1 1 1 0
MinLine 6 5 6 6 6 6 6 6 6 7 7 5 5 5 5

parameters to detect clones in any Mockito release. If not, it means that one may
need to optimise the parameters for each individual release.

With 20 GA runs for each release, we found several sets of distinct parameter
settings that can achieve the same highest clone agreement level. Among sets of
these equally-performing optimised parameters, we select one that has minimum
amount of change from the optimised parameters chosen in the previous release1

(using Euclidean distance). This method maximises the stability of optimised
parameters over all releases. The optimised parameters over 14 Mockito releases
are reported in Table 2 and can be used as a guideline for setting the parameters
of these tools in further studies of clones or clone evolution in Mockito. We can
see that none of the optimised parameters is stable over all releases. However, if
we inspect each tool’s settings individually, we notice some stability of specific
parameters spanning over a number of releases. The parameters shown in bold
(e.g. 50, inf, 0.9) represent parameters that are “dominant” in each specific
release. Dominant parameters are those that have only a single value across all
20 runs. We can see that there are some parameters that are both dominant
and stable over a number of releases. In addition, we observe that changing
some parameters of Simian does not affect the tool’s behaviour at all since
they are subsumed by another parameter. For example, the ignoreNumbers,
ignoreCharacters, and ignoreStrings flags are subsumed by a more general
ignoreLiterals flag. These parameters can be changed without any effect if the
ignoreLiterals flag is enabled. Their values are represented using * meaning
they can be freely set to any value. We also found that changing the value of

1 The full set of optimised parameters are at cragkhit.github.io/ssbsechallenge2016.



5

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 2.0.0 2.0.44
Mockito

0

10

20

30

40

50

60

70

80

P
e
rc

e
n
ta

g
e
 o

f 
C

lo
n
e
s

1 tool

2 tools

3 tools

4 tools

Fig. 3. Comparison of number of agreed clone lines (SLOC) for 1, 2, 3, and 4 tools
reported by optimised parameters (left) and default parameters (right) in each release

ignoreIdentifierCase does not have any effect at all. In summary, for Mock-
ito, the optimised parameters are observed to be varied over 14 releases with
some stability in a specific region of releases. There is no single set of optimised
parameters that work well across all releases.

RQ3 (clones over releases): how many clones in Mockito are reported
with the highest agreement over releases? We would like to observe the number
of clone lines (LOC) reported by the tools using optimised parameters in each
release. This insight can support Mockito developers’ decision to perform code
refactoring in future releases and future research studying clone detection.

The number of agreed clone lines detected by EvaClone using optimised
parameters agreed by exactly 1, 2, 3, and 4 tools over 14 releases are presented
in Fig. 3. We can clearly see that there are spikes in the number of agreed
clone lines in release 0.9 and from release 1.9 onwards compared to releases 1.0–
1.8. In releases 1.0–1.8, the highest agreement has been achieved by drastically
decreasing the overall number of cloned lines, while for the other releases it has
been achieved by increasing the overall number of cloned lines. Moreover, Fig. 3
shows that a large percentage (40%-50%) of the code is identified as cloned by
only one tool. A manual investigation of the clone reports from the four tools
revealed that the cloned lines reported by only one tool in every release are 80.8%
generated by Deckard, 9.8% by Simian, 4.8% by CCFinder and 4.6% by NiCad
for the optimised configurations and 87.9%, 10.9%, 0.7%, and 0.5% respectively
for the default configurations. These fluctuations in the number of agreed clone
lines reveal a weakness in the fitness function used by Wang et al. [11]: It increases
agreement by significantly increasing or decreasing the number of cloned lines.
The evaluation of the original study showed that EvaClone favours recall over
precision [11], however, the drastic decrease in reported lines for releases 1.0–1.8
will reduce recall. Moreover, the large percentage of cloned lines in the default
configuration suggests a low precision of at least one tool and the optimised
configurations of release 0.9 and 1.9 onward decreases the precision even further.



6

This phenomenon is not a desirable result in terms of clone quality since there will
be either too many false positives or false negatives. Since the fitness evaluation
function is also a component of the framework, one should find a better fitness
function in order to overcome this problem. For example, the fitness function
must not only rely on the number of cloned lines, but also include other aspects
like how often a line is found to be cloned to other places.

Our replication study produced more evidence that designing a general fitness
function that works well in all situations is a difficult task. Approaches to solve
this problem of designing proper fitness functions are emerging [3]. Because of
the large fluctuations in the number of clones reported by the framework, we
decided not to draw any conclusion about clones in Mockito from these results.

4 Conclusion
We performed a replication study by applying EvaClone, a framework for op-
timising clone detection tool’s configurations using a Genetic Algorithm, with
four tools to 14 Mockito releases in order to study the optimised parameters and
how variations in the analysed data impact the results of the Genetic Algorithm.

The results show that the optimised parameters given by the framework
achieve a higher clone agreement among the tools over all releases of Mockito.
Some of the optimised parameters are observed to be dominant in a single release
or over some releases but there is no parameter set that consistently superior
over all releases. We also discover a weakness in the fitness evaluation function,
as it increases agreement by significantly increasing or decreasing the number of
cloned lines, producing more false positives or false negatives respectively.

References

1. Mockito. Online - http://mockito.org, accessed: 07.04.2016
2. Simian. Online - http://www.harukizaemon.com/simian, accessed: 07.04.2016
3. Amal, B., Kessentini, M., Bechikh, S., Dea, J., Said, L.B.: On the use of machine

learning and search-based software engineering for ill-defined fitness function: A
case study on software refactoring. In: SBSE ’14 (2014)

4. Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E.: Comparison and eval-
uation of clone detection tools. TSE 33(9) (2007)

5. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: DECKARD: Scalable and accurate
tree-based detection of code clones. In: ICSE (2007)

6. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: a multilinguistic token-based
code clone detection system for large scale source code. TSE 28 (2002)

7. Mondal, M., Roy, C.K., Rahman, M.S., Saha, R.K., Krinke, J., Schneider, K.A.:
Comparative stability of cloned and non-cloned code. In: SAC ’12 (2012)

8. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone
detection techniques and tools. Science of Computer Programming 74(7) (2009)

9. Roy, C., Cordy, J.: NICAD: Accurate detection of near-miss intentional clones
using flexible pretty-printing and code normalization. In: ICPC ’08 (2008)

10. Svajlenko, J., Roy, C.K.: Evaluating modern clone detection tools. In: ICSME
(2014)

11. Wang, T., Harman, M., Jia, Y., Krinke, J.: Searching for better configurations: a
rigorous approach to clone evaluation. In: FSE ’13 (2013)


