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Abstract. The appeal of highly-configurable software systems lies in
their adaptability to users’ needs. Search-based Combinatorial Interac-
tion Testing (CIT) techniques have been specifically developed to drive
the systematic testing of such highly-configurable systems. In order to ap-
ply these, it is paramount to devise a model of parameter configurations
which conforms to the software implementation. This is a non-trivial
task. Therefore, we extend traditional search-based CIT by devising 4
new testing policies able to check if the model correctly identifies con-
straints among the various software parameters. Our experiments show
that one of our new policies is able to detect faults both in the model and
the software implementation that are missed by the standard approaches.
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1 Introduction

Most software systems can be configured in order to improve their capability
to address user’s needs. Configuration of such systems is generally performed
by setting certain parameters. These options, or features, can be created at the
software design stage (e.g., for software product lines, the designer identifies the
features unique to individual products and features common to all products in
its category), during compilation (e.g., to improve the efficiency of the compiled
code) or while the software is running (e.g., to allow the user to switch on/off a
particular functionality). A configuration file can also be used to decide which
features to load at startup.

Large configurable systems and software product lines can have hundreds
of features. It is infeasible in practice to test all the possible configurations.
Consider, for example, a system with only 20 Boolean parameters. One would
have to check over one million configurations in order to test them all (220 to be
exact). Furthermore, the time cost of running one test could range from fraction
of a second to hours if not days. In order to address this combinatorial explosion
problem, Combinatorial Interaction Testing (CIT) has been proposed for testing
configurable systems [4]. It is a very popular black-box testing technique that



tests all interactions between any set of t parameters. There have been several
studies showing the successful efficacy and efficiency of the approach [13, 14, 21].

Furthermore, certain tests could prove to be infeasible to run, because the
system being modelled can prohibit certain interactions between parameters.
Designers, developers, and testers can greatly benefit from modelling parameters
and constraints among them by significantly reducing modelling and testing
effort [21] as well as identifying corner cases of the system under test. Constraints
play a very important role, since they identify parameter interactions that need
not be tested, hence they can significantly reduce the testing effort. Certain
constraints are defined to prohibit generation of test configurations under which
the system simply should not be able to run. Other constraints can prohibit
system configurations that are valid, but need not be tested for other reasons.
For example, there’s no point in testing the find program on an empty file by
supplying all possible strings.

Constructing a CIT model of a large software system is a hard, usually man-
ual task. Therefore, discovering constraints among parameters is highly error
prone. One might run into the problem of not only producing an incomplete
CIT model, but also one that is over-constrained. Even if the CIT model only
allows for valid configurations to be generated, it might miss important system
faults if one of the constraints is over-restrictive. Moreover, even if the system
is not supposed to run under certain configurations, if there’s a fault, a test
suite generated from a CIT model that correctly mimics only desired system
behaviour will not find that error. In such situations tests that exercise those
corner cases are desirable.

The objective of this work is to use CIT techniques to validate
constraints of the model of the system under test (SUT). We extend
traditional CIT by devising a set of six policies for generating tests
that can be used to detect faults in the CIT model as well as the SUT.

2 Combinatorial Models of Configurable Systems

Combinatorial Interaction Testing (CIT), or simply combinatorial testing, aims
to test the software or the system with selected combinations of parameter val-
ues. There exist several tools and techniques for CIT. Good surveys of ongoing
research in CIT can be found in [9, 19], while an introduction to CIT and its
efficacy in practice can be found in [15, 21].

A model for a combinatorial problem consists of several parameters which
can take several domain values. In most configurable systems, dependencies exist
between parameters. Such constraints may be introduced for several reasons, e.g.,
to model inconsistencies between certain hardware components, limitations of
the possible system configurations, or simply design choices [4]. In our approach,
tests that do not satisfy the constraints in the CIT model are considered invalid.

We assume that the models are specified using CitLab [7, 3]. This is a frame-
work for combinatorial testing which provides a rich abstract language with pre-
cise formal semantics for specifying combinatorial problems, and an eclipse-based
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Model WashingMachine
Definitions:
Number maxSpinHL = 1400;

end
Parameters:
Boolean HalfLoad;
Enumerative Rinse {Delicate Drain Wool};
Numbers Spin { 800 1200 1800 };
end
Constraints:
# HalfLoad => Spin < maxSpinHL #
# Rinse==Rinse.Delicate =>

( HalfLoad and Spin==800) #
end

(a) Washing Machine example

Model Greetings
Parameters:
Boolean HELLO;
Boolean BYE;

end
Constraints:
# HELLO != BYE#

end

#ifdef HELLO
char∗ msg = ”Hello!\n”;
#endif
#ifdef BYE
char∗ msg = ”Bye bye!\n”;
#endif

void main() {
printf(msg);

}

(b) Compile time configurable example, its CIT
model (left) and the source code (right)

Fig. 1. Combinatorial interaction CitLab models

editor with a rich set of features. CitLab does not have its own test generators,
but it can utilise, for example, the search-based combinatorial test generator
CASA3[8]. CIT problems can be formally defined as follows.

Definition 1 Let P = {p1, . . . , pm} be the set of parameters. Every parameter
pi assumes values in the domain Di = {vi1, . . . , vioi}. Every parameter has its
name (it can have also a type with its own name) and every enumerative value
has an explicit name. We denote with C = {c1, . . . , cn} the set of constraints.

Definition 2 The objective of a CIT test suite is to cover all parameter in-
teractions between any set of t parameters. t is called the strength of the CIT
test suite. For example, a pairwise test suite covers all combinations of values
between any 2 parameters.

Constraints ci are given in general form, using the language of propositional
logic with equality and arithmetic. Fig. 1a shows the CitLab model of a simple
washing machine consisting of 3 parameters. The user can select if the machine
has HalfLoad, the desired Rinse, and the Spin cycle speed. There are two con-
straints, including, if HalfLoad is set then the speed of spin cycle cannot exceed
maxSpinHL.

Software systems can be configured by setting specific parameter values at
different stages of the software testing process.
Compile time Configurations can be set at compile time. An example is shown
in Figure 1b. Depending on the value settings of the Boolean variables HELLO

and BYE different messages will be displayed when the program is run.
Design time Configurations can also be set at design time. For example, in
case of a SPL, a configurability model is built during the design.
Runtime Another way of setting parameter configurations is at runtime. This
can be usually done by means of a graphical user interface (GUI). In a chat
client, e.g., you can change your availability status as the program is running.

3 http://cse.unl.edu/~citportal/
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Launch time We also differentiate the case where parameters are read from a
separate configuration file or given as program arguments, before the system is
run. We say that these parameters are set at launch time of the given applica-
tion. They decide which features of the system should be activated at startup.
Examples of such systems include chat clients, web browsers and others.

3 Basic Definitions

We assume that the combinatorial model represents the specification of the pa-
rameters and their constraints for a real system as it has been implemented.
We are interested in checking whether this system specification correctly rep-
resents the software implementation. We assume that the parameters and their
domains are correctly captured in the specification, while the constraints may
contain some faults. Specification S belongs to the problem space while software
implementation I belongs to the solution space [18].

Formally, given an assignment p̄ that assigns a value to every parameter in
P of the model S, we introduce two functions:

Definition 3 Given a model S and its implementation I, valS is the function
that checks if assignment p̄ satisfies the constraints in S, while oracleI(p̄) checks
if p̄ is a valid configuration according to implementation I.

We assume that the oracle function oracleI exists. For instance, in case of a
compile-time configurable system, we can assume that the compiler plays the
role of an oracle: if and only if the parameters p̄ allow the compilation of the
product then we say that oracle(p̄) holds. We may enhance the definition of
oracle by considering also other factors, for example, if the execution of the
test suite completes successfully. However, executing oracleI may be very time
consuming and it may require, in some cases, human intervention.

On the model side, the evaluation of valS(P ) is straightforward, that is,
valS(p̄) = c1[P←p̄] ∧ . . . ∧ cn[P←p̄].

Definition 4 We say that the Constrained CIT (CCIT) model is correct if, for
every p, valS(p) = oracleI(p). We say that a specification contains a confor-
mance fault if there exists a p̄ such that valS(p̄) 6= oracleI(p̄).

3.1 Finding Faults by Combinatorial Testing

In order to find possible faults as defined in Definition 4, the exhaustive explo-
ration of all the configurations of a large software system is usually impractical.
In many cases, the evaluation of oracleI is time consuming and error prone, so
the number of tests one can check on the implementation can be very limited.
Instead, we can apply combinatorial testing in order to select the parameters
values and check that for every generated CIT test valS(p) = oracleI(p) holds.
This approach does not guarantee, of course, finding all possible conformance
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Fig. 2. Validating constraints by CIT

faults, but we can assume that faults are due to the interaction of parameters
and we can leverage the success of CIT in finding faults in real configurable
systems [14, 21].

We have devised a process that is able to find possible conformance faults.
It is depicted in Figure 2 and consists of the following steps:

1. Create a CIT model S that takes constraints into account.
2. Generate a CIT test suite according to one of the policies (see Section 4).
3. For every test in the test suite,

(a) Compute its validity as specified by the constraints in the CIT model.
(b) Compute oracleI , by executing the software system under each config-

uration to check if it’s acceptable.
(c) Compare the validity, as defined by the model, with the actual result.
(d) If valS 6= oracleI a fault (either in the model or in the system) is found.

A discrepancy between the model and the real system means that a config-
uration is correct according to the model but rejected by the real system (or
the other way around) and this means that the constraints in the model do not
correctly describe constraints in the system under test.

Invalid Configuration Testing. In classical combinatorial interaction testing, only
valid tests are generated, since the focus is on assessing if the system under test
produces valid outputs. However, we believe that invalid tests are also useful. In
particular, they address the following issues.

The CIT model should minimise the number of constraints and the invalid
configuration set: invalid configurations, according to the model, should only
be those that are actually invalid in the real system. This kind of test aims at
discovering faults of over-constraining the model. This problem is a variant of
the bigger problem of over-specification. Moreover, critical systems should be
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tested if they safely fail when the configuration is incorrect. This means that the
system should check that the parameters are not acceptable (i.e. it must fail) and
it should fail in a safe way, avoiding crashes and unrecoverable errors (it must
fail safely). Furthermore, creation of a CIT model for a large real-world software
system is usually a tedious, error-prone task. Therefore, invalid configurations
generated by the model at hand can help reveal constraints within the system
under test and help refine the CIT model. In line with the scientific epistemology,
our research focuses on generating not only tests (i.e., valid configurations) that
confirm our theory (i.e., the model), but also tests that can refute or falsify it.
Since the number of invalid configurations might be huge, such configurations
must be chosen in accordance with some criteria. We choose to use the same
t-way interaction paradigm as in standard CIT.

4 Combinatorial Testing Policies

We propose to use search-based combinatorial interaction testing techniques to
verify the validity of CIT models. In particular, given a CIT model, we modify it
according to one of the policies introduced in this section. Next, we use CASA to
generate the test suite satisfying the modified CIT model. We use the term “valid
test” to denote the generated configuration that satisfies all the constraints of the
original CIT model. Conversely, the term “invalid test” is used for a configuration
that does not satisfy at least one of the constraints of the original CIT model.
Words “test” and “configuration” are used interchangeably, though we note in
real-world systems one configuration may lead to multiple tests.

UC: Unconstrained CIT. In unconstrained CIT, constraints are ignored dur-
ing CIT test generation. They are used only to check the validity of the config-
uration selected during generation. The main advantage is that test generation
is simplified and efficient methods that work without constraints can be used.
Moreover, in principle, both valid and invalid configurations can be generated -
there is no control over model validity. It may happen that the test generation
algorithm generates only valid combinations (i.e., valS(t) for every t in the test
suite). This may reduce the effectiveness of the test suite: if only valid tests are
generated, one can miss faults only discoverable by invalid tests, as explained in
Section 3.1. On the other hand, only invalid tests can be equally useless.

Example 1. In the washing machine example shown in Fig. 1a, UC policy will
produce a pairwise test suite with at least 9 test cases, including an invalid test
case where HalfLoad is set to true in combination with Spin equal to 1800.

Test generation. UC can be applied by simply removing the constraints ci from
the original CIT model. The validity of each test can be later computed by
checking if the generated configuration satisfies all the ci. There are several
CIT tools that do not handle constraints (for example, those that use algebraic
methods for CIT test suite generation), hence can be used with this policy.
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CC: Constrained CIT. In this classical approach, constraints are taken into
account and only valid combinations among parameters are chosen. Among these
parameters a certain level of desired strength is required. The rationale behind
this policy is that one wants to test only valid combinations. If a certain interac-
tion among parameters is not possible, then it is not considered even if it would
be necessary in order to achieve the desired level of coverage. The main advantage
is that no error should be generated by the system. However, this technique can
only check one side of equation given in Def. 4, namely that valS(p) →oracleI(p),
since valS is always true. If the specification is too restrictive, no existing fault
will be guaranteed to be found, if it refers to configurations that are invalid.

Example 2. In the washing machine example shown in Fig. 1a, the CC policy
produces 7 tests for pairwise, all of which satisfy the constraints. Some pairs are
not covered: for instance HalfLoad=true and Spin=1800 will not be covered.

Test generation. CC is the classical constrained combinatorial testing (CCIT),
and CASA can correctly deal with the constraints and generate only valid config-
urations. However, CASA requires the constraints in Conjunctive Normal Form
(CNF), so CitLab must convert the constraints from general form to CNF.

CV: Constraints Violating CIT. In case one wants to test the interactions
of parameters that produce errors, only tests violating the constraints should
be produced. This approach is complementary with respect to the CC in which
only valid configurations are produced. In CV, we ask that the maximum pos-
sible CIT coverage for a given strength is achieved considering only tuples of
parameter values that make at least one constraint false (i.e. each test violates
the conjunction c1 ∧ . . . ∧ cn ).

Example 3. In the example presented in Fig. 1a, the CV policy produces 6 test
cases, all of which violate some constraint of the model. For instance, a test has
Rinse=Delicate, Spin =800, and HalfLoad=false.

Test generation. CV can be applied by modifying the model by replacing all the
constraints with ¬(c1 ∧ . . . ∧ cn) and then classical CC is applied.

CuCV: Combinatorial Union. One limitation of the CC technique is that
with an over-constrained model, certain faults may not be discovered. On the
other hand, by generating test cases violating constraints only, as in CV, certain
parameter interactions may not be covered by the generated test suite. In order
to overcome these limitations we propose the combination of CC and CV.

Test generation. CuCV is achieved by generating tests using policy CC and
policy CV and then by merging the two test suites. Since every test is either
valid (in CC) or invalid (in CV), merging the test suites consists of simply
making the union of the two test suites.
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ValC: CIT of Constraint Validity. CuCV may produce rather big test suites,
since it covers all the desired parameter interactions that produce valid configu-
rations and all those that produce invalid ones according to the given CIT model.
On the other hand, UC may be too weak since there is no control over the final
constraint validity and therefore there is no guarantee that the parameter values
will influence the final validity of the configuration. On one extreme, UC might
produce a test suite without any test violating the constraints. We propose the
ValC policy that tries to balance the validity of the tests without requiring the
union of valid and invalid tests. ValC requires the interaction of each parameter
with the validity of the whole CIT model. That is, both tests that satisfy all
the constraints will be generated as well as those that don’t satisfy any of the
constraints in the given CIT model. Formally, ValC requires that the validity
of each configuration p̄ (i.e., valS(p̄)) is covered in the same desired interaction
strength (see Definition 2) among all the parameters.

Example 4. For the WashingMachine, CuCV generates 13 test cases (6+7). ValC
requires only 11 test cases.

Test generation. ValC requires to modify the original CIT model by introduc-
ing a new Boolean variable validity and replacing all the constraints with one
constraint equal to validity ↔ (c1 ∧ . . . ∧ cn)

CCi: CIT of the Constraints. Every constraint may represent a condition
over the system state. For instance, the constraint HalfLoad => Spin < maxSpinHL

identifies the critical states in which the designer wants a lower spin speed. One
might consider each constraint as a property of the system and be interested
in covering how these conditions interact with each other and with the other
parameters. The goal is to make the constraints interact with the other system
parameters.

Test generation. CCi requires the introduction of a new Boolean variable validityi
for every constraint, and replacing every constraint ci with validityi ⇔ ci.

5 Experiments

In order to test our proposed approach we conducted the following experiments.
We used 4 case studies to evaluate our proposed approach:

1. Banking1 represents the testing problem for a configurable Banking ap-
plication presented in [22].

2. libssh is a multi-platform library implementing SSHv1 and SSHv2 written
in C4. The library consists of around 100 KLOC and can be configured by
several options and several modules (like an SFTP server and so on) can be
activated during compile time. We have analysed the cmake files and identified
16 parameters and the relations among them. We have built a feature model for
it in [1] and we have derived from that a CitLab model.

4 https://www.libssh.org/
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Model Heartbeat
Parameters:

Range REQ Length [ 0 .. 65535 ] step 4369;
Range REQ PayloadData length [ 0 .. 65535 ] step 4369;
Range RES Length [ 0 .. 65535 ] step 4369;
Range REQ PayloadData length [ 0 .. 65535 ] step 4369;

end
Constraints:
// the declared length in the REQUEST is correct
# REQ Length==REQ PayloadData length #
// the declared length in the RESPONSE is correct
# RES Length==RES PayloadData length #
// the RESPONSE has the same length as the REQUEST
# REQ Length==RES Length #
end

Fig. 3. HeartbeatChecker CIT model

3. HeartbeatChecker is a small C program, written by us, that performs
a Heartbeat test on a given TLS server. The Heartbeat Extension is a standard
procedure (RFC 6520) that tests secure communication links by allowing a com-
puter at one end of a connection to send a “Heartbeat Request” message. Such
a message consists of a payload, typically a text string, along with the payload’s
length as a 16-bit integer. The receiving computer then must send exactly the
same payload back to the sender. HeartbeatChecker reads the data to be used
in the Heartbeat from a configuration file with the following schema:

TLSserver: <IP>
TLS1_REQUEST Length: <n1> PayloadData: <data1 >
TLS1_RESPONSE Length: <n2 > PayloadData: <data2 >

Configuration messages with n1 equal to n2 and data1 equal to data2 represent
a successful Heartbeat test (when the TLS-server has correctly responded to the
request). HeartbeatChecker can be considered as an example of a runtime con-
figurable system, since thanks to the parameters one can perform different types
of tests (with different lengths and payloads). We have written an abstract ver-
sion of HeartbeatChecker in the combinatorial model shown in Fig. 3: we ignore
the actual content of the PayloadData and we model only the lengths: Length
represents the declared lengths and PayloadData length is the actual length of
the PayloadData. The constraints represent successful exchanges of messages in
the Heartbeat test. The oracle is true if the Heartbeat test has been successfully
performed with the specified parameters.

4. Django is a free and open source web application framework, written in
Python, consisting of over 17k lines of code, that supports the creation of com-
plex, database-driven websites, emphasizing reusability of components5. Each

5 https://www.djangoproject.com/
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Table 1. Benchmark data. vr is the validity ratio, defined as the percentage of config-
urations that are valid.

name #var #constraints #configurations vr #pairs

Banking1 5 112 324 65.43% 102
Libssh 16 2 65536 50% 480
HeartbeatChecker 4 3 65536 0.02% 1536
Django 24 3 33554432 18.75% 1196

Django project can have a configuration file, which is loaded every time the web
server that executes the project (e.g. Apache) is started. Therefore, the configura-
tion parameters are loaded at launch time. In the model we made, among all the
possible configuration parameters, we selected and considered one Enumerative
and 23 Boolean parameters. We elicited the constraints from the documentation,
including several forum articles and from the code when necessary. We have also
implemented the oracle, which is completely automated and returns true if and
only if the HTTP response code of the project homepage is 200 (HTTP OK).

Table 1 presents various benchmark data: number of variables and con-
straints, size of the state space (the total number of possible configurations),
the percentage of configurations that are valid (i.e. the ratio vr), the number
of pairs that represent the pairwise testing requirements (ignoring constraints).
Note that a low ratio indicates that there are only few valid configurations (see,
for example, the HeartbeatChecker benchmark). We collected models of real-
world systems from different domains, with a good level of diversity (in terms of
size, constraints, etc.) in order to increase the validity of our findings.

Experiments were executed on a Linux PC with two Intel(R) i7-3930K CPU
(3.2 GHz) and 16 GB of RAM. All reported results are the average of 10 runs with
a timeout for a single model of 3600 secs. Test suites were produced using the
CASA CIT test suite generation tool according to the pairwise testing criterion.

5.1 Test generation and coverage

In our first experiment, we are interested in comparing the policies in terms of
test effort measured by the number of tests and by the test suite generation
time. Table 2 presents the following data:

– The time required to generate the tests and to evaluate their validity (it
does not include the evaluation of the oracleI) in seconds.

– The size in terms of the number of tests and how many of those are valid
(#Val), i.e. valS returns true.

– The percentage of parameter interactions (pairs) that are covered. In the
count of the pairs to be covered, we ignore constraints as in Table 1.

From Table 2 we can draw the following observations:
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Table 2. Valid pairwise parameter interactions covered by six test generation policies.
(Shaded cells are covered in the prose.) Out of memory errors are due to constraint
conversion into the CNF format required by CASA. In particular, as known in the
literature, the size in CNF of the negation of a constraint can grow exponentially.

Banking1 Django libssh HeartbeatChecker
Pol. time size #Val Cov. time size #Val Cov. time size #Val Cov. time size #Val Cov.

UC 0.22 12 11 100% 0.65 10 2 100% 0.25 8 4 100% 447 267 0 100%
CC 0.26 13 13 100% 1.24 10 10 91.8% 0.28 8 8 99.3% 2.74 141 141 6.2%
CV Out of memory 0.32 11 0 100% 0.25 8 0 99.3% Out of memory
CuCV Out of memory 1.58 21 10 100% 0.52 16 8 100% Out of memory
ValC Out of memory 0.31 11 4 100% 0.29 8 5 100% Out of memory
CCi 6.22 12 9 100% 0.58 13 3 100% 0.30 8 2 100% 460 268 0 100%

– UC usually produces both valid and invalid tests. However, it may produce
all invalid tests (especially if the constraints are strong - see HeartbeatChecker).
Having all invalid tests may reduce test effectiveness.

– CC usually does not cover all the parameter interactions, since some of
them are infeasible because they violate constraints in the original model. On
the other hand, CC generally produces smaller test suites (as in the case of
HeartbeatChecker). However, in some cases, CC is able to cover all the required
tuples at the expense of larger test suites (as in the case of Banking1).

– CV generally does not cover all the parameter interactions, since it pro-
duces only invalid configurations. However, in one case (Django) CV covered
all the interactions. This means that 100% coverage of the tuples in some cases
can be obtained with no valid configuration generated and this may reduce the
effectiveness of testing. Sometimes CV is too expensive to perform.

– CuCV guarantees to cover all the interactions and it produces both valid
and invalid configurations. However, it produces the bigger test suites and it
may fail because it relies on CV.

– ValC covers all the interactions with both valid and invalid configurations.
It produces test suites smaller than CuCV and it is generally faster, but as CuCV
may not terminate.

– CCi covers all the interactions, it generally produces both valid and invalid
test. However, it may produce all invalid tests (see HeartbeatChecker), and it
produces a test suite comparable in size with UC. However, it guarantees an
interaction among the constraint validity. It terminates, but it can be slightly
more expensive than UC and CC. If the strength of combinatorial testing is
greater or equal to the number of constraints, it guarantees also that valid and
invalid configurations are generated.

5.2 Fault detection capability

We are interested in evaluating the fault detection capability of the tests gen-
erated by the policies presented above. We have applied mutation analysis [12]
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ValC X X X X - - - - - - - 4/13
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(b) Fault detection capability of the policies (- means
that the test suite was not generated.)

Fig. 4. Fault detection capability

which consists of introducing artificial faults and checking if the proposed tech-
nique is able to find them. In our case, we have introduced the faults by hand
and then we have applied our technique described in Section 3.1 in order to check
if the fault is detected (or killed). Tables in Fig. 4 present a brief description of
each introduced fault and if each policy was able to kill it.

In principle, our technique is able to find conformance faults both in the
model and in the implementation. Indeed, when a fault is found, it is the de-
signer’s responsibility to decide what is the source of the fault. For libssh we
have modified both the model and the code (the cmake script) (faults Lx). For
the HeartbeatChecker we have modified the model and the source code (faults
Hx). Table in Fig. 4a presents the details of each injected fault, including if it
refers to the specification (S) or to the implementation (I).

Table in Fig. 4b reports which faults were killed by each policy. We can
observe that the unconstrained CIT (UC) policy performs better than some
policies that consider constraints (CC and CV) even if normally their test suites
have the same dimensions. However, in some cases (L6) CC detected a fault
where UC failed. For CV, CuCV, and ValC we can analyze only the results for
libssh, since they did not complete the test generation for HeartbeatChecker.
However, even if we restrict to libssh, CuCV has a very good fault detection
capability (but it produces the biggest test suite) while ValC and CV scored as
well as UC, although they are more expensive, so according to our studies there
is no particular reason to justify the use of ValC and CV alone. However, in one
case (L3) CV detected a fault that UC did not.

Overall CCi was the best in terms of fault detection, even with test suites as
big as those for UC. However, it missed one of the injected faults (L6). CCi was
the only one to find the fault H7 (HeartBleed). The HeartBleed fault simulates
the famous Heartbleed security bug of the OpenSSH implementation of the TLS
protocol. It results from improper input validation (due to a missing bounds
check) in the implementation of the TLS Heartbeat extension. In detail, the
implementation built the payload length of message to be returned based on the
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length field in the requesting message, without regard to the actual size of that
message’s payload. In our implementation, the faulty HeartbeatChecker missed
to check that REQ Length==RES Length. This proves that testing how parameters
can interact with single constraints increases the fault detection capability of
combinatorial testing. Our new policies may thus prove useful in detecting faults
missed by standard approaches due to the so-called masking effects [25].

6 Related Work

The problem of modelling and testing the configurability of complex systems is
non-trivial. There has been much research done in extracting constraints among
parameter configurations from real systems (problem space) and modelling sys-
tem configurability [23, 11, 25]. For instance, the importance of having a model
of variability and having the constraints in the model aligned with the imple-
mentation is discussed in [18]. However, in that paper, authors try to identify the
sources of configuration constraints and to automatically extract the variability
model. Our approach is oriented towards the validation of a variability model
that already exists. Moreover, they target C-based systems that realise config-
urability with their build system and the C preprocessor. A similar approach is
presented in [24], where authors extract the compile-time configurability from
its various implementation sources and examine for inconsistencies (e.g., dead
features and infeasible options). We believe that our approach is more general
(not only compile-time and C-code) and can be complementary used to validate
and improve automatically extracted models.

Testing configurable systems in the presence of constraints is tackled in [4]
and [21]. In these papers, authors argue that CIT is a very efficient technique
and that constraints among parameters should be taken into account in order
to generate only valid configurations. This allows to reduce the cost of testing.
Also in [2], authors have shown how to successfully deal with the constraints by
solving them by using a constraint solver such as a Boolean satisfiability solver
(SAT). However, the emphasis of that research is more on testing of the final
system not its model of configurability. CIT is also widely used to test SPLs [20].

In SPL the validation and extraction of constraints between features is gener-
ally given in terms of feature models (FMs). Synthesis of FMs can be performed
by identifying patterns among features in products and in invalid configurations
and build hierarchies and constraints (in limited form) among them. For instance,
Davril et al. apply feature mining and feature associations mining to informal
product descriptions [5]. There exist several papers that apply search based tech-
niques, which generally give better results [10, 17, 6, 16]. However, checking and
maintaining the consistency between a SPL and its feature model is still an open
problem. A preliminary proposal is presented in [1], which however does not use
CIT but a more complex logic based approach. We plan to compare our approach
with [1] in order to check if CIT can provide benefits in terms of easiness in test
generation and shorter generation times.
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7 Conclusions

We proposed a novel approach that extends CIT and aims to automatically check
the validity of the configurability model of the system under test. In particular,
we described how combinatorial interaction testing techniques can be utilised
for this purpose. We devised four original policies that can help software testers
discover faults in the model of system configurations as well as faults in the soft-
ware implementation that the model describes. Several experiments conducted
show the efficacy of our approach. We confirm that constraints play an impor-
tant role in configurability testing, but the experiments show that also invalid
configurations should be considered in order to avoid some problems (like over-
specification) and to detect a wider range of faults. Our experiments suggest that
techniques including both valid and invalid tests (as CuCV) have a better fault
detection capability than techniques including only valid (as CC) or invalid tests
(as CV). However, producing invalid tests may be not feasible. In these cases
we would suggest the tester to use CCi instead of UC and CC. The experiments
suggest that CCi is not very expensive and it offers a superior fault detection ca-
pability. The techniques presented should significantly help software developers
in the modelling and testing process of software systems configurations.
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